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Abstract: The excessive use of electronic devices for prolonged periods has led to problems such
as neck pain and pressure injury in sedentary people. If not detected and corrected early, these
issues can cause serious risks to physical health. Detectors for generic objects cannot adequately
capture such subtle neck behaviors, resulting in missed detections. In this paper, we explore a
deep learning-based solution for detecting abnormal behavior of the neck and propose a model
called NABNet that combines object detection based on YOLOv5s with pose estimation based on
Lightweight OpenPose. NABNet extracts the detailed behavior characteristics of the neck from global
to local and detects abnormal behavior by analyzing the angle of the data. We deployed NABNet on
the cloud and edge devices to achieve remote monitoring and abnormal behavior alarms. Finally, we
applied the resulting NABNet-based IoT system for abnormal behavior detection in order to evaluate
its effectiveness. The experimental results show that our system can effectively detect abnormal neck
behavior and raise alarms on the cloud platform, with the highest accuracy reaching 94.13%.

Keywords: abnormal behavior detection; pose estimation; YOLOv5s; lightweight model; IoT system

1. Introduction

Sedentary lifestyles are common among young people today due to high dependence
on electronic products such as mobile phones and computers. The incorrect sitting position
is one of the manifestations of neck diseases [1,2]. Early detection and monitoring of
abnormal behaviors can improve the life quality of sedentary people while reducing
pressure on medical resources and providing significant commercial value.

Abnormal behavior can be defined as actions in which people may be in danger [3]. In
this paper, we identify long-term head tilts and dropped heads as abnormal neck behaviors.
Traditional methods rely on ambient devices to obtain environmental data and human data
for abnormal behavior monitoring [4–6]. This approach is sensitive to environmental noise
and lacks flexibility.

In recent years, studies about abnormal behavior detection have indicated that con-
volutional neural network (CNN)-based computer vision possesses high robustness and
accuracy for detection [3,7,8]. While object detection-based methods are suitable for full-
body abnormal behaviors such as falls and repeated activities [9,10], they are ineffective for
detecting abnormal neck behavior, which involves smaller localized movements.

In this paper, we propose an intelligent detection and monitoring solution for abnor-
mal neck behavior in indoor scenarios, called Neck Abnormal Behavior Network (NABNet).
NABNet is designed to detect head tilt and dropped head events. First, NABNet uses
YOLOv5s to extract features from the input in order to detect and track objects [11]. To
improve the accuracy of small target detection, the Coordinate Attention (CA) [12] mecha-
nism is added to YOLOv5s. Second, we obtain the key points and joint information of the
body using Lightweight OpenPose [13]. Abnormal behavior events are detected by body
orientation judgment, angle calculation, and correction. The high computational overhead
of existing CNN-based models makes them challenging to execute on edge-end IoT devices
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while maintaining good real-time performance. Thus, we built our proposed NABNet
IoT-based alert system to quickly and cheaply deployed on edge devices. Abnormal neck
behaviors are detected in real-time, allowing alerts to be sent to healthcare professionals
or caregivers.

Our main contributions can be summarized as follows:

1. This paper proposes a deep learning-based solution for monitoring and detecting
abnormal neck behavior in sedentary people; specifically, the proposed NABNet
detects head tilt and dropped head events.

2. The features inherent in abnormal neck behaviors are fully considered to alleviate false
alarms. NABNet combines YOLOv5s with a CA mechanism to enhance the robust-
ness of object detection, then uses OpenPose-guided skeleton and angle relationship
information to judge the neck position.

3. A NABNet-based detection system was deployed on edge-end IoT devices, and its
performance was tested in practical scenarios. Our experimental results demonstrate
the effectiveness of NABNet for detecting abnormal neck behavior.

2. Related Works
2.1. Object Detection

In recent years, object detection methods based on neural network algorithms have
become widely used in industrial fields, in particular for intelligent monitoring sys-
tems [14,15]. Current mainstream object detection algorithms are mainly categorized
into two-stage and single-stage approaches [3]. The former approach generates a series of
samples of the candidate box and then uses a CNN for sample classification. Two-stage
approaches include networks such as the R-CNN [16], faster R-CNN [17], R-FCN [18], and
Libra R-CNN [19]. The latter approach does not have to generate a candidate box, instead
directly transforming the problem of target box localization into a regression problem [20].
Single-stage approaches include networks such as YOLO [21], SSD [22], and RetinaNet [23].
Single-stage algorithms are superior in terms of speed and have increasingly been applied
in practical detection applications, including medical cancer cell detection [24], face detec-
tion [25], product detection [26], and more. However, their detection accuracy is slightly
lower than two-stage algorithms, and they are not good at detecting small objects [27].

Thus, these state-of-the-art object detectors are ineffective for detecting abnormal neck
behavior, as they cannot capture subtle feature differences such as neck rotation, which are
critical for the classification and localization of abnormal neck behaviors. In this paper, the
neck behavior features are learned by combining object detection and pose estimation to
obtain better abnormal behavior detection results.

2.2. Abnormal Behavior Detection

Current methods for abnormal behavior detection can be coarsely classified into
three types: ambient device-based, wearable-based, and computer vision-based [28,29].
The ambient device-based [30,31] and wearable sensor-based [28,32] methods require
dedicated devices to collect ambient data (e.g., floor pressure, sound, vibration) or object
movement data (e.g., speed, acceleration). However, ambient device-based methods are
sensitive to environmental noise, leading to high false positive rates [29]. Ma, C. et al. [4]
used pressure sensors to detect abnormal behaviors of people in wheelchairs, using a
fuzzy inference system to evaluate movement and posture conversion intensity. Based on
pressure sensors, PIR sensors, etc., Arifoglu, D. et al. [5] identified abnormal behaviors such
as forgetting or repetition in the elderly. Tokas, P. et al. [6] used a Microsoft Kinect sensor
to detect normal and abnormal sitting postures, achieving the highest accuracy of 92.85%
with Random Forest and Support Vector Machine classifiers. Wearable-based approaches
require individuals to wear sensors, which can cause discomfort and inconvenience. On
the other hand, computer vision-based approaches usually use cameras to capture images,
overcoming the limitations of fixed device placement inherent in wearable-based methods
and allowing for simultaneous and visible capture of multiple events.
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Many image-based abnormal behavior recognition works have emerged thanks to
the popularity of camera monitoring and the powerful feature extraction ability of deep
learning. The core technology of abnormal behavior detection is to recognize the category
and location of abnormal behaviors in images captured by camera monitoring [3]. An
increasing number of studies have been emerging into abnormal behavior detection as
a subtask of object detection. Alruwaili, M. et al. [33] proposed a Yolov5-based real-
time detection and tracking model for people with paralysis, limb defects, and other
diseases. Wang L. et al. [2] proposed an attention-based spatiotemporal network to identify
the behavior and location of abnormal activities in the elderly, such as multiple toilet
visits, forgetting to wash dishes, etc. Fang, M.-T. et al. [34] proposed a real-time abnormal
behavior detection method using improved YOLOv3. These methods attempt to handle
abnormal behavior detection through improved generic object detection methods based on
deep learning and temporal surveillance information.

In addition, many methods try to define different kinds of abnormal behavior in
advance depending on the specific scenario. Mehmood, A. et al. [35] defined human falls,
certain types of suspicious behavior, and violent acts as abnormal activities. They provided
a lightweight framework to represent and differentiate between normal and abnormal
events effectively. Fu, Y. et al. [8] proposed a lightweight GD-YOLO network based on
YOLOv7 for detecting abnormal behaviors, including smoking and using mobile phones.

In this paper, based on behavior in office scenarios, we define head tilt and dropped
head postures as abnormal behaviors of the neck. We focus on detecting abnormal behavior
of the neck joints and combine object detection with pose estimation to better detect
abnormal behavior.

3. Methods
3.1. Overview

This paper proposes an abnormal behavior detection network called NABNet based
on YOLOv5s and Lightweight OpenPose for detecting head tilt postures of sedentary
people in indoor scenarios. Furthermore, we present a NABNet-based IoT system that
leverages the trained NABNet and hardware equipment, as shown in Figure 1. Video is
collected by a camera and processed on edge devices to detect abnormal behaviors, with the
results uploaded to the cloud for issuing alarms. The system’s main components are video
gathering, image transmission and processing, and NABNet-based detection parts. Based
on the YOLOv5s object detection network and the Lightweight OpenPose pose estimation
network, NABNet extracts the detailed behavior characteristics of the head and neck from
global to local to detect abnormal head tilt and dropped head behaviors.

Figure 1. Schematic of the proposed NABNet-based IoT system for abnormal behavior detection.
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3.2. Object Detection and Tracking

YOLOv5s is a CNN-based object detection model composed of backbone, neck, and
head networks. The input is processed by the backbone network (CSPDarknet53 [36]) for
feature extraction, the neck network for feature fusion, and the head network for object
prediction.The backbone network uses Focus, CBL, CSP, and SPP structures to reduce the
calculation without reducing the accuracy [37]. The neck network uses top-down FPN and
bottom-up PAN modules for feature fusion. Finally, we adopt the GIOU loss to supervise
the network [38]. The CA mechanism is embedded in the backbone structure of YOLOv5s
to enhance the feature extraction and object attention capability, as shown in Figure 2.
Unlike other mechanisms that convert the features extracted by the network into a single
feature vector through 2D global pooling, the CA mechanism decomposes channel attention
into two 1D feature encoding processes and then separately aggregates features along two
spatial directions; one spatial direction captures long-range dependencies, while the other
retains precise positional information. Two feature maps with specific spatial dependencies
are obtained by applying an activation function, enhancing attention towards the target
of interest.

Figure 2. CA mechanism structure.

We track the object to analyze the behavior category according to the object’s motion
mode. For this, we design an extended Kalman filter-based tracker, as shown in Figure 3.
The tracking process is divided into two parts: initialization and tracking; in this paper,
the frame of YOLOv5s detection failure is taken as the third frame of the tracker, while
the first two frames are taken as the tracker’s initial state. After initialization, the prior
state and error covariance matrix are calculated, and multiple candidate regions are created
near the preceding state. The candidate region is matched with the tracking result of the
previous frame using the difference hash to select the best-matching candidate region.
The matching value is compared with a threshold. If this threshold is exceeded, the best-
matching candidate region is used as the observation value to update the system; otherwise,
the matching is considered to have failed, and waiting for the detector to detect the object
again is necessary.
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Figure 3. Flowchart of object tracking.

The traditional Kalman filter assumes a Gaussian distribution and linearity; however,
object tracking of the body is nonlinear due to object deformation and environmental
changes. The extended Kalman filter can solve the problem of nonlinearity via Taylor
expansion [39]. The state equation and observation equation of the extended Kalman filter
are as follows:

xk = f (xk−1) + wk−1, (1)

zk = h(xk) + vk, (2)

where xk and xk−1 denote the state vector with k and k − 1, respectively, f () is the state
transition function, and wk−1 is the process noise, which is assumed to conform to the
multivariate normal distribution with a mean value of 0 and covariance matrix of Q. The
process noise is due to uncertain factors in practical scenarios, such as sudden acceleration,
deceleration, and turning. In addition, zk is the observation vector, h() is the state obser-
vation function which converts the state space into the observation space, and vk is the
observation noise, which is assumed to conform to a multivariate normal distribution with
a mean value of 0 and covariance matrix of R.

3.3. Detection of Abnormal Neck Behavior

Because the neck has subtle movements, using the object detection method directly is
impossible, as it can only make judgments based on violent movements (see Section 3.2).
Inspired by Maji D. et al. [40], this paper uses the YOLOv5s object detection model combined
with the Lightweight OpenPose pose estimation method [13,41] to determine the neck’s
state. The advantages of this approach are as follows: (1) combining YOLOv5s with
Lightweight OpenPose increases the robustness of the model against occlusion compared
to using Lightweight OpenPose alone, which can cause detection errors if key points
and joint information are lost; (2) having Lightweight OpenPose only process the objects
extracted by YOLOv5s helps it to ignore irrelevant objects, which reduces the amount of
calculation and improves real-time performance.

We determine abnormal behavior according to the neck angle. The evaluation criteria
of the dropped head state consist of the ratio of the neck-to-nose vector to the vector
from the neck to the shoulder on one side. The evaluation criteria of the head tilt state
are the angle between the neck and the shoulder. When the camera is not in the front
position of the object, there is a difference between the detected angle and the actual angle
of the neck, as shown in Figure 4. To solve this problem, we first determine the body’s
orientation, then use the camera calibration to obtain the mapping relationship between the
two-dimensional and three-dimensional object, and finally obtain the angle between the
object and the camera by calculating the Euler angle. Then, the angle correction is carried
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out by affine transformation [42] to reduce the timidity of the angles, as shown in Figure 5.
The affine transformation is as follows: uc

vc
1

 =

 cos ϕ 0 0
− sin ϕ 1 0

0 0 1

 u
v
1

 (3)

where ϕ is the yaw angle and w is the neck angle, determined as follows:

w = arc cos(
−→ac ·

−→
bc∥∥−→ac

∥∥∥∥∥−→bc

∥∥∥ ). (4)

(a) (b)

Figure 4. (a) The neck state when the object side is towards the camera and (b) the actual neck state.

Figure 5. Angle correction via affine transformation. a⃗ denotes the vector between the neck and the
head, and b⃗ represents the vector between the neck and the shoulder.

4. NABNet-Based IoT Alert System

We constructed a NABNet-based IoT alert system for abnormal behavior detection to
identify head tilt and dropped head postures. The structure of the system is illustrated in
Figure 6. The edge device must process the video the camera collects to track the object
and determine the abnormal behavior, which requires matching computational power. The
selected edge devices must also be extensible to enhance the system’s availability. We
chose the Raspberry Pi 3B as the control terminal. The Raspberry Pi 3B is known for its
compact size and powerful functionality and is widely used in fields such as smart homes,
media devices, and industrial control. Its primary parameters are detailed in Table 1. We
selected the DF200 camera, which has a resolution of 1280 × 1080P and a speed of 30 frames
per second.

The system captures indoor video through camera monitoring and transmits it to edge
devices for analysis using NABNet. The edge devices continue to track objects even when
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no abnormal behavior events are detected. In the event of a detection, the system interacts
with the cloud and issues an alert.

Figure 6. NABNet-based IoT alert system structure.

Table 1. Primary parameters of the Raspberry Pi 3B.

Parameters Configuration

SOC CM2711
CPU ARM Cortex-A72 1.5 GHz
GPU Broadcom VideoCore IV

Memory 4 GB LPDDR4
Power 5 V Micro USB

Supported Systems Raspbian/Ubuntu/Windows10/Linux

5. Experiments

In this section, we introduce the experiment methodology and evaluate the perfor-
mance of NABNet. We also carry out a series of ablation studies.

5.1. Setup

We conducted field experiments to evaluate the effectiveness of our approach, con-
sisting of a camera and 1.7 m bracket, embedded devices, and a computer, as shown in
Figure 7. We selected 80 participants, including 60 males and 20 females, aged between
24 and 30 years old and varying in height between 1.55 m and 1.85 m. The participants
performed positive pose (head tilt or dropped head) and negative pose (front position) at
distances of 0.5 m and 0.75 m from the camera.

The performance of the proposed model was evaluated using the Precision, Recall, and
Accuracy:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

where TP is the number of positive samples correctly detected, FN is the number of negative
samples incorrectly detected, FP is the number of positive samples falsely classified as
negative ones, and TN is the number of negative samples correctly detected.
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Figure 7. Experimental setup.

5.2. Evaluation of NABNet-Based IoT System

The participants performed positive and negative poses facing the camera in the front
position, 30◦ right rotation, 30◦ left rotation, 60◦ right rotation, and 60◦ left rotation, as
shown in Figure 8. The sample number was 160 (80 persons × two poses). The experimental
results in Table 2 show that the detection accuracy in the front position and at 30◦ rotation
is higher than that at 60◦ rotation. In general, as the rotation angle increases, the detection
accuracy gradually decreases.

Figure 8. Representative images of positive and negative poses.

Table 2. Evaluation of our system based on the obtained samples.

0.5m 0.75m

Position Recall (%) Precision (%) Accuracy (%) Recall (%) Precision (%) Accuracy (%)

Front position 97.50 96.30 96.88 96.25 96.25 96.25
30◦ right rotation 97.50 98.73 98.13 95.00 97.44 96.25
30◦ left rotation 95.00 97.44 96.25 97.50 93.98 95.63
60◦ right rotation 86.25 92.00 89.38 86.25 87.34 86.88
60◦ left rotation 88.75 91.03 90.00 87.50 88.61 88.13
Mean 93 95.1 94.13 92.5 92.72 92.63
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Figure 9 shows the abnormal behavior neck detection results obtained with our multi-
node system; (a) shows results for the control group when the participant is standing and
is detected correctly by the system, while (b) shows the results when the participants are
partially occluded. In the latter case, the system is still able to detect abnormal behavior of
the neck. The multi-node detection and final results are shown above the monitoring video,
with the final result comprising a comprehensive judgment of the multi-node detection
results. The remote monitoring data on the cloud platform are shown below the monitoring
video, indicating whether an abnormal behavior event occurs and an alarm was realized.

Figure 9. Illustration of abnormal neck behavior detection displayed on the server screens and cloud.

5.3. Ablation Studies

Ablation experiments were conducted on the different improvement stages of NABNet,
including the CA mechanism, tracker, and angle correction. We selected five groups of
experimental fragments from the Multicam Fall Database [43], Le2i [44], SIMPLE Fall
Detection Dataset [45], and one group photographed in a low illumination scene.

Table 3 shows the influence of the different components on our model. It can be
observed that incorporating the CA mechanism leads to a 3.58% improvement in accuracy,
indicating that adding the CA mechanism enhances the model’s accuracy in detecting
small targets.

To verify the effectiveness of the proposed tracker, we compared it with Kernelized
Correlation Filters (KCF) [46] and Tracking Learning Detection (TLD) [47]. Table 3 shows
that the accuracy of our tracker is on par with KCF, while the accuracy of TLD is significantly
lower, indicating that TLD incurs errors in object tracking. In order to better meet the
system’s real-time performance requirements, we tested the frame rates of three different
trackers, with the results presented in Table 4. Our tracker achieved the highest frame rate,
with KCF being 25.57 frames per second (fps) slower. It demonstrates that our algorithm
offers superior detection speed and improved real-time capabilities while maintaining
comparable accuracy.

By utilizing angle correction via affine transformation, our method can correct the
object to the forward position when facing the camera at an angle to obtain the actual neck
angle information. As shown in the last two lines of Table 3, the accuracy of the model is
improved by 8.72% after affine transformation.
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Table 3. Influence of components on our model.

Model CA Mechanism Tracker Angle
Correction Accuracy (%)

YOLOv5s 67.44
YOLOv5s

√
71.02

YOLOv5s
√

KCF 87.45
YOLOv5s

√
TLD 78.63

YOLOv5s
√

Ours 85.41
YOLOv5s

√
Ours

√
94.13

Table 4. Comparison experiments of the detection frame rate with different trackers.

Tracker Detection Frame Rate (fps)

KCF 17.61
TLD 9.95
Ours 43.18

6. Conclusions

Focusing on the local behavior of abnormal neck postures, this paper proposes an
abnormal behavior detection network called NABNet based on object detection and pose
estimation. To accommodate devices with limited computing power, we have also devel-
oped an IoT detection and alert system for edge devices based on NABNet, which can
realize monitoring and early alerts on a cloud platform. Our experimental results show the
effectiveness of the proposed approach.

As with the majority of studies, the design of the current study is subject to limitations.
We have not yet validated the effectiveness of our approach on a large-scale public dataset
specifically for neck abnormal behavior due to the absence of such a dataset, which high-
lights the need for further research in this area. In the future, we will consider increasing
the number of key points and combining NABNet with other pose estimation models to
improve its ability to detect multiple abnormal behaviors.
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