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Abstract: The development of numerous diseases, such as renal cyst, cancer, and viral infection,
is closely associated with the pathological changes and defects in the cellular peripheral brush.
Therefore, it is necessary to develop a potential new method to detect lesions of cellular peripheral
brush. Here, a piecewise linear viscoelastic constitutive model of cell is established considering the
joint contribution of the peripheral brush and intra-cellular structure. By combining the Laplace
transformation and its inverse transformation, and the differential method in the temporal domain
and differential quadrature method (DQM) in the spatial domain, the signal interpretation models
for quasi-static and dynamic signals of microcantilever are solved. The influence mechanisms of
the peripheral brush on the viscoelastic properties of cells and quasi-static/dynamic signals of
microcantilever are clarified. The results not only reveal that the peripheral brush has significant
effects on the complex modulus of the cell and multi-channel signals of the microcantilever, but also
suggest that an alternative mapping method by collecting multi-channel signals including quasi-
static and higher frequency signals with more brush indexes could be potentially used to identify
cancerous cells.

Keywords: peripheral brush; cellular viscoelasticity; microcantilever; detection mechanism;
multi-channel signals

1. Introduction

The cellular brush is one of the important peripheral microstructures in a living cell,
which consist mainly of microvilli, microridges, and cilia [1], and plays an important role in
physiological processes such as cell–cell interaction, cell migration, differentiation and pro-
liferation, embryonic development, inflammation, and tumors [2,3]. Relevant experiments
based on atomic force microscopy (AFM) have shown that the cellular peripheral brush
can affect the mechanical responses of cells, thus changing the static/dynamic detection
signals of AFM microscale sensors [4–6]. Thus, it is imperative to develop a reasonable
constitutive model to accurately reflect the cellular peripheral brush and to take the me-
chanical properties of the peripheral brush as crucial indicators to distinguish between
normal and cancerous cells. This exploration will significantly contribute to early cancer
detection and treatment.

In the theoretical and experimental studies of cell mechanics, the interpretation of
experimental results is predominantly based on the continuum medium model, in which
cells are typically considered as homogeneous elastic or viscoelastic materials [7–10]. The
AFM-based detection techniques for the mechanical properties of cells can be categorized
into quasi-static mode and dynamic mode [11]. The AFM quasi-static mode mainly collects
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the signal of the force–distance curve and mainly includes force volume (FV), fast force vol-
ume (FFV), and fast force mapping modes [11–15]. The AFM dynamic mode mainly collects
the signals of tip–sample interaction force, amplitude and phase [11], and mainly includes
the multi-harmonic mode [16], sub-resonance mode [17], and AFM dynamic force-clamp
mode [18–21]. However, with the change in AFM detection mode, there exists significant
variations in the measured values of cellular apparent elastic modulus, thus indicating
that a pure elastic model cannot fully capture proactive cellular behavior. Consequently,
viscoelastic models have emerged as a preferred choice for investigating mechanical proper-
ties of cells [22–25], among which simpler ones include Maxwell and Kelvin–Voigt models.
Nevertheless, these models often fall short in quantitatively describing complex viscoelastic
behaviors exhibited by cells. In recent years, the standard linear solid model and power
law model have been extensively utilized by numerous scholars to effectively character-
ize the viscoelastic behavior of cells, serving as single-domain constitutive models for
cells [21,22,24].

The single-domain constitutive model of cells has been inadequate in accurately de-
scribing the dynamic changes in cellular peripheral brush bristles and other microstructures
following cytopathic alterations and their effects on the multi-channel signals of AFM mi-
crobeams. Xu et al. established a self-similar multilevel structural model of cells consisting
of the membrane, cytoskeleton, and cytoplasm [10]. In AFM peakforce tapping mode
(dynamic mode), Schillers et al. demonstrated that the microvilli of MDCK C11 cells can be
clearly scanned by controlling force in the pico-Newton range (100–200 pN). The length
and diameter of the peripheral brush are approximately 1 µm and 200 nm, respectively [26].
In AFM indentation experiments (quasi-static mode), Iyer et al. and Sokolov et al. em-
ployed the single/double brush models to investigate the mechanical properties of MCF-7
cellular peripheral brush. They found that the reduction in stiffness after cell canceration is
likely not due to the changes within the cell itself but rather derived from the peripheral
brush. This is because experiments have shown that the physical parameters such as
density and length of the peripheral brush are changed significantly after cell becomes
cancerous [1,27]. The peripheral brush is generally regarded as a nonlinear elastic material,
typically described by using the freely jointed chain (FJC) and worm-like chain (WLC)
models of polymers and macromolecules [28]. In summary, the single-domain constitutive
relationship of cells is insufficient to describe the dynamic adjustments in cell structures,
viscoelastic properties, and functions. The peripheral brush effect should be considered
when establishing a cell constitutive model.

This study focuses on a potential method to detect the effect of cancerous brush on
cellular viscoelasticity by using multi-channel signals in dynamic force-clamp mode of
microcantilever sensors. Firstly, based on the experimental discovery of the cellular periph-
eral brush [1,27], a piecewise linear viscoelastic constitutive model of the cell is established
considering the nonlinear elasticity of the peripheral brush and the viscoelasticity of the
intra-cellular structure. Secondly, the signal interpretation models for the quasi-static and
dynamic signals of microcantilever system are solved by combining the Laplace transfor-
mation and its inverse transformation, and the differential method in the temporal domain
and differential quadrature method (DQM) in the spatial domain. Finally, the influence
mechanisms of the peripheral brush on the quasi-static and dynamic signals of the AFM
microcantilever system are clarified. Also, based on AFM dynamic force-clamp mode, an
alternative mapping method with multiple indicators including quasi-static signal and
higher frequency peak amplitude is proposed to identify the cancerous cells.

2. Problem Formulation

As shown in Figure 1, the dynamic force-clamp mode is a potential AFM-based
detection method, which is different from AFM tapping mode [20,21]. There are two piezo
drivers in the detection system. The distance between the cell and the free-end of the
microcantilever is changed by pulling or pushing the right-hand piezo driver to make the
cell strained or compressed while a small-amplitude dithering is simultaneously applied to
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the fixed-end of microcantilever by the left-hand piezo driver with a low-driving frequency
(i.e., 40–240 Hz). So, the multi-channel signals of the interaction force (static force signal)
between the microcantilever tip and cell sample, the amplitude and phase of microcantilever
motion can be collected simultaneously [20]. The length of the microcantilever is l, and the
origin of coordinate z is located at the position where the interaction force between the fixed
cell and microcantilever tip is zero, i.e., F0 = 0. A small periodic excitation displacement at
the left-hand fixed-end is w(0) = Asinωt, and the displacement and movement speed of the
right-hand piezo driver are z(t) and v(t), respectively. The above two kinds of excitations
induce the microcantilever–cell system, generating the following responses: w(x, t) and
F(t), where w(x, t) is the bending deflection of microcantilever in z direction and F(t) is the
interaction force between the deformed cell and microcantilever tip. The total deformation
of cell is ∆d, ∆d = z(t)− w = vt − w.
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Figure 1. Schematic diagrams of protocol. (a) Microcantilever deflection and cellular microstructure
in AFM dynamic force-clamp mode; (b) multi-channel signals of interaction force (static force signal)
between microcantilever tip and cell sample, amplitude and phase of microcantilever.

Previous experimental studies have shown that the peripheral brush is composed of
membrane protrusions, such as microvilli, microridges, cilia, and molecules grafted to the
cellular membrane, such as glycosaccharide and glycoproteins (glycocalyx) [27]. In some
SEM and EM scanning experiments, there were a lot of microvilli on the cell surface [1],
which was regarded as a columnar structure, and included the microfilaments [29]. The
molecules, microvilli, microridges, and cilia are usually characterized by the single/double
brush model, elastic/viscoelastic model, freely jointed chain model (FJC), and worm chain
model (WLC) [1,17,20,28]. The cell thickness is about 2–15 µm [30]. The length of the
peripheral brush layer is 0.1–5 µm, which is 1/10–1/3 of the overall length of cell [1,27,31].
Based on the above research, as shown in Figure 2, the peripheral brush layer is coarsely
grained into a given number of springs (disperse model), and the single brush is assumed
as a nonlinear elastic spring, while the intra-cellular structure is simplified as a continuous
viscoelastic cylinder (standard linear solid model) [21,30,32].
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2.1. Two-Domain Structure Model

Previous experimental studies have shown that the mechanical behavior of a single
brush can be represented by a two-stage linear elastic constitutive model (soft spring and
hard spring) based on the force–displacement curve of single biomolecule experiments [28].
To enhance computational efficiency and applicability of cellular constitutive model, the
piecewise linearization method is adopted to characterize the nonlinear elastic of single
cellular brush [33].

When the strain of single brush is less than the critical strain, the brush is in the
stage 1, i.e., tensile/compressive state (i = 1); otherwise, the brush is in the stage 2, i.e.,
tensile/compressive state (i = 2). Thus, the piecewise linear constitutive relationship of
single brush can be expressed as

fb = fiC = Ckbiδb = Ckbilbεb = Ebiεb.(i = 1, 2) (1)

where f b and fi represent the force per unit area in brush layer and the force of single
brush, respectively; C is the brush density; kbi and Ebi are the segmental stiffness of single
brush and the elastic modulus of brush layer, respectively; and δb, εb, and lb are the
tensile/compressive displacement, the strain, and the length of single brush, respectively.

For the intra-cellular structure, a differential type viscoelastic constitutive relationship
is expressed by the following standard linear solid model [21,30,32]:

(E1 + E2)σ + η1
.
σ = E1E2εv + E2η1

.
εv, (2)

where E1, E2, and η1 are the elastic and viscous parameters of the intra-cellular structure
and σ and εv are the stress and strain of the intra-cellular structure. The corresponding
integral type viscoelastic constitutive relation can be written as

σ = Ev ⊗ εv (3)

where Ev is the relaxation function of the intra-cellular structure and Ev = e0 + e1 exp(−αt),
in which e0, e1, and α are the material parameters of the intra-cellular structure, which
can be represented by E1, E2, and η1, i.e., e0 = E1E2/(E1 + E2), e1 = E2

2/(E1 + E2),
α = (E1 + E2)/η1. The symbol ⊗ expresses the following linear Boltzmann operator [32]:

ψ1(t)⊗ ψ2(t) = ψ1(0)ψ2(t) +
t∫

0

.
ψ1(t − τ)ψ2(τ)dτ, where the superscript “·” represents the

derivative of time t.
Peripheral brush layer is treated as a dispersed material which consists of a certain

number of single brushes. Hence, we take into account that the force in brush layer needs
to be fully transmitted to the cellular inner region:

fb × Ab = fb × Av × λ = σ × Av (4)

where Av is the contact area between peripheral brush and intra-cellular structure; Ab is the
cross-section area of brush layer; and λ is the contact area ratio of brush layer to the cellular
inner region, i.e., λ = Ab/Av, which is the constant value and newly defined parameter
resulting from the simplification of the intra-cellular structure into a viscoelastic cylinder
and peripheral brush layer into a given number of springs. In addition, the total strain of
cell is

ε =
∆d

lb + lv
=

δb + δv

lb + lv
=

lb
lb + lv

εb +
lv

lb + lv
εv, (5)

where δb and δv are the tensile/compressive displacements of the peripheral brush and
intra-cellular structure, respectively. lv is the length of the intra-cellular structure. The total
cellular deformation is given as ∆d = δb + δv = z(t)− w. By applying the inverse Laplace
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transformation to Equations (1), (2), (4) and (5), we can obtain the following constitutive
model of cell:

(E1 + E2)σ + η1σs = E1E2

[
(lb + lv)

lv
ε − σ

λEbi

]
+ E2η1

[
(lb + lv)

lv
ε − σ

λEbi

]
s. (6)

Applying the inverse Laplace transformation to Equation (6), the differential constitu-
tive model of cell in the temporal domain can be obtained as

σ + p1i
.
σ = q0iε + q1i

.
ε, (7)

where the differential operators p1i, q0i and q1i are expressed as

p1i =
(λEbi+E2)η1

λEbi(E1+E2)+E1E2
,

q0i =
λEbiE1E2(lv+lb)

[λEbi(E1+E2)+E1E2]lv
,

q1i =
λEbiE2η1(lv+lb)

[λEbi(E1+E2)+E1E2]lv
.

(8)

Note that the contribution of both the peripheral brush and intra-cellular structure is
considered in the present differential constitutive model. When there is no peripheral brush
(i.e., when lb = 0), Equation (7) can be reduced to the standard linear solid model [21,30,32],
which demonstrates the compatibility of present model, validating the above derivation.
The corresponding integral type of Equation (7) can be similarly expressed as

σ = E∗
i ⊗ ε, (9)

where E∗
i is the relaxation function of the stretched/compressed cell, which is expressed as

E∗
i = e0i + e1ie−αit,

e0i = q0i, e1i = q1i/p1i − q0i, αi = 1/p1i.
(10)

When stress and strain are oscillatory functions, let s = iω, then the differential
operators P(iω) and Q(iω) in the frequency domain can be expressed as

P(iω) = 1 + p1iiω, Q(iω) = q0i + q1iiω. (11)

The complex modulus of cell in the frequency domain can be expressed as

E∗(iω) =
Q(iω)

P(iω)
=

q0i + q1iiω
1 + p1iiω

, (12a)

E∗
1 (ω) =

q0i + p1iq1iω
2

1 + (p1iω)2 , E∗
2 (ω) =

(q1i − p1iq0i)ω

1 + (p1iω)2 , (12b)

where E∗
1(ω) and E∗

2(ω) are the energy storage modulus and loss modulus of cell, respectively.

2.2. Interpretation Models of Microcantilever Signal

Here, referring to our previous work [21], a small periodic excitation Asinωt is applied
to the fixed-end in dynamic force-clamp detection mode, and the stretched/compressed cell
deformation in z direction is ∆d(t) = z0 + vt − w(x, t)|x=l . Thus, the governing equation
for the dynamic response of microcantilever in the temporal domain can be written as

m
..
w(x, t) + γ

.
w(x, t) + EI

∂4w(x, t)
∂x4 = 0, (13)

where m is the mass per unit length of microcantilever and γ is the dissipative coefficient
of background. The cell environment is in the air, and the related effects in the liquid
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environment are not considered in the model [21,34]. It should be noted that due to the
contribution of the peripheral brush and intra-cellular structure in the present model, the
boundary interaction force is characterized in different forms, so the boundary conditions
are as follows:

w|x=0 = A sin ωt, . . .
∂w
∂x

∣∣∣∣
x=0

= 0,

∂2w
∂x2

∣∣∣∣
x=l

= 0, . . .
EI ∂3w

∂x3

∣∣∣
x=l

= F(t) = −S
[
E∗

i ⊗ ∆d/(lb + lv)
]

= −S
[
E∗

i ⊗ (z0 + vt − w|x=l)/(lb + lv)
]
,

(14)

where S is the contact area between the microcantilever tip and cell, and the contact
area is assumed no change with time [21,35]; z0 is the initial position of substrate. For
the AFM quasi-static mode, the above governing equation and boundary conditions can
degenerate into

EI
∂4ws(x, t)

∂x4 = 0, (15a)

ws|x=0 = 0, . . .
∂ws

∂x

∣∣∣∣
x=0

= 0,

∂2ws

∂x2

∣∣∣∣
x=l

= 0, . . . EI
∂3ws

∂x3

∣∣∣∣
x=l

= Fs(t) = −S[E∗
i ⊗ (z0 − w|x=l)/lb + lv]. (15b)

3. Solution Methods

In this section, several methods are combined to solve the above mathematical mod-
els for quasi-static/dynamic responses of the microcantilever. Firstly, by combining the
Laplace transformation and its inverse transformation, an analytical solution for the quasi-
static response of the microcantilever is obtained. Secondly, by the combining differential
method [36] in the temporal domain and DQM [37] in the spatial domain, a numerical
solution for the dynamic response of microcantilever is obtained.

In AFM quasi-static contact mode, applying the Laplace transformation to Equation (15)
yields the transformed deflection in the Laplace domain as

ws =
[
SE∗

i z0s/
(

2Sl3E∗
i s2 + 6EI(lb + lv)

)
s
]
(3lx2 − x3), (16)

where [ ] represents the Laplace transformation and s is the transformation parameter.
By applying the Laplace transformation to Equation (10), substituting the result into

Equation (16), and then applying the inverse Laplace transformation to Equation (16), we
can obtain the analytic solution for quasi-static deflection of microcantilever as

ws = a1[a2 exp(−βt) + a3](3lx2 − x3), (17)

where a1, a2, a3, β are the polynomial coefficients, and

a1 = S
[
Sl3(e0i + e1i) + 3EI(lb + lv)

]−1[Sl3e0i + 3EI(lb + lv)
]−1/2, a2 = 3EIe1z0(lb + lv),

a3 = e0iz0
[
Sl3(e0i + e1i) + 3EI(lb + lv)

]
, β = 3EI(lb+lv)+Sl3e0i

3EI(lb+lv)+Sl3(e0i+e1i)
α.

(18)

In AFM dynamic force-clamp mode, the differential method in the temporal domain
and DQM in the spatial domain are combined to solve the governing equation for dynamic
response of the microcantilever. The length of microcantilever is discretized into N points
in x direction. The first-order derivative of function w at the given discrete point x = xi for
the independent variable x can be expressed as the following matrix form:

w′
i =

(
∂w
∂x

)
i
=

N

∑
j=1

Aijwj = Aijwj, i, j = 1, 2, · · · · · · , N (19)
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where wj is the desired N line vector of function w and Aij is the weighted coefficient matrix
of the first-order partial derivative, which is obtained by using the Lagrange interpolation
polynomial. The second-, third-, and fourth-order derivatives can be conveniently obtained
by the product of lower weight coefficient matrices, i.e.,

w′′
i = Aijw′

j = Bijwj,
w′′′

i = Aijw′′
j = Cijwj,

w(4)
i = Bijw′′

ij = Dijwj.
(20)

In this paper, the well-accepted Gauss–Chebyshev–Lobatto-type distribution of grid
point is adopted as [38]

xi =
l
2

[
1 − cos

(i − 1)π
N − 1

]
, i = 1, 2, · · · · · · , N, (21)

where xi is the spacing grids in x direction.
By using Equations (19)–(21), we can transform Equation (13) into

m
..
wj + γ

.
wj + EIDijwj = 0. (22)

Similarly, Equation (14) can be discretized as

w1j = A sin ωt, A1jwj = 0, BNjwj = 0,
[EI(lb + lv)/S]CNj(

.
wj + αwj)− E∗

i (0)(∆
.
dj + αi∆dj) + αie1∆dj = 0.

(23)

The initial conditions the dynamic response of microcantilever are written as

wj |t=0 = w0
j ,

.
wj |t=0 =

.
w0

j (24)

where w0
j ,

.
w0

j can be obtained in experiments. The numerical solution for dynamic response
can be obtained by programming Equations (22)–(24) with the Matlab R2018b.

4. Results and Discussion

In this section, the effects of the elastic properties of the peripheral brush on the
cell viscoelastic properties and the quasi-static/dynamic responses of the microcantilever
are explored. Firstly, in order to verify the effectiveness of present model, the present
analytical result of quasi-static response is compared with the relevant experiment [28,30],
and the convergence of DQM is verified in AFM dynamic force-clamp mode. Secondly, the
influence of the peripheral brush parameters on cell viscoelastic properties is discussed.
Finally, the effects of the peripheral brush on the quasi-static and dynamic responses
are predicted. Therefore, an alternative mapping method is proposed to identify the
cancerous cells in AFM dynamic force-clamp mode. In computation, a photoresistant SU-8
microcantilever is taken with the geometric parameters of l = 200 µm, b = 20 µm, hs = 0.8 µm,
and S = π(300)2 nm2 and the material parameters of E = 4.0 GPa, ρ = 1190 kg/m3 [21,23].

4.1. Model Verification

The present analytical result is compared with the experimental results of Chtche-
glova’s et al. by using Equation (15) [28] in the AFM tensile experiment (quasi-static contact
mode). As shown in Figure 3a, the segmental stiffness of the peripheral brush are taken as
kb1 = 0.00078 N/m and kb2 = 0.0125 N/m, which are consistent with the range of elastic
constants (0.0001–0.025 N/m) of a single protein molecule determined by Chtcheglova
et al. [28]. The coefficients of determination (R2) for the piecewise curve fittings based
on the present model are 0.944 and 0.982. In the AFM relaxation experiment (quasi-static
contact mode), the present analytical result based on Equation (17) is compared with the
experimental results of Darling’s et al. [30]. As shown in Figure 3b, when the peripheral
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brush is considered, the determination coefficient for the curve fitting based on the present
model is 0.958; while, when the peripheral brush is not considered (SLS model), the de-
termination coefficient for the curve fitting is 0.927 [21]. The fitted cellular parameters are
listed in Table 1. However, from Table 1, the mechanical parameters fitted by the present
model and its reduced model (no brush) [21] are significantly different from those obtained
by the Darling’s model due to different theories and cell constitutive models. It indicates
that the present model, which considers the cellular microstructures (i.e., peripheral brush
and intra-cellular structure), can better fit the relaxation experiment data. In AFM dynamic
force-clamp mode, the amplitude–frequency curve for the dynamic response of the mi-
crocantilever is obtained by using Equations (22)–(24). The previous studies suggest that
a low frequency excitation with small excitation amplitude seems eminently suitable for
detecting biomolecular viscoelasticity under AFM dynamic force-clamp mode [21], and
this frequency is not only higher than the resolutions of the detection frequency (i.e., 20 Hz)
and amplitude (i.e., 0.2 nm), but also far from the thermal noise frequency (i.e., 500 Hz). As
shown in Figure 3c, the numerical result converges rapidly with the increase in discretized
point number N by using Gauss–Chebyshev–Lobatto–type distribution; when N = 9, the
numerical results converge. The good consistencies demonstrate the convergence of DQM,
and this validates the present method.
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Table 1. Mechanical parameters of JJ012 cells in AFM stress relaxation experiment.

Cellular Parameters Darling [30] SLS (No Brush) [21] Present Model

e0i (Pa) 230 ± 150 26.33 ± 1.67 × 103 185.65 ± 61.2
e1i (Pa) 210 ± 130 41.59 ± 3.3 × 103 21.05 ± 10.9

e0i + e1i (Pa) 440 ± 270 206.7 ± 72.1
αi (s−1) 0.125 1.491 ± 0.467 0.474
Ebi (Pa) 56.7 ± 3.8

R2 0.875 0.927 0.958

4.2. Peripheral Brush Effect on Cell Viscoelasticity

The influence of brush density, segmental stiffness, and brush length on the complex
modulus of cell in the frequency domain will be discussed by using Equation (12). In
calculation, the viscoelastic parameters of the intra-cellular structure of JJ012 cells are as
follows: e0 = 230 Pa, e1 = 210 Pa, and α = 0.125 s−1 [30]. As shown in Figure 4, the relaxation
modulus of cell in the frequency domain exhibits a decreasing trend after taking into
account the elastic property of the peripheral brush. These results are be caused by the
coupling effect between the elasticity of the peripheral brush and the viscoelasticity of the
intra-cellular structure, as shown in Equations (8) and (12).
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Figure 4. Peripheral brush effect on the energy storage modulus of normal and cancerous cells.
(a) Brush density (lbi = 1 µm, kbi = 0.015 N/m); (b) segmental stiffness (lbi = 1 µm, C = 10 µm−2);
(c) brush length (kbi = 0.015 N/m, C = 10 µm−2); (d) peripheral brushes of normal and cancerous cells
(kbi = 0.01 N/m).

In addition, as seen in Figure 4a–c, with the increasing brush density, not only the
segmental stiffness and brush length, but also the transient- and steady-state complex
moduli of the cell in the frequency domain increase with the trend becoming closer to
the complex modulus of the intra-cellular structure. For example, the modulus of cell
is closer to that of the peripheral brush domain for the lower elastic modulus of the
peripheral brush, whereas it is closer to that of the intra-cellular structure for the higher
elastic modulus of the peripheral brush. Furthermore, the effect of the peripheral brush
on the complex moduli of normal and cancerous cells in the frequency domain will be
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discussed. For human cervical epithelial cells, a normal cell has a brush length of ~2.4 µm
with a grafting density of ~300 µm−2; however, the cancerous cell has two kinds of brushes
with characteristic lengths of 0.45 and 2.6 µm and grafting densities ~640 and 180 µm−2,
respectively [1]. As seen in Figure 4d, when the cell becomes cancerous, the brush number
decreases significantly, which results in a decrease in the cellular complex modulus. These
results also imply that we should carefully assert the previous conclusions based on those
single domain constitutive models [30].

4.3. Peripheral Brush Effect on Quasi-Static Response of Microcantilever

In AFM quasi-static mode (AFM relaxation experiment), the initial static displacement
of substrate is fixed (i.e., z0 = 200 nm). The influence of the brush density, segmental stiffness,
and brush length on microcantilever quasi-static responses (i.e., the time–history curves of
the deflection and interaction force) will be investigated by using Equation (17). In calcula-
tions, the viscoelastic parameters of the intra-cellular structure of JJ012 cells are as follows:
e0 = 230 Pa, e1 = 210 Pa, and α = 0.125 s−1 [30]. Substituting Equation (17) into Equation (15b)
yields the interaction force between the tip and cell, i.e., Fs(t) = 6EIa1[a2 exp(−βt) + a3].
As shown in Figure 5a,c,e, the quasi-static deflection of the microcantilever decreases when
the peripheral brush is considered, whereas it increases with the increase in brush density,
segmental stiffness, and brush length. This is due to the obvious effect of the peripheral
brush on the overall mechanical properties of the cell, which leads to the decrease or in-
crease in the interaction force between the microcantilever and the fixed cell, as shown in
Figure 5b,d,f. Furthermore, as we can see in Figure 5g,h, for the human cervical epithelial
cells, when the cell becomes cancerous, the density of the peripheral brush decreases sig-
nificantly, which results in a decrease in the interaction force and quasi-static deflection.
The above results show that the change in the peripheral brush has a significant effect on
the quasi-static signals of the microcantilever, which can be used to identify the physical
parameters of the peripheral brush, which is helpful for distinguishing the normal cells
and cancerous cells.
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Figure 5. Peripheral brush effect on quasi-static signals of microcantilever. (a,b) Brush density
(lbi = 1 µm, kbi = 0.015 N/m); (c,d) segmental stiffness (lbi = 1 µm, C = 10 µm−2); (e,f) brush
length (kbi = 0.015 N/m, C = 10 µm−2); (g,h) peripheral brushes of normal and cancerous cells
(kbi = 0.015 N/m).

4.4. Peripheral Brush Effect on Dynamic Response of Microcantilever

In AFM dynamic force-clamp mode, the influence of brush density, segmental stiff-
ness, and brush length on the dynamic responses of the microcantilever are investigated by
using Equations (22)–(24). With the movement of the pulling piezo driver (v = 25 nm/s)
and a small periodic excitation of the dithering piezo driver (A = 10 nm, the frequency
f = 100 Hz), the dynamic signals of the bending deflection–time curves of the microcan-
tilever are obtained, as shown in the inset of Figure 6a–d. Figure 6a–d show the quasi-static
signals of microcantilever caused by the movement of the pulling piezo driver (i.e., the
force–displacement curve of the microcantilever without considering the contribution of
small periodic excitation of the dithering piezo driver, v = 25 nm/s, A= 0 nm, f = 0 Hz). In
Figure 6e–h, by using the fast Fourier transform method, the amplitude–frequency curve is
generated from the dynamic bending deflection–time curve of the microcantilever, which
is obtained by subtracting the quasi-static signals from the dynamic signals of the micro-
cantilever. Note that the studied frequency is higher than the resolutions of the detection
frequency (i.e., 20 Hz) and amplitude (i.e., 0.2 nm), but is also far from thermal noise
frequency (i.e., 500 Hz). In calculations, the viscoelastic parameters of the intra-cellular
structure of JJ012 cells are as follows: e0 = 230 Pa, e1 = 210 Pa, and α = 0.125 s−1 [30].

As shown in Figure 6a–d, the interaction force becomes stronger with the increase in
the brush density, segmental stiffness, and brush length; when the cell becomes cancerous,
the density of the peripheral brush decreased significantly, and these changes induce a
decrease in interaction force. The results show that the change in the peripheral brush
has a significant effect on the interaction force in AFM dynamic force-clamp mode, which
could be used to identify the physical parameters of the peripheral brush, and this may
be helpful for distinguishing the normal cells and cancerous cells. As shown in the inserts
of Figure 6e–g, within the frequency (i.e., f ) range of 0–200 Hz, there are two peaks (i.e.,
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double-peak resonance) in the amplitude–frequency curve: one peak lies in the lower
frequency domain, and the other lies in the higher frequency domain. This reminds us
of the double-peak resonance phenomena for cell detection in our previous work [21].
The similar point of the previous work in Ref. [21] and the present study is as follows:
multiple signal peaks appear in the amplitude–frequency curves for the same vibration
mode. However, the interests are different. With the increasing brush density, segmental
stiffness, and brush length, the higher frequency peak amplitude increases prominently,
whereas the lower frequency peak amplitude and the interval between two peaks seem
unchanged. In fact, this is because with the increasing brush density, segmental stiffness,
and brush length, the increase in cell modulus at the higher frequency is more remarkable
than that at the lower frequency, as shown in Figure 4. Furthermore, as shown in Figure 6h,
the amplitude of the higher frequency peak decreases with the canceration of the cell, which
is due to the changes in the density and length of the peripheral brush.

These results not only suggest that the quasi-static signal of microcantilever is an
additional channel for detecting the brush density, segmental stiffness, and brush length
in AFM quasi-static and dynamic force-clamp modes, but also point out that the higher
frequency peak amplitude of the microcantilever can be used to detect the peripheral
brush in AFM dynamic force-clamp mode. The effective extraction and rational use of
multi-channel signals, including more microstructure information, may be beneficial for
the early diagnosis of cancer.
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Figure 6. Peripheral brush effect on quasi-static and dynamic responses of microcantilever (the
multi-channel signals caused by the movement of pulling piezo driver and small periodic excitation
of dithering piezo driver are shown in the inset of Figure 6). (a–c) Brush density (lbi = 1 µm,
kbi = 0.1 N/m), segmental stiffness (lbi = 1 µm, C = 10 µm−2), and brush length (kbi = 0.1 N/m,
C = 10 µm−2) effects on quasi-static signals; (d) brush effects of normal and cancerous cells on
quasi-static signals (kbi = 0.1 N/m); (e–g) brush density (lbi = 1 µm, kbi = 0.1 N/m), segmental
stiffness (lbi = 1 µm, C = 10 µm−2), and brush length (kbi = 0.1 N/m, C = 10 µm−2) effects on
dynamic characteristics; (h) brush effect of normal and cancerous cells on dynamic characteristics
(kbi = 0.1 N/m).

4.5. Limitations of Present Model and Future Developments

Note that the present model is established for AFM tension/compression (indentation)
states in air. The effects of the peripheral brush on the complex moduli and static and
dynamic signals of the microcantilever are mainly discussed in the state of indentation
compression. The contact part between the cell and the microcantilever is characterized as a
viscoelastic moving boundary condition, which mainly focuses on the joint contribution of
the peripheral brush and intra-cellular structure. The influence of the tip shape is ignored
and the contact area is assumed to be unchanged with time. In the future, a more completed
model for the cellular peripheral brush will be further investigated, and the fluid–solid
coupling model in consideration of liquid effects and the tip shape of microcantilever will
also be further investigated.

5. Conclusions

Based on the experimental findings related to the cellular peripheral brush [27], a
piecewise linear viscoelastic constitutive model of cell is established considering the joint
contribution of the peripheral brush and intra-cellular structure. We clarify the influence
mechanism of the peripheral brush effect on the viscoelastic properties of the cell and the



Sensors 2024, 24, 6312 14 of 16

multi-channel mechanical signals of the microcantilever. Therefore, an alternative potential
detection method with multi-channel signals including quasi-static and higher frequency
signals of microcantilever is proposed. The present results agree well with the previous
studies in AFM quasi-static contact mode and AFM dynamic force-clamp mode. The main
conclusions are as follows:

(1) The complex modulus of the cell in the frequency domain, the quasi-static deflec-
tion/interaction force, and the higher frequency peak amplitude of the microcantilever
enhance with the increase in brush density, segmental stiffness, and brush length.
These results indicate the necessity of considering the influence of the peripheral
brush in the establishment of the interpretation model of the microcantilever signal.

(2) In AFM dynamic force-clamp mode, the quasi-static deflection/interaction force and
higher frequency peak amplitude in double-peak resonance mode of the microcan-
tilever can be used to obtain more indexes including brush density, segmental stiffness,
and brush length for the diagnosis of cancerous cells.

(3) However, the relevant AFM dynamic force-clamp experiments need to be further
explored to verify the utilization of multi-channel signals with more indexes to identify
cancerous cells.
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