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Abstract: Tissue hysteresivity is an important marker for determining the onset and progression
of respiratory diseases, calculated from forced oscillation lung function test data. This study aims
to reduce the number and duration of required measurements by combining multivariate data
from various sensing devices. We propose using the Forced Oscillation Technique (FOT) lung
function test in both a low-frequency prototype and the commercial RESMON device, combined with
continuous monitoring from the Equivital (EQV) LifeMonitor and processed by artificial intelligence
(AI) algorithms. While AI and deep learning have been employed in various aspects of respiratory
system analysis, such as predicting lung tissue displacement and respiratory failure, the prediction or
forecasting of tissue hysteresivity remains largely unexplored in the literature. In this work, the Long
Short-Term Memory (LSTM) model is used in two ways: (1) to estimate the hysteresivity coefficient
η using heart rate (HR) data collected continuously by the EQV sensor, and (2) to forecast η values
by first predicting the heart rate from electrocardiogram (ECG) data. Our methodology involves a
rigorous two-hour measurement protocol, with synchronized data collection from the EQV, FOT,
and RESMON devices. Our results demonstrate that LSTM networks can accurately estimate the
tissue hysteresivity parameter η, achieving an R2 of 0.851 and a mean squared error (MSE) of 0.296
for estimation, and forecast η with an R2 of 0.883 and an MSE of 0.528, while significantly reducing
the number of required measurements by a factor of three (i.e., from ten to three) for the patient.
We conclude that our novel approach minimizes patient effort by reducing the measurement time
and the overall ambulatory time and costs while highlighting the potential of artificial intelligence
methods in respiratory monitoring.

Keywords: long short-term memory (LSTM); artificial intelligence; estimation; time-series forecasting;
electrocardiogram; respiratory mechanics; continuous monitoring; lung function test; low-frequency
oscillation technique

1. Introduction

Non-invasive measurement of respiratory mechanics is pivotal for early diagnosis and
management of lung diseases. Traditional techniques, such as spirometry, provide valuable
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insights but are often limited in their ability to offer continuous monitoring and require
significant patient cooperation [1–4]. This creates a need for alternative methods capable of
providing non-invasive, continuous, and reliable measurements. The Forced Oscillation
Technique (FOT) lung function test has emerged as a promising alternative, providing non-
invasive measurements of respiratory impedance by applying oscillatory pressure waves
to the respiratory system under normal breathing conditions and recording the resultant
airflow and pressure [5]. The result is a frequency response of the respiratory tissue, which
can be used to characterize respiratory mechanical parameters, thereby assessing nominal
or deviation values. When the response is measured above the breathing frequency, namely
high-frequency oscillations (5–37 Hz), these are used to measure respiratory parameters
such as resistance and reactance, offering insights into central airway properties and
dynamic respiratory mechanics under different physiological conditions. In contrast,
measurements closer to the breathing frequency in a lower range (0.2–2 Hz) provide
valuable insights into lung viscoelastic properties and airway remodeling [6].

Significant research has been conducted to understand respiratory impedance and
its clinical implications, leading to several non-invasive FOT monitoring systems. Low-
frequency FOT (0.2–2 Hz) has shown effectiveness in indicating disease stages and pre-
dicting deterioration in conditions such as idiopathic pulmonary fibrosis [6–9]. Recent
advancements have further enhanced our understanding of the mechanical behavior of
lung tissues and peripheral airways [5,10,11]. Despite its potential, the continuous use
of the FOT technique in clinical practice faces challenges, such as the impracticality of
long-term measurements.

To address these challenges, artificial intelligence (AI) and machine learning algo-
rithms have advanced research across the medical field. We speculate that AI algorithms
can predict respiratory mechanics from smaller datasets, achieving high accuracy while
minimizing the physical burden on patients. This study focuses on the use of Long Short-
Term Memory (LSTM) networks, which are particularly effective in modeling time-series
data, making them suitable for forecasting medical signals such as heart rate and respira-
tory parameters. Recent advancements highlight the effectiveness of AI in various clinical
applications. For instance, AI algorithms have been used to predict the optimal timing
for weaning patients from mechanical ventilation, achieving high accuracy and reducing
ventilation duration [12]. LSTM networks, known for their proficiency in managing time-
series data, have been applied to forecast emergency room visits for respiratory issues
and predict respiratory rates from biosignals with high accuracy [13,14]. LSTM networks
are increasingly used in predicting medical signals due to their effectiveness in modeling
time-series data [15]. They adeptly handle both intra- and inter-series irregularities, which
is crucial for accurately modeling complex medical signals such as heart rate [16,17]. This
makes LSTMs particularly suitable for our task of predicting heart rate and the hysteresivity
coefficient η parameter from respiratory trials. Despite significant advancements in the
application of AI and deep learning to respiratory system analysis [18–21], the specific task
of predicting or forecasting tissue hysteresis using AI remains unaddressed, positioning
this study as a pioneering effort in the field.

In this study, we integrate low-frequency and high-frequency FOT measurements with
continuous monitoring using the EQV LifeMonitor. The EQV is a non-invasive wearable
sensor system that tracks physiological parameters such as heart rate, respiratory rate, and
skin temperature. We aim to predict respiratory mechanics through continuous measure-
ment, thereby reducing the physical burden on patients by leveraging AI-based approaches
using LSTM networks. To achieve this, we propose two AI-based methodologies:

• The first approach aims to enhance the estimation of the hysteresivity coefficient η by
employing continuously recorded heart rate data, thereby reducing the frequency of
required measurements.

• The second approach focuses on forecasting η to anticipate respiratory issues, enabling
early detection and intervention. Furthermore, FOT measurements can be used as
daily calibration measurements.
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Based on these predictions, clinicians can determine whether additional tests are
warranted. For instance, if the AI model predicts a deterioration in respiratory mechanics,
an additional FOT measurement can be conducted, and the data can be used to calibrate the
forecasting model. This approach reduces the overall discomfort associated with repeated
FOT measurements while ensuring accurate monitoring and timely clinical intervention.

This paper is organized as follows: In Section 2, the materials and methods used, in-
cluding the FOT, Equivital physiological signal monitoring, and the measurement protocol,
are introduced. Section 2 also presents the proposed AI-based methodologies for estimat-
ing and forecasting the hysteresivity coefficient η. In Section 3, the results of our study,
including the performance metrics and a comparison of the estimation and forecasting
approaches, are presented. Section 4 summarizes the key contributions and provides direc-
tions for future research. Appendix A provides a detailed explanation of the calculation of
the η parameter.

2. Material and Methods
2.1. Forced Oscillation Technique

Normal quiet breathing during an FOT lung function test involves the contraction
of the diaphragm, parasternal muscles, and scalene muscles. As the diaphragm moves
downward during inhalation, it pulls the lower surfaces of the lungs with it. Exhalation
follows when these muscles relax. Tissue structure and remodeling are linked to the
heterogeneity or, alternatively, the degree of hysteresivity of the airways and alveoli.
Changes in the elastic recoil of the lungs affect their stiffness, influencing the total lung
volume and the pressure–volume relationship, which are indicators of lung disease [10].

Lung function can be assessed using the FOT by analyzing frequency responses result-
ing from oscillations at different frequencies [10,22]. This technique measures respiratory
impedance, a complex variable where the real part represents the total resistance and
the imaginary part shows the balance between the inertive and compliant (reactance)
properties [23]. These impedance components, resistance and reactance, relate to morpho-
logical lung changes and are evaluated in the 5–37 Hz frequency range [24]. At frequencies
below 5 Hz, the impedance is mainly influenced by the mechanical properties of peripheral
airways and alveolar tissues.

The FOT is non-invasive, relatively effortless, and requires minimal cooperation from
patients, making it particularly useful for pediatric or frail, critically ill patients. The
frequency-dependent nature of impedance has been correlated with respiratory mechanical
properties and can differentiate between restrictive and obstructive respiratory diseases.
Additionally, recent advances in mathematical and anatomical modeling have revealed
that frequency response impedance data provide insights into lung structure and function
changes, which can be analyzed using mathematical models calibrated with real data [10].

In this study, both low-frequency and high-frequency devices are used to evaluate
respiratory function. The low-frequency prototype device (4P-FOT), shown in Figure 1A,
measures in the 0.2–2 Hz range, providing detailed insights into lung viscoelastic properties
and airway remodeling [6]. The high-frequency commercial device (RESMON Pro Full),
depicted in Figure 1B, operates in the 5–37 Hz range, offering a broader analysis of airway
resistance and reactance and capturing dynamic respiratory mechanics changes under
different physiological conditions [6].

2.2. Equivital Physiological Signal Monitoring

The EQV LifeMonitor is a wearable sensor system designed for continuous monitoring
of physiological parameters, making it highly valuable for assessing respiratory function.
This device is used in both clinical and research settings and provides real-time data
on vital signs such as heart rate (HR), respiratory rate (RR), skin temperature (ST), and
electrocardiogram (ECG) collected using electrode placements Lead I and Lead II, with
these placements detailed in Appendix C. The EQV integrates multiple sensors to capture
comprehensive physiological data: a tri-axis accelerometer for movement and position
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tracking, ECG electrodes for HR monitoring, and respiratory inductive plethysmography
(RIP) bands to measure RR and breathing effort. This setup provides a detailed picture
of an individual’s respiratory function. The EQV is user-friendly and comfortable for
long-term monitoring, making it suitable for continuous patient monitoring, including
remote applications.

Figure 1. (A) Schematic of the 4P–FOT device’s principle of operation and related instrumentation.
(B) RESMON Pro Full device.

Primarily used to monitor vital signs during exercise, the clinical potential of the
EQV is still being explored. From a clinical perspective, the EQV could become an es-
sential tool for monitoring respiratory diseases, such as Chronic Obstructive Pulmonary
Disease (COPD). A recent study used the EQV device to monitor vital sign changes in
COPD patients [25]. The study demonstrated the device’s ability to detect significant
variations in respiratory rate and heart rate, which are critical indicators that could enable
early intervention.

Several clinical trials have indicated that the FOT is a suitable technique for detecting
and monitoring respiratory diseases. For example, Ref. [10] discussed the use of the
low-frequency (4P-FOT) device to assess patients with asthma and COPD. Furthermore,
both the FOT and RESMON devices have been used in clinical trials involving lung cancer
patients, as it is well known that stage IV COPD can lead to lung cancer [5,6]. Ideally, one
may correlate parameters from the FOT measurement with those continuously measured
by the EQV, maximizing the richness of information gathered in real time from the subject.

In this study, the EQV sensor monitor, depicted in Figure 2, continuously collects
data, including ECG heart rate, respiratory rate, and skin temperature, over a two-hour
measurement period for each volunteer. Meanwhile, the FOT and RESMON devices are
used alternately to measure respiratory parameters. Consequently, a synchronization step
is essential to align the data from the EQV with the FOT measurements for detailed analysis.
This synchronization allows for a comprehensive assessment by correlating continuously
monitored physiological data with discrete respiratory measurements, ultimately aiming
to improve the reliability of the estimated and forecasted values.

2.3. Measurement Protocol

A protocol has been designed to facilitate the integration of data recorded at varying
sample intervals and distributed non-uniformly in time and frequency. The measurement
protocol begins with a 2-min FOT measurement, followed by a 5-min rest period. This is
succeeded by a 1-min RESMON measurement and another 5-min rest. This cycle repeats
for 2 h. Figure 3 illustrates the timeline of this protocol over a two-hour period, divided
into ten measurement sessions (Meas). Each session includes FOT and RESMON measure-
ments interspersed with rest periods to maintain tidal breathing conditions, allowing for
diaphragm muscle relaxation.

To synchronize the data extracted by the EQV with FOT measurements, the data are
extracted at 2-min intervals, followed by an 11-min pause before the next extraction, re-
peating this pattern throughout the session. This method ensures accurate synchronization
of EQV data with FOT measurements for comprehensive analysis. The timeline of the
protocol starts at 0 min and extends to 125 min (2 h and 5 min), with each measurement
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window spanning 13 min. For Meas 10, the measurement ends without the final rest period,
resulting in an 8-minute duration instead of the typical 13 min. The protocol is defined
as follows:

• Two-minute FOT Measurement: Marked in blue, this phase starts each measurement
session. Participants breathe normally while seated for 120 s.

• Five-minute Rest: Indicated in gray, this is a rest period.
• One-minute RESMON Measurement: Shown in pink, this phase involves using the

RESMON device. Participants breathe normally while seated for 60 s.
• Five-minute Rest: Another rest period, depicted in gray.

Figure 2. Schematic of the Equivital monitoring system.

Figure 3. Upper graph: Illustration of the two-hour measurement protocol. Bottom: (A) Clinical
setup comprising two FOT devices with their inputs and recorded signals. The RESMON Pro Full is a
standalone device with two parts: the device (1) and an arm holder (2). It features a touchscreen display
(3) for user interaction and a USB port (4) for data storage. The 4P-FOT device, used at lower frequencies,
is mounted on an adjustable table (5) and is connected to a laptop (6) with built-in programs and a
user interface. A single-use disposable mouthpiece (8) is connected to a slot (7) for each measurement.
(B) The EQV real-time physiological signal monitoring sensor and the recorded signals.
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2.4. Subjects

A cohort of 6 healthy volunteers participated in this study, following the two-hour
measurement protocol. The biometric data for the subjects are presented in Table 1. All
participants were informed about the measurement protocol and provided their written
informed consent.

Table 1. Biometric parameters of the measured subjects.

ID Age (Years) Weight (kg) Height (cm) BMI (kg/m2)

1 37 53 165 19
2 40 85 180 26
3 28 62 160 24
4 35 78 172 26
5 29 90 179 28
6 28 51 163 19

2.5. Proposed Estimation Algorithm

The primary aim of this study is to reduce the number of respiratory measurements
using the FOT and RESMON devices from ten to three (specifically at intervals 1, 5, and
10). The goal is to estimate the η parameter, which measures tissue hysteresivity derived
from respiratory impedance data. The input to the LSTM model is the continuous HR
measured by the EQV sensor monitor, as depicted in Figure 4. The calculation of the
hysteresivity coefficient η is detailed in Appendix A, and the LSTM architecture is described
in Appendix B. Appendix D provides a detailed explanation of the estimation mechanism
used to predict the η parameter.

Figure 4. Schematic representation of the proposed AI algorithm for estimating η.

To achieve this, the data are first preprocessed to ensure quality and consistency.
Raw HR data are collected continuously using the EQV sensor monitor over a two-hour
period. Following data preprocessing (outliers in the data are identified and smoothed),
an LSTM network is trained to estimate the η values based on the HR data. The network
architecture includes an input layer for the HR data, followed by an LSTM layer with
50 hidden units to process the time sequences. This LSTM layer captures the temporal
dependencies in the HR data. A fully connected layer then maps the LSTM outputs to the
desired η values, and a regression layer produces the final forecast. To enhance the model’s
accuracy, we incorporate direct measurements at intervals 1, 5, and 10 as calibration points.
These calibration points provide the model with reference data that help to fine-tune the
estimation process.
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During the training process, input sequences of HR data up to the current time
point are prepared and used to train the LSTM network to predict the η values. For
non-calibration points, the trained LSTM network uses the recorded HR data to make
predictions. This approach enables the model to provide accurate estimates of η with fewer
measurements, thereby reducing the overall physical and psychological burden.

2.6. Proposed Forecasting Algorithm

Model-based forecasting properties in respiratory diseases, combined with treatment,
have been recently proposed and successfully applied in clinical trials [6,26]. The second
approach of this study focuses on forecasting the hysteresivity coefficient η rather than
merely estimating it. This method, as presented in Figure 5 involves an additional step of
forecasting the HR using ECG data before estimating η. The goal is to anticipate potential
abnormalities or complications in respiratory mechanics, providing a proactive assessment
framework. The changes in respiratory mechanics affecting the hysteresivity coefficient
occur over a long period (months, years), and the proposed forecasting method introduced
here can be used for monitoring the evolution of respiratory mechanics as a function of
medication and revalidation. The forecasting model can incorporate the effects of drugs to
indicate long-term outcomes and lead to optimal individualized management.

Figure 5. Schematic representation of the AI approach for estimating η.

The forecasting process begins with raw ECG data from the EQV sensor monitor,
specifically using data from the Lead I and Lead II placements. The collected ECG data
undergo preprocessing to ensure quality and consistency. This preprocessing includes steps
such as the removal of outliers and normalization of the data to standardize the input for
the forecasting model, accounting for inter-individual biological variability.

Once the data are preprocessed, they are used as input for a forecasting model based
on LSTM networks. The model architecture consists of two LSTM layers, each comprising
150 hidden units. These layers are designed to capture the temporal dependencies in the
ECG data, which is essential for accurately predicting HR. Following the LSTM layers, a
fully connected layer maps the learned features to the output size, corresponding to the
forecasted HR values for the next time step. A regression layer is then used to compute the
loss between the predicted and actual HR values during training.

The forecasted HR values serve as input to estimate η, following the estimation process
described in Section 2.5. This integrated method allows for the continuous monitoring and
prediction of respiratory mechanics. By predicting HR first, the model leverages the rich
information contained in the ECG data to enhance the accuracy of η forecasting.

The prediction horizon is defined by the intervals between measurements, which are
11 min for the FOT device and 12 min for the RESMON device. This setup allows the model
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to forecast HR for the next time step, providing timely predictions that can inform clinical
decisions. If the forecasted HR indicates potential respiratory issues, clinicians can decide
to conduct additional FOT measurements to verify and address these issues promptly. This
dual-step process, combining HR forecasting with η estimation, enables early detection
and intervention for emerging respiratory complications. Appendix E provides a detailed
explanation of the forecasting mechanism used to predict the η parameter.

All the computations in this study were conducted on a Dell workstation featuring an
Intel® Xeon® Bronze 3204 processor operating at 1.90 GHz, with 64 GB of RAM, and running
Windows 11 Pro for Workstations. The processor is manufactured by Intel Corporation,
headquartered in Santa Clara, CA, USA. The data processing and analysis were performed
using MATLAB 2022.

2.7. Performance Metrics

To assess the performance of the estimation results, the following performance metrics
are employed:

(i) Mean Squared Error (MSE): MSE measures the average squared difference between
the actual yi and predicted ŷi values and is calculated as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2. (1)

(ii) Coefficient of Determination (R2): R2 quantifies the proportion of the variance in
the dependent variable that is predictable from the independent variable(s) and is
given by

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 , (2)

where ȳ is the mean of the observed values.

The MSE provides insights into the accuracy of the estimates, with lower values
indicating better performance. R2 ranges from 0 to 1, where a higher R2 signifies a better
fit of the model to the data. The analysis includes both MSE and R2 values to assess the
effectiveness of the estimation and forecasting approaches.

3. Results

The significance of correlation rates between inputs and outputs plays an important
role in evaluating estimation accuracy within AI, prediction, and forecasting domains. High
correlation rates can simplify neural network architectures, thereby enhancing their capacity
to model and predict accurately [27,28]. Figure 6 illustrates the average correlation matrix
between the impedance model parameters and the physiological parameters measured by
the EQV sensor across six volunteers.

The matrix reports notable correlations between certain impedance model param-
eters and physiological measures. The parameter η shows moderate correlations with
ECG Lead I, ECG Lead II, and HR, with values of 0.42, 0.41, and 0.41, respectively, indi-
cating a stable relationship across all individuals. Additionally, D and Gr demonstrate
significant correlations with ECG Lead I and ECG Lead II, with values exceeding 0.35,
suggesting possible interactions between these parameters. For details on these model
parameters, see Appendix A. These moderate correlations across multiple individuals
suggest potential interdependencies between the impedance model parameters and the
physiological measures.

The strong correlation of η with ECG Lead I and ECG Lead II suggests that η is
closely related to the electrical properties of cardiac activity. This relationship indicates
that variations in cardiac cycles significantly influence impedance, reflecting changes in
heart function, and could serve as an additional estimator for lung disease. The notable
correlations between HR and impedance parameters, such as η, further suggest that heart



Sensors 2024, 24, 5544 9 of 22

activity can be an additional indicator of lung condition. This reasoning justifies the use of
ECG Lead I, ECG Lead II, and HR as inputs for the LSTM model to estimate or forecast η.

Figure 6. The average correlation between impedance model parameters and physiological parame-
ters measured by the EQV sensor across all individuals.

3.1. Estimation Approach Results

The results depicted in Figure 7 show a comparison between the LSTM-estimated η
values and the actual η values calculated from the FOT device parameters. For Individual 2
(78% fit), as presented in Figure 7a, the estimated values exhibit a deviation from the actual
values in measurements 4 and 9.

(a) Individual 2 (b) Individual 6
Figure 7. Comparison of LSTM-estimated η values with actual η values for 10 measurements using
the FOT device.

This indicates that the model struggled to accurately predict the η values for this
subject. Conversely, for Individual 6 (with an excellent fit of 85%), as shown in Figure 7a,
the LSTM model closely follows the actual η values. This observation suggests robust
predictive capability for this subject, revealing the potential of using LSTM models for
reliable estimation of η values.

Figure 8 presents a similar comparison using the RESMON device. In Figure 8a, the
results for Individual 1 show a close alignment between the estimated and actual η values,
indicating strong model performance. Figure 8b for Individual 2, shows an almost perfect
match between the estimated and actual values.
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(a) Individual 1 (b) Individual 2
Figure 8. Comparison of LSTM-estimated η values with actual η values for 10 measurements using
the RESMON device.

The performance metrics presented in Table 2 demonstrate the variability in model
accuracy across various individuals for both the FOT and RESMON devices. For the FOT
device, the MSE and R2 values indicate that Individual 2 (MSE: 0.106; R2: 0.781) and
Individual 6 (MSE: 0.296; R2: 0.851) show the highest predictive accuracy, with the model
closely aligning with the actual η values. Conversely, Individual 3 (MSE: 1.405; R2: 0.472)
exhibits the poorest performance, with significant deviations between the estimated and
actual values.

Table 2. Performance metrics of the LSTM model for estimating the hysteresivity coefficient η using
FOT and RESMON devices across various individuals.

FOT Device RESMON Device

Volunteer MSE R2 p-Value MSE R2 p-Value

1 0.321 0.598 0.654 0.201 0.802 0.884
2 0.106 0.781 0.948 0.091 0.861 0.992
3 1.405 0.472 0.526 1.405 0.341 0.745
4 0.116 0.795 0.982 0.254 0.786 0.976
5 0.833 0.805 0.822 0.262 0.824 0.865
6 0.296 0.851 0.782 0.354 0.798 0.770

Similarly, the RESMON device results highlight Individual 2 (MSE: 0.091; R2: 0.861)
as having the most accurate predictions, followed by Individual 1 (MSE: 0.201; R2: 0.802).
Individual 3 (MSE: 1.405; R2: 0.341) again shows the least accurate predictions. The p-values
across all individuals for both devices indicate that the differences between the predicted
and actual η values are not statistically significant, supporting the robustness of the LSTM
model’s predictions.

3.2. Forecasting Approach Results

In Figure 9, the forecasted HR using the LSTM model is compared to the actual HR
values over ten measurements with the FOT device. For Individual 2, as shown in Figure 9b,
the forecasted HR values exhibit moderate accuracy. For Individual 1, as shown in Figure 9a,
the forecasted HR closely follows the profile of the actual values, demonstrating the model’s
ability to effectively capture and predict HR trends for this subject.

Figure 10 illustrates the LSTM-forecasted HR compared to the actual HR values
recorded during RESMON device monitoring. Figure 10a,b present the results for Individ-
ual 1 (62% fit) and Individual 2 (56% fit), respectively. Both figures show a good degree of
accuracy, with the forecasted HR values closely following the actual values.
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(a) Individual 1 (b) Individual 2
Figure 9. Comparison of LSTM-forecasted HR values with actual HR values for 10 measurements
using the FOT device.

(a) Individual 1 (b) Individual 2
Figure 10. Comparison of LSTM-forecasted HR values with actual HR values for 10 measurements
using the RESMON device.

In Figure 11, the forecasted η values using the LSTM model are compared to the actual
η values for the FOT device. Individual 2, as shown in Figure 11b, shows moderate predic-
tion accuracy with noticeable deviations. In contrast, Individual 5, as shown in Figure 11a,
exhibits a closer alignment between the forecasted and actual values, demonstrating the
effectiveness of the proposed algorithm.

(a) Individual 5 (b) Individual 2
Figure 11. Comparison of LSTM-forecasted η values with actual η values for 10 measurements using
the FOT device.
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Figure 12 presents the LSTM-forecasted η values compared to the actual η values
for the RESMON device. Both Individual 1 and Individual 4 show excellent alignment
in their respective figures (Figure 12a,b). These findings suggest that the LSTM model is
well suited for the proactive assessment and early detection of potential abnormalities in
respiratory parameters.

(a) Individual 1 (b) Individual 4
Figure 12. Comparison of LSTM-forecasted η values with actual η values for 10 measurements using
the RESMON device.

The performance metrics for individuals using the FOT and RESMON devices are
outlined in Table 3. For the FOT device, Individual 5 (MSE: 1.122; R2: 0.832) demonstrates
the highest predictive accuracy, as indicated by a low MSE and high R2. Conversely,
Individuals 1 (MSE: 3.149; R2: 0.563), 4 (MSE: 3.487; R2: 0.427), and 6 (MSE: 3.690; R2: 0.392)
show higher MSE values and lower R2 scores, indicating poorer model performance in
predicting η values.

When examining the RESMON device results, Individual 1 (MSE: 0.528; R2: 0.883)
exhibits the best performance, closely followed by Individual 6 (MSE: 0.692; R2: 0.724).
In contrast, Individuals 3 (MSE: 1.406; R2: 0.531) and 2 (MSE: 1.057; R2: 0.588) exhibit
relatively higher errors and lower correlation coefficients. The p-values for all individuals
across both devices again suggest that the differences between the predicted and actual η
values are not statistically significant, indicating that the model predictions are reliable.

Table 3. Performance metrics of the LSTM model for forecasting the hysteresivity coefficient η using
FOT and RESMON devices across various individuals.

FOT Device RESMON Device

Volunteer MSE R2 p-Value MSE R2 p-Value

1 3.149 0.563 0.136 0.528 0.883 0.956
2 0.129 0.727 0.973 1.057 0.588 0.877
3 0.838 0.726 0.839 1.406 0.531 0.679
4 3.487 0.427 0.181 0.807 0.622 0.625
5 1.122 0.832 0.668 1.174 0.669 0.656
6 3.690 0.392 0.343 0.692 0.724 0.959

To forecast HR data, two ECG leads were used as inputs; however, standard monitors
typically measure ECG data at a single site, often using only Lead I or Lead II [29]. Our data
across six individuals demonstrated that it is possible to predict one ECG lead signal from
another, indicating that even monitors using a single lead can effectively apply the predictive
approach proposed in this study. This suggests that our method can be broadly applicable,
providing reliable estimates of ECG signals regardless of the number of leads used.

LSTM was used to predict ECG Lead II signals based on ECG Lead I signals. The
network architecture included two LSTM layers, each comprising 100 hidden units and
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configured to output sequences. Following the LSTM layers, a fully connected layer was
employed to map the learned features to the output size of 1, which corresponds to the
predicted ECG signal. Finally, a regression layer was added to compute the loss between
the predicted and actual ECG signals during training.

The network was trained using the Adam optimizer with a maximum of 200 epochs.
The data were split into training and validation sets in a 70:30 ratio, ensuring that the model
was trained on a representative subset of the data and validated on unseen data.

Figure 13 presents a comparison between the real and estimated ECG Lead II signals
for six volunteers using the EQV sensor.

Figure 13a shows the real versus estimated ECG Lead II signals for Individual 1. The
estimated signal (red) does not align closely with the real signal (blue), indicating a poor
fit (39.1%). This suggests that the model struggled to capture the temporal patterns and
fluctuations in the ECG signals, which were relatively atypical or outlier-like for this subject.

Figure 13b depicts the comparison for Individual 2. Similar to Individual 1, the
estimated signal shows significant discrepancies compared to the real signal, especially
during the peaks and troughs, indicating another instance of poor fit (33.7%).

(a) Individual 1 (b) Individual 2

(c) Individual 3 (d) Individual 4

(e) Individual 5 (f) Individual 6
Figure 13. Comparison of real and estimated ECG Lead II signals for six volunteers using the EQV
sensor. The estimated signal is in red, and the real signal is in blue.
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Figure 13c–f show the real and estimated signals for Individuals 3 to 6, respectively.
For these volunteers, the estimated signals closely follow the real signals, with only minor
deviations. The model effectively captures the key features and temporal patterns of the
ECG signals, indicating a very good fit (above 60%) and suggesting potential for capturing
real-time anomaly detection. This demonstrates the model’s capability to predict ECG Lead
II signals based on ECG Lead I inputs with high accuracy for these subjects.

4. Discussion

As initially speculated, the findings of this study demonstrate the effectiveness of using
LSTM networks to estimate and forecast the hysteresivity coefficient η from respiratory
impedance data, achieving the goals of reducing the number of required measurements and
predicting future complications. The dual research objective involves, firstly, estimating
the tissue hysteresivity η using HR data collected continuously by the EQV sensor monitor
and, secondly, forecasting HR from ECG data to anticipate future η values. The proposed
multivariate and integrated method enhances the accuracy and reliability of η estimates,
with the secondary outcome of reducing the overall physical and psychological burden by
significantly reducing the number of necessary measurements from ten to three. In fact, the
reverse statement of this conclusion holds: given the reduced number of measurements,
reliable estimates and forecasting values are obtained from multivariate sensor data.

4.1. Findings

The results demonstrate that LSTM networks can accurately estimate η values using
HR data. Specifically, for the individuals tested with the FOT device, the model achieved
high predictive accuracy for Individuals 2 and 6, as evidenced by their low Mean Squared
Error (MSE) and high Coefficient of Determination (R2) values. Similarly, for the RESMON
device, Individuals 1 and 2 exhibited strong alignment between the estimated and actual η
values, indicating robust model performance.

This study also highlights the LSTM model’s capability to forecast HR values based on
electrocardiogram (ECG) data, which are then used to predict η. This dual-step forecasting
algorithm proved effective, with Individuals 5 and 2 showing close alignment between
the forecasted and actual η values when using the FOT device. For the RESMON device,
Individuals 1 and 4 demonstrated excellent alignment, suggesting the model’s potential for
early detection of alterations in respiratory mechanics.

The ability to estimate and forecast η using fewer measurements has broad and signif-
icant clinical implications. By reducing the number of required FOT and RESMON lung
function test measurements, not only are costs minimized, but discomfort and burden are
also reduced, which is particularly beneficial for those with severe respiratory conditions.
Moreover, the integration of AI-driven methods for continuous monitoring allows for
proactive management of respiratory healthcare. Clinicians can rely on AI predictions to de-
termine the necessity of additional FOT measurements, thereby optimizing the diagnostic
process and potentially improving clinical outcomes.

Our study introduces a novel approach by not only estimating but also forecasting
tissue hysteresis using LSTM networks. Previous studies have focused on classification and
predicting current respiratory system states or stability [30,31]. This proactive forecasting
of tissue hysteresis sets our study apart by providing early intervention opportunities in
respiratory care, which were not previously possible. Additionally, while other studies have
successfully forecasted variables in respiratory systems [32,33], our focus on tissue hystere-
sis represents a unique and valuable contribution to the field, offering a new dimension of
predictive capability in respiratory health management.

4.2. Clinical Application

This study demonstrates the potential of LSTM networks to estimate and forecast the
hysteresivity coefficient η using continuous HR data from the EQV sensor monitor, com-
bined with periodic FOT and RESMON measurements. The forecasting interval proposed



Sensors 2024, 24, 5544 15 of 22

here is short and can be applied to monitoring in real-time onset of respiratory patterns
and mechanics, e.g., sleep studies, obstructive sleep apnea, histaminic responses, asthma
triggers, post-surgery lung resection monitoring, etc. It can be easily extended to longer
intervals to evaluate the forecasting of tissue mechanics alterations as respiratory disease
progression occurs or to monitor treatment efficacy and determine optimal drug dosage
regimes. Furthermore, integrating the proposed method into ambulatory care systems,
particularly for elderly individuals, holds significant promise. By leveraging LSTM net-
works within remote health monitoring systems, it becomes feasible to provide continuous,
real-time assessment of respiratory and cardiac health in older adults. Such systems could
be deployed in home environments, reducing the need for frequent hospital visits and
enabling the early detection of potential issues before they escalate into emergencies.

4.3. Limitations

This study demonstrates promising results in using LSTM networks to estimate and
forecast the hysteresivity coefficient η from respiratory impedance data. However, several
limitations must be acknowledged. One significant limitation is the small sample size,
which included only six healthy volunteers. This limited and homogeneous sample may
not fully capture the variability present in a broader population, particularly those with
respiratory diseases. Consequently, the findings may not be easily generalizable. To
improve model generalizability, future research should focus on expanding the sample size
to include a more diverse cohort, encompassing both healthy individuals and patients with
various respiratory conditions. This would help in testing the robustness of the model and
ensuring its applicability across different patient populations.

Additionally, the integration of data from different devices, such as the FOT and
RESMON devices, posed synchronization challenges that could impact the accuracy of the
results. Although these challenges were managed in this study, further work is needed to
refine the synchronization process, particularly when integrating more complex or addi-
tional variables. For example, integrating Electrical Impedance Tomography (EIT) [24,34], a
technique that provides real-time imaging of lung function, and Respiratory Rate Variability
(RRV) [35] could offer more comprehensive insights into respiratory mechanics. These
parameters would complement existing data by providing more detailed information on
lung function and respiratory patterns, thereby enhancing both the predictive accuracy
and clinical relevance of the model. Moreover, the implementation of real-time monitoring
and predictive analytics in clinical settings also needs further investigation to assess their
practical feasibility, integration with existing healthcare infrastructure, and overall impact
on patient outcomes.

5. Conclusions

This study demonstrates the ability of the LSTM model to estimate and forecast the
hysteresivity coefficient η from respiratory impedance data by integrating continuous HR
data from the EQV sensor monitor with periodic FOT and RESMON lung function test
data. By employing AI-based approaches to reduce the number of required respiratory
measurements, this study highlights significant potential for minimizing costs and effort
without sacrificing accuracy. The variability in model performance across different vol-
unteers underscores the importance of personalized medicine, suggesting that tailored
healthcare solutions can optimize treatment outcomes. However, this study is limited by
the small sample size and the homogeneity of the cohort, which consisted solely of healthy
individuals. Additionally, the use of a single AI model (LSTM) and the lack of comparison
with other approaches limit the generalizability of the findings. Future research should
validate these methods in larger, more diverse populations and explore the use of multiple
AI models to enhance the robustness and applicability of the results in clinical settings,
aiming to improve healthcare in respiratory medicine.
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Appendix A. Calculation of the η Parameter

The η parameter, also known as the hysteresivity coefficient η, is derived from the
identified model parameters of the respiratory system using fractional-order models. This
appendix provides a detailed description of the steps involved in calculating η [10].

The fractional-order model for the human respiratory system provides an expression
for the input impedance (Zr(s)), measured at the mouth of the subject. This model considers
a series arrangement of resistance (Rr), inertance (Lr), and a parameter Dr, which is the
reciprocal of the compliance (Cr):

Zr(s) = Rr + Lrsαr +
Dr

sβr

where Rr is the airway resistance in kPa/(l/s); Lr is the inertance in kPa/(l/s2); Dr =
1

Cr
,

where Cr is the compliance in l/kPa; αr and βr are fractional orders; and s is the
Laplace operator.

The model parameters (Rr, Lr, Cr, αr, βr) are identified using genetic algorithms.
Genetic algorithms are heuristic optimization techniques inspired by the process of natural
selection, which iteratively improve potential solutions to optimization problems [36–38].

From the identified model parameters, tissue damping (Gr) and tissue elastance (Hr)
are calculated using the following equations:

Gr =
1

Crωβr
cos

(
βr

π

2

)
Hr =

1
Crωβr

sin
(

βr
π

2

)
where ω is the angular frequency.

The hysteresivity coefficient η is then defined as the ratio of tissue damping (Gr) to
tissue elastance (Hr):

ηr =
Gr

Hr

This parameter characterizes the heterogeneity of lung tissue and has been shown to
vary significantly with pathology.
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Appendix B. LSTM Model Architecture

The LSTM model operates on a training dataset consisting of input sequences {xt} and
corresponding output sequences {yt}, with t denoting the time steps. The LSTM model is
composed of the following layers:

1. Sequence Input Layer: This layer accepts the input data and initializes the sequence
for LSTM processing. Each time step t passes the feature vector xt to the subsequent layers.

2. LSTM Layer: The core of the model, the LSTM layer, operates with mathematical
equations and maintains internal variables, including the following:

• Input Gate (it): The input gate controls the flow of new information into the cell state.
It is computed using the sigmoid activation function σ and is defined as

it = σ(Wxixt + Whiht−1 + bi). (A1)

• Forget Gate ( ft): The forget gate controls the retention of past information in the cell
state and acts as a weighting factor for past-to-new data. It is computed similarly to
the input gate and is defined as

ft = σ(Wx f xt + Wh f ht−1 + b f ). (A2)

• Candidate Cell State (C̃t): The candidate cell state represents the new information that
could be stored in the cell state. It is computed using the hyperbolic tangent activation
function and is defined as

C̃t = tanh(Wxcxt + Whcht−1 + bc). (A3)

• Cell State Update (Ct): The cell state Ct is updated by combining the previous cell
state Ct−1 with the new information from the input gate and candidate cell state:

Ct = ft · Ct−1 + it · C̃t. (A4)

• Output Gate (ot): The output gate controls what information from the cell state should
be used to compute the output. It is defined as

ot = σ(Wxoxt + Whoht−1 + bo). (A5)

Here, σ represents the sigmoid activation function, tanh is the hyperbolic tangent
activation function, W represents weight matrices, b represents bias vectors, and ht−1 is the
previous hidden state.

3. Fully Connected Layer: Following the LSTM layer, the fully connected layer
prepares the data for the final output by applying the learned weights and biases to the
output of the LSTM layer.

4. Regression Layer: The final regression layer assigns a continuous value to each time
step, ensuring accurate prediction of the output sequence.

Appendix C. ECG Lead I and Lead II Placements

Electrocardiography (ECG) is a method used to measure the electrical activity of the
heart. ECG Lead I and Lead II are two of the standard limb leads used in this measurement.
The electrode placements and the relationship between these leads are essential for accurate
cardiac assessment.

ECG Lead I measures the potential difference between the left arm (LA) and right arm
(RA) electrodes. This lead provides valuable information about the heart’s electrical activity
in the horizontal plane and is useful for detecting abnormalities in the lateral part of the
heart [39]. ECG Lead II measures the potential difference between the right arm (RA) and
left leg (LL) electrodes. This lead is crucial for identifying the rhythm of the heart and is
commonly used in monitoring and diagnosing arrhythmias [40]. The electrodes are placed
in the following positions:

• Right Arm (RA) : Electrode placed on the right arm.



Sensors 2024, 24, 5544 18 of 22

• Left Arm (LA): Electrode placed on the left arm.
• Left Leg (LL): Electrode placed above the left ankle.

The relationship between Lead I and Lead II is defined by Einthoven’s triangle, which
is a geometrical representation of the limb leads’ configuration [41]. Einthoven’s triangle
helps in understanding the heart’s electrical activity from different angles and is essential
for interpreting the overall cardiac function.

Figure A1 illustrates the electrode placement for ECG Lead I and Lead II, forming
Einthoven’s triangle. The relationship between Lead I and Lead II is defined by this triangle,
which is a geometrical representation of the limb leads’ configuration [41]. Einthoven’s
triangle helps in understanding the heart’s electrical activity from different angles and is
essential for interpreting overall cardiac function.

Figure A1. Electrode placement for ECG Lead I and Lead II, forming Einthoven’s triangle.

Appendix D. Estimation Mechanism Used to Predict η

The mechanism for estimating the tissue hysteresivity coefficient η is presented in the
flowchart in Figure A2. It outlines the process used to estimate η based on HR data by
integrating a Long Short-Term Memory (LSTM) model.

The process illustrated in the flowchart comprises several key steps to estimate the
tissue hysteresivity η using LSTM. In Step 1, the raw data are loaded. Step 2 involves
preprocessing the HR data, where any outliers are identified and smoothed. Additionally,
the HR data are normalized by scaling them to have a mean of 0 and a standard deviation
of 1, which ensures the data are standardized for better performance during model training.

Step 6 involves adding the newly estimated η value from interval Mi+1 to the training
dataset, which ensures that the model is continuously updated with the most recent data.
Finally, the process checks whether there are more intervals to process. If there are, the
LSTM model is retrained with the updated data, and the cycle repeats. This iterative
approach allows the model to improve with each new estimation, refining the accuracy of
η predictions with each additional interval. In Step 3, the process proceeds by iterating
through different intervals Mi (where i = 1 to 9). Here, the LSTM model is trained on the
HR data from the first interval M1 up to the current interval Mi. Steps 4 and 5 involve
using the trained LSTM model to estimate the η value at the subsequent interval Mi+1.

The Deep Learning Toolbox in MATLAB® R2022a from MathWorks® was used for the
implementation of the LSTM network, including the layers (sequenceInputLayer, lstm-
Layer, fullyConnectedLayer, regressionLayer) and training functions (trainNetwork,
predict) [42]. The network architecture begins with a sequenceInputLayer that processes
sequences of heart rate (HR) data, followed by an lstmLayer with 50 hidden units, using
sigmoid and tanh activation functions for gate control and state scaling. A fullyConnect-
edLayer maps the LSTM outputs to the desired η values, and a regressionLayer produces
the final forecast. The model is trained using the Adam optimizer with a learning rate of
0.005 over 80 epochs. This architecture was selected to balance model complexity and the
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ability to capture temporal dependencies in the HR data, informed by a combination of
trial and error and established practices in time-series forecasting.

Figure A2. Flowchart illustrating the estimation mechanism used to predict the tissue hysteresivity
coefficient η.

Appendix E. Forecasting Mechanism Used to Predict η

The forecasting mechanism used in this study integrates the training and forecast-
ing of HR and the subsequent estimation of the tissue hysteresivity coefficient η using
LSTM networks.

As shown in Figure A3, the process illustrated in the flowchart comprises several key
steps to forecast and estimate the tissue hysteresivity coefficient η using LSTM networks.
In Step 1, the heart rate (HR) and electrocardiogram (ECG) data are loaded into MATLAB.
Step 2 involves preprocessing these data, where any outliers are identified and smoothed.
The data are also normalized by scaling them to have a mean of 0 and a standard deviation
of 1, ensuring a standardized input for model training.

In Step 3, the process begins by iterating through different intervals Mi (where i = 1
to 9). In Step 4, an LSTM model is trained on the ECG data (specifically using Leads I and
II) to forecast the HR for the next interval Mi+1. Steps 5 and 6 provide the forecasted HR,
which is used as input for the next stage of η estimation. Steps 7 and 8 use the forecasted
HR to train another LSTM model that estimates the η value for interval Mi+1. Finally, the
process involves adding this newly estimated and forecasted data to the training sample,
allowing for incremental updates to the model. The process checks whether there are more
intervals to process. If there are, the models are retrained with the updated data, and
the cycle repeats. This iterative approach ensures that the models continuously improve,
enhancing the accuracy of the forecasts and estimates for η.

The Deep Learning Toolbox in MATLAB® R2022a from MathWorks® was used to im-
plement the LSTM-based forecasting model. The network architecture consists of two
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lstmLayer layers, each with 150 hidden units, designed to capture the temporal dependen-
cies in the ECG data derived from the Lead I and Lead II placements. The lstmLayer is
bidirectional, processing data in both forward and backward directions, which enhances the
model’s ability to understand complex patterns in the time series. The network also includes
a fullyConnectedLayer, which maps the outputs of the LSTM layers to a single output
neuron corresponding to the predicted HR for the next time step. A regressionLayer is
used to compute the loss between the predicted and actual HR values during training. The
model is trained using the Adam optimizer, and the training is performed over 150 epochs.
This LSTM architecture was chosen based on its ability to effectively model the sequential
nature of ECG data, enabling accurate HR forecasting, which is then used to estimate the
hysteresivity coefficient η, as described in this study.

Figure A3. Flowchart illustrating the forecasting mechanism used to predict the tissue hysteresivity
coefficient η.
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