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Abstract: Atrial fibrillation (AF) is the most prevalent arrhythmia characterized by intermittent and
asymptomatic episodes. However, traditional detection methods often fail to capture the sporadic
and intricate nature of AF, resulting in an increased risk of false-positive diagnoses. To address these
challenges, this study proposes an intelligent AF detection and diagnosis method that integrates
Complementary Ensemble Empirical Mode Decomposition, Power-Normalized Cepstral Coefficients,
Bi-directional Long Short-term Memory (CEPNCC-BiLSTM), and photoelectric volumetric pulse
wave technology to enhance accuracy in detecting AF. Compared to other approaches, the proposed
method demonstrates faster preprocessing efficiency and higher sensitivity in detecting AF while
effectively filtering out false alarms from photoplethysmography (PPG) recordings of non-AF patients.
Considering the limitations of conventional AF detection evaluation systems that lack a comprehen-
sive assessment of efficiency and accuracy, this study proposes the ET-score evaluation system based
on F-measurement, which incorporates both computational speed and accuracy to provide a holistic
assessment of overall performance. Evaluated with the ET-score, the CEPNCC-BiLSTM method
outperforms EEMD-based improved Power-Normalized Cepstral Coefficients and Bi-directional
Long Short-term Memory (EPNCC-BiLSTM), Support Vector Machine (SVM), EPNCC-SVM, and
CEPNCC-SVM methods. Notably, this approach achieves an outstanding accuracy rate of up to 99.2%
while processing PPG recordings within 5 s, highlighting its potential for long-term AF monitoring.

Keywords: atrial fibrillation; photoplethysmography; long-term; CEPNCC-BiLSTM; ET-score

1. Introduction

Stroke is a leading cause of death and disability worldwide [1,2]. Reliable research
has established a strong correlation between AF and ischemic stroke [3]. Furthermore,
strokes associated with AF carry higher risks [4–9]. Although there are numerous methods
for detecting AF based on electrocardiogram (ECG) and ECG-like signals, these methods
have inherent limitations [10]. While ECG serves as the gold standard for AF detection
and accurately analyzes heart rate and rhythm [11], identifying paroxysmal AF with short-
period ECG recordings remains challenging due to its paroxysmal and complex nature [12].
Additionally, long-term ECG monitoring requires medical professionals, disrupts daily
activities, and increases monitoring costs. Therefore, there is an urgent need to develop
a novel, accurate, and efficient method for processing long-term PPG recordings that
overcomes the limitations of traditional methods while enhancing AF detection rates.
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Studies suggest that PPG recordings hold potential as an alternative to ECG for AF
detection. Chong et al. [13] proposed that PPG waveforms may contain features beyond
heart rate. However, further validation is required regarding the accuracy of PPG devices
and the ability of physicians to detect AF based on PPG recordings [14]. To address these
challenges, researchers have explored the application of image processing techniques and
artificial intelligence methods in analyzing PPG recordings [15–17]. With advancements
in computing technology, deep learning methods have gained significant attention [18].
For instance, Wu et al. [19] utilized a smartwatch device to obtain 30 s PPG recordings
and achieved an overall accuracy of 92.38% using a hybrid deep learning model called
Res-BiANet across 28,440 signal segments from 102 patients. Although studies have
demonstrated the effective detection of AF using shorter periods of PPG recording in some
cases, the paroxysmal nature of AF presents the risk of missed detection with short-duration
signal segments [20].

PPG devices have attracted significant attention due to their potential for long-term
monitoring and affordability [21]. However, the application of long-term PPG recordings is
limited as it increases the computation time and poses challenges for rapid AF detection.
Chen et al. [22] developed a novel smart bracelet that utilizes long-term PPG recordings
to detect AF, demonstrating the integration potential of PPG with smart devices. For
instance, Saarinen et al. [23] employed 5 min PPG and ECG recordings to analyze AF
through a random forest algorithm, achieving an accuracy of 97.4%. Similarly, Kotlyarov
et al. [24] analyzed over 2 min PPG recordings using a support vector machine (SVM)
with a processing time of approximately 3 min, achieving sensitivity of 92.3%, specificity
of 94.7%, and accuracy of 93.5%. While utilizing long-term PPG recordings can indeed
enhance detection performance, the extended processing time is unfavorable for rapid
AF diagnosis [25]. Moreover, there is currently no established standard in the field of
AF diagnosis regarding the selection criteria for term length and processing time when
utilizing PPG recordings. Evaluating the efficiency of an AF diagnostic method requires
considering the appropriate recording duration, along with corresponding signal processing
and classification techniques.

In the field of AF detection, convolutional neural networks (CNNs) are widely adopted
due to their excellent spatial feature extraction capabilities [26]. However, they face chal-
lenges in capturing temporal dependencies within electrophysiological signals. To address
this issue, recurrent neural networks (RNNs) have been introduced. For example, Senturk
et al. [27] integrated ECG and PPG recordings as inputs into an RNN with the objective of
estimating continuous blood pressure. Xu-K et al. [28] employed RNNs to achieve precise
PPG cardiogram segmentation, resulting in three key indicators for heart rate variability
estimation. However, traditional RNNs often face the issue of gradient vanishing when
processing long-sequence data. To address this limitation, the bidirectional long short-term
memory (BiLSTM) model has been employed [29], with the aim of enhancing the model’s
capacity to capture contextual information in time series analysis and thereby improving
AF event recognition.

In conclusion, this paper proposes an innovative method named CEPNCC-BiLSTM
for the precise classification of AF characteristics based on long-term PPG recordings. To
address the challenges in AF detection from PPG recordings and improve the processing
speed of long-term PPG data, the proposed method enhances power normalized cepstral
coefficients (PNCC) by incorporating complementary ensemble empirical mode decompo-
sition (CEEMD) to extract frequency domain features. These features are then combined
with time domain features to form a feature matrix. Subsequently, the feature matrix is fed
into a BiLSTM neural network for accurate and effective identification and classification
of AF characteristics. Additionally, to address the limitations of traditional evaluation
systems that assess efficiency and accuracy comprehensively, this paper introduces a novel
evaluation method called the ET-score, which incorporates time factors into the F-measure.
This enables a comprehensive evaluation of various methods’ efficiency and accuracy.
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2. Materials and Methods
2.1. Data

In this study, the effectiveness of the proposed algorithm is validated through experi-
mental analysis. The PPG recordings are sourced from the MIT-BIH-MIMIC-III database at
the Massachusetts Institute of Technology (MIT). MIMIC-III (‘Medical Information Mart for
Intensive Care’) is an internationally recognized ECG database that accurately represents
differences in pulse classification algorithms. The MIMIC-III Waveform Database is a large
single-center database comprising vital signs, medications, laboratory measurements, ob-
servations, etc. [30]. In this research, PPG recordings were collected from both patients with
AF and individuals exhibiting normal sinus rhythm (NSR) in the Synthetic Dataset [31]
(1500 records in total). Among them, the signals of AF patients were confirmed by the
diagnostic opinions provided by MIMIC-III. Furthermore, to validate the ability of the
proposed method to detect AF patients with additional diseases, a small number of AF
patients with other diseases were also included in the dataset.

To develop the classification models, the dataset was divided into two parts: a training
set and a test set. The former was used for model training and the latter was kept as unseen
data to test the classification performance. To ensure similar rhythm distributions in both
datasets, 66.6% of the patients were assigned to the training set and 33.3% were assigned to
the test set based on the rhythm. The details of the rhythm distributions are presented in
Table 1, including the percentage of beats in each class and the number of patients having
that rhythm.

Table 1. Diagnosis Distributions in the Training and Test Sets.

Signal Category Training Set Test Set

PPG from AF patients 75% 46%
PPG from AF patients with other diseases 5% 14%

Sinus rhythm PPG 20% 40%

2.2. Evaluation Indicators

To evaluate the sensitivity and time complexity of different methods simultaneously
and provide a more intuitive assessment of their overall performance, this paper introduces
the ET-score to evaluate the performance of AF detection methods using the following
evaluation formula:

ETscore =

(
β2 + 1

)
× (F AF × FNSR

)
β2·(FAF + FNSR)

× time, (1)

where β represents the estimated parameter, and in this paper, β is set to 1. FAF and FNSR
are the F-measures corresponding to AF and NSR, respectively. The calculation speed factor
of the AF detection method is time, whose maximum value is 100 and decreases by 2 in
order of calculation speed ranking.

Several evaluation methods have been investigated to assess the accuracy and com-
putation time of AF detection algorithms, aiming to demonstrate their performance in
different aspects. However, none of these methods can comprehensively evaluate the
overall performance of the algorithm. When comparing multiple methods, the ET-score
incorporates a time factor related to the computational speed in addition to the accuracy
rate. The ET-score considers both efficiency and accuracy, providing an assessment of the AF
detection methods’ effectiveness. A high ET-score indicates that a method is both accurate
and computationally efficient.

2.3. Preprocessing and Signal Analysis

The preprocessed PPG recordings commence from a peak and have a duration of
2 min. Examples of 10 s segments of the PPG waveforms for different rhythm types are
presented in Figure 1. Compared to NSR, AF patients exhibit intermittent fluctuations in
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PPG recordings, which are significant factors influencing AF detection [32]. To determine
the optimal PPG feature extraction times for AF identification, PPG recordings were divided
into 1 min, 2 min, and 5 min for pre-experiments. The feature extraction time, network
training time, classification accuracy, and ET-score were calculated, respectively. Our study
reveals that 2 min PPG recordings achieve the highest ET-score; in other words, 2 min PPG
recordings strike a balance between efficiency and convenience, as shown in Table 2. Tang
et al. [33] also demonstrated that longer signals result in better classification performance,
but excessively long signal records will prolong the computation time. Based on the results
of the pre-experiments, PPG recordings with a length of 2 min containing 15,000 data
points were utilized in this study. The selection of different signals was performed by
detecting local maxima, and all the signals were normalized to ensure the accuracy of the
subsequent algorithm.
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Figure 1. 10 s PPG recordings after Preprocessing (a) AF Patient (b) Sinus rhythm.

Table 2. Feature Extraction Time and Network Training Time.

Data Feature Extraction Time
(Per Data)

Network
Training Time

Average
Accuracy (%) ET-Score

1 min PPG About 3 s 1 min 16 s
(Only 400 data

items)

96% 96.25
2 min PPG About 5 s 98% 96.80
5 min PPG About 10 s 98% 92.50

2.4. CEPNCC Algorithm Details

PNCC is a speech-processing method that demonstrates strong efficiency in dealing
with physiological signals [34]. Figure 1 shows the statistical characteristics of the PPG
recordings varying with time, indicating that it is a non-smooth signal. However, the
application of the fast Fourier transform (FFT) for signal preprocessing proves to be in-
effective for non-smooth signals. Chen et al. [35] proposed an EEMD-based improved
Power-Normalized Cepstral Coefficients (EPNCC) approach by employing Ensemble Em-
pirical Mode Decomposition (EEMD) for signal preprocessing instead of FFT. However,
EEMD requires hundreds of calculations to reduce the residual error to a low level. In
order to enhance efficiency while reducing error, the CEEMD [36] and EEMD were utilized
to preprocess PPG recordings, with their respective processing times detailed in Table 3.
Notably, CEEMD exhibits a significant advantage in terms of processing time.

Table 3. Processing of Two Methods.

Method Required Processing Times (Times) Average Processing Time (s)

CEEMD 20 5.8291
EEMD 200 36.1267
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CEEMD is used to preprocess the PPG recordings with the following steps.
Step 1: Let N be the overall number of processing of the original signal, indicating the

total number of white noise signals added.
Step 2: A positive white noise signal sequence {ni} and a negative white noise signal

sequence {−ni} are added to the original signal s(t), forming two new sets of signals,
ri
+(t) and ri

−(t), respectively, where i = 1, 2, . . . , N.
Step 3: Using EMD to decompose ri

+(t) and ri
−(t) separately, a series of intrinsic

modal functions (IMFs) are obtained. Note that I+ij (t) and I−ij (t) are the jth intrinsic modal
functions of ri

+(t) and ri
−(t), respectively.

Step 4: Let Ij(t) be the jth intrinsic modal function of the reconstructed signal where
Ij(t) is the average of the components I+ij (t) and I−ij (t), as shown in the following equation:

Ij(t) =
1

2N ∑N
i=1

(
I+ij (t) + I−ij (t)

)
. (2)

Step 5: Let p be the total number of all IMFs in the reconstructed signal and let r(t) be
the residual of the reconstructed signal. The corresponding IMFs are averaged as the result
of the decomposition, as shown in the following equation:

s(t) = ∑p
j=1 I+j (t) + r(t). (3)

After decomposing the PPG recordings using CEEMD, each IMF component and the
residuals were obtained. Due to the time-varying and random nature of the noise, the
IMF components after EEMD decomposition will vary. The large differences in these IMF
components are meaningless for characterizing the impulse signal properties. Therefore,
before extracting PNCC frequency domain features, a correlation analysis was conducted
on the EEMD-decomposed IMF components to filter out those that characterize the impulse
signal. Correlation analysis can determine the coherence between each IMF component
and the original PPG recordings, and the expression for the coherence coefficient is

µi =
cov(im f i, Sig)√

Var[im f i] Var[Sig]
, (4)

where n is the total number of the obtained IMFs, Sig is the original PPG record, and the
desired IMF is selected by the difference from the set threshold value.

After the PPG record is processed by EEMD, the components are arranged and ex-
pressed as a feature matrix composed of IMFs. Here are the CEPNCC feature extrac-
tion steps:

Step 1: The estimated power spectrum Pi(ω) for each IMF is calculated as follows:

Pi(ω) = lim
T→∞

|IMFi|
2πT

(5)

Step 2: The power estimate Pi(ω) is input into the Gammatone filter for filtering, and
the time domain impulse response of the Gammatone filter is formulated as follows:

G(t) = atn−1e−2πwtcos(2π f0t + φ), (t > 0) (6)

where w is the filter bandwidth and n is the filter order.
Step 3: After filtering, the filter is normalized to its power spectrum (PN). The power-

normalization expression is as follows:

Ui =
Pown

(
ωg

)
µ[ω]

(7)
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where POWn is the value obtained from the Gammatone filter and µ[ω] is the average
power.

Step 4: Power function nonlinear processing is expressed as follows:

POWn = Uϑ
n (8)

where ϑ is the exponential factor, while in general 0 < ϑ < 1.
Step 5: The CEPNCC eigencoefficients are the obtained eigenmatrices.
After obtaining the CEPNCC feature parameters through a series of processing steps,

the CEPNCC feature parameters are mixed with the time domain features and input into
the neural network for training.

2.5. Net Modeling

BiLSTM was utilized for processing PPG recordings in the development of AF clas-
sification models in this study. BiLSTM, comprising a forward LSTM and a backward
LSTM, is well-suited for modeling time series data and is commonly employed in natu-
ral language processing tasks to capture bidirectional temporal dependencies and learn
contextual information.

In this study, a neural network model based on BiLSTM was constructed for AF
classification. Figure 2a illustrates the basic unit of the BiLSTM, while Figure 2b depicts
a block diagram of the overall model. The CEPNCC feature matrix obtained from PPG
recordings serves as the input for calculations in this model.
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Figure 2. BiLSTM and classification network. (a) Basic unit of BiLSTM; (b) Block diagram of
classification network: The input sequence is activated by ReLU and passed into BiLSTM to generate
sequence features (X1, X2, . . ., Xn). These features are extracted through the fully connected layer
(FCL) to produce high-level features (a1, a2), which are then converted to probability distributions by
the SoftMax layer, and the final output is the classification result (R1, R2).
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The BiLSTM model (Figure 2) was utilized for binary classification. The PPG record-
ings diagnosed as AF were grouped into one category, while non-AF rhythms were catego-
rized separately.

To comprehensively characterize the PPG record features, the periodic time domain
and frequency domain features were first normalized and activated before being input
into the BiLSTM network for training. Subsequently, the classification of PPG recordings
was achieved using a SoftMax classifier, which is well-suited to the specific classification
requirements of this paper. The SoftMax classifier transforms the logits from the BiLSTM
model into a probability distribution by applying the SoftMax function. This allows the
score for each category to be interpreted as the probability of that category. Notably, the
SoftMax classifier is characterized by its computational simplicity and high efficiency.
The number of categories corresponds to clinical diagnostic categories associated with
the PPG recordings. Specifically, the presence or absence of AF is indicated by [1] and
[0], respectively.

3. Experimental Results

After conducting a comprehensive analysis of data preprocessing techniques, the
subsequent crucial step involves extracting relevant features from the preprocessed signals
to facilitate the accurate classification of AF.

3.1. PPG Recordings

In this study, we identified peak points in the database of PPG recordings and subse-
quently grouped and segmented them. The sampling frequency of the PPG recordings from
the MIMIC-III database was 125 Hz. Therefore, 15,000 data points starting from the peak
were selected as the data sample for this experiment. We obtained the feature matrix from
the CEPNCC decomposition, as shown in Figure 3. Due to the intermittent fluctuations
in the PPG recordings of AF patients, their feature matrix exhibited confounding patterns
in the low-frequency domain, with a more concentrated energy distribution in the image.
As illustrated in Figure 3, the NSR feature matrix and the AF feature matrix displayed
significant differences in amplitude and distribution. The AF feature matrix showed higher
energy and uneven distribution at the initial points, with more low-value regions, indicat-
ing greater energy variations in AF patients. In contrast, the NSR feature matrix had a more
uniform energy distribution and exhibited smaller fluctuations, reflecting the more stable
energy variations in patients with normal sinus rhythm. The BiLSTM network captures
these features effectively. After combining the frequency domain feature matrix with the
time domain features, we employed the BiLSTM network for training.
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3.2. Net Training and Analysis

To ensure optimal performance of the neural network, it is crucial to carefully set and
fine-tune the network parameters. This includes selecting an appropriate optimizer and
determining the optimal learning rate, as these factors significantly influence the accuracy
and efficiency of the AF detection model.

3.2.1. Network Settings

We set the network structure parameters according to the description in the previous
Section 2.5. Following the testing of different network parameters, the Adam optimizer
was chosen to regulate the learning rate, which could significantly impact the final AF
detection results in machine learning. To select an appropriate learning rate, we designed
an optimal learning rate estimation method. A very small initial learning rate for the AF
detection network was chosen in this work. The learning rate was increased after each
batch, with the retention of the loss obtained from each batch. Subsequently, we created a
plot of the learning rate versus loss curve, as shown in Figure 4.
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As illustrated in Figure 4, the learning rate achieving the minimum loss was located
roughly within the interval [0.6 × 10−2, 0.2 × 10−1

]
. To accurately determine the optimal

learning rate, the accuracy rate α should satisfy the following equation:

α = f (φ, ω) (9)

where φ is the network loss rate and ω is the initial learning rate. The optimal estimate of
the network’s initial learning rate is determined by the following equation based on the
obtained accuracy parameters (φi, αi):

L(α, f (φ, ω)) = ∑N
i=1[αi,− f (φi, αi)]

2 (10)

The minimum value can be obtained from the sequence [ω1, ω2, . . . , ωi]. The rela-
tionship between various learning rates, learning rate decay factors (LRDFs), and the
network’s classification accuracy was analyzed to select the appropriate LRDF. The results
are presented in Figure 5.
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Accuracy.

It should be noted that both different learning rates and LRDFs can affect the accuracy
of the network. As the LRDF increases, there is generally a decrease in the classification ac-
curacy for different learning rates; notably, when the LRDF is 0.5, the classification accuracy
reaches its peak. The moderate learning rate decay allows the model to gradually converge
during training while maintaining adequate exploration capabilities. This ultimately en-
ables the model to effectively find the optimal solution. When the LRDF falls below 0.5, the
AF classification accuracy drops below 80%. This slow decay leads to inadequate parameter
adjustment during training and suboptimal performance with decreased classification
accuracy. In order to ensure the clarity of the image, the accuracy of the network with an
LRDF less than 0.5 is not listed in Figure 5. Therefore, the initial learning rate used for our
network was 0.01525, the LRDF was 0.5, and the maximum iteration period was 100.

3.2.2. PPG Classification Recognition Rate of CEPNCC-BiLSTM

We utilized the CEPNCC feature matrix, extracted from the PPG recordings, for
training, classifying, and validating the network. The categorical data in Table 4 were
derived from the confusion matrix presented in Figure 6. The model acquired through
network training was cross-validated on the test dataset, yielding a final classification
accuracy of 99.20%. As depicted in Table 4, the proposed method demonstrates the precise
detection of PPG recordings in AF patients with a recall rate of 100%. For PPG recordings
from NSR, the false alarm rate was merely 2%. Across multiple experiments, CEPNCC-
BiLSTM consistently exhibited the accurate screening of AF patients.

Table 4. CEPNCC-BiLSTM Classification Recognition Rate.

Category Recall Rate (%) Precision (%)

AF Patient 100 98.7
Sinus rhythm 98 100
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3.2.3. Compared with Existing Methods

To demonstrate the superiority of the proposed method in AF classification, we
compared it with other methods, including EPNCC-BiLSTM, CEPNCC-BiLSTM, SVM,
EPNCC-SVM, and CEPNCC-SVM. All the models were trained on the same hardware
environment using the same training set and test set.

As illustrated in Tables 5 and 6, the SVM classifier was capable of producing results in
a relatively short time; however, it exhibited a significant loss of accuracy and an AF false
alarm rate of 26%, which was insufficient to meet the requirements for AF detection. In
contrast, AF detection could be classified rapidly and with minimal loss of accuracy by
employing EPNCC or CEPNCC to transform PPG recordings into feature matrices. Never-
theless, it should be noted that there were notable differences between the aforementioned
two methods for AF detection. EPNCC required a considerable number of calculations to
fulfill the accuracy requirements due to residual errors, which consequently prolonged its
preprocessing time.

Table 5. Recall Rate of Each Training Category.

Category EPNCC-BiLSTM (%) CEPNCC-BiLSTM (%) SVM (%) EPNCC-SVM (%) CEPNCC-SVM (%)

PPG recordings AF NSR AF NSR AF NSR AF NSR AF NSR
Recall rate 93.5 100 98.7 100 74 100 88.8 100 92.9 99.4
Precision 89.5 95.67 100 98 100 71.9 100 81 99.7 88.5

Table 6. Training Time and Preprocessing Time of Each Training Category.

Average Time
(1500-Data) EPNCC-BiLSTM CEPNCC-BiLSTM Input PPG

Recordings to SVM EPNCC-SVM CEPNCC-SVM

Preprocessing 15 h 2.25 h 0 15 h 2.25 h
Training 3 min 16 s 3 min 10 s 1 min 7 s About 5 s About 5 s

The application of CEPNCC for the preprocessing of PPG recordings had the effect of
reducing both the necessary preprocessing and training times while simultaneously achiev-
ing a high degree of accuracy. As illustrated in Table 5, the CEPNCC-BiLSTM classification
method exhibited high sensitivity in AF detection and was capable of accurately classifying
PPG recordings with AF features. In multiple experiments, the proposed method demon-
strated the capacity to not only detect AF features in PPG recordings with precision but
also achieve a markedly lower false-positive rate than other methods under comparison.
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3.2.4. Proposed Evaluation Methodology

Table 7 demonstrates that the EPNCC-BiLSTM achieved a classification accuracy of
91.46% and a recognition accuracy of 97.79%. However, it exhibited the slowest compu-
tation speed, resulting in the lowest ET-score. Conversely, using only SVM as a classifier
yields faster computation but lower ET-score due to decreased accuracy. When EPNCC-
SVM was employed for AF classification, it attained an accurate AF recognition rate of
93.62% with rapid computational speed. In contrast, CEPNCC-SVM proved relatively
more efficient with an AF detection accuracy of 96.18%. Notably, CEPNCC-BiLSTM out-
performed all the methods by achieving the highest ET-score through preprocessing PPG
recordings in approximately 5.8 s and achieving exceptional AF detection accuracy at 99.2%.
Furthermore, CEPNCC-BiLSTM consistently demonstrated high sensitivity to AF detection
across multiple experiments, with most false positives originating from PPG recordings of
non-AF patients.

Table 7. F-measure and ET-score of each training category.

Category EPNCC-BiLSTM CEPNCC-BiLSTM SVM EPNCC-SVM CEPNCC-SVM

F-measure
AF Patient 91.46% 100% 85.06% 93.62% 96.18%

Sinus rhythm 97.79% 98.34% 83.65% 89.50% 93.63%
ET-score 82.28 97.27 84.35 86.10 92.99

4. Discussion

This study proposes an intelligent method for AF detection based on long-term photo-
plethysmography (PPG) data and the CEPNCC-BiLSTM model. The experimental results
demonstrate that this method significantly outperforms existing approaches in terms of
accuracy and efficiency, addressing the issue of under-detection caused by the AF’s parox-
ysmal nature and meeting AF detection requirements.

The CEPNCC-BiLSTM model enhances AF detection sensitivity and specificity by
combining CEEMD and PNCC techniques to extract both time domain and frequency
domain features. CEEMD efficiently processes non-smooth signals, contributing to reduced
computation time and improved accuracy. Additionally, the bidirectional characteristic
of the BiLSTM model enables better capture of contextual information in time series data,
enhancing its ability to recognize AF features.

Compared to traditional methods, the CEPNCC-BiLSTM model excels in various
performance metrics. When compared to EPNCC-BiLSTM, our proposed method not
only improves the detection accuracy (99.2% vs. 93.62%) but also significantly reduces
the preprocessing time (5.8291 s vs. 36.1267 s). In comparison with the SVM method, the
CEPNCC-BiLSTM model demonstrates superior accuracy (99.2% vs. 96.18%) and computa-
tional efficiency. Moreover, these improvements are attributed to the efficient preprocessing
by CEEMD and the robust time series processing capability of the BiLSTM model, which re-
duces the computational overhead while capturing signal features effectively. Furthermore,
the CEPNCC-BiLSTM model exhibits high efficiency in processing non-smooth signals,
making it more stable and reliable in long-term monitoring: a crucial characteristic for
practical applications.

The proposed method holds great potential for practical applications, particularly in
long-term AF monitoring. Its efficient processing capabilities make the CEPNCC-BiLSTM
more suitable for wearable devices and real-time monitoring systems, which can help
improve early detection rates of AF, thereby reducing the risk of stroke and other complica-
tions without enabling continuous cardiac health monitoring.

While the CEPNCC-BiLSTM method demonstrated strong performance, it also exhib-
ited certain limitations. Firstly, the diversity and size of the dataset may impact the model’s
ability to generalize. This study utilized publicly available data, consisting of 400 healthy
human PPG recordings from the Synthetic Dataset and 1100 PPG recordings of AF pa-
tients from the MIMIC-III Waveform Database. To improve the model’s generalization
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performance, additional AF data were appropriately selected. The MIMIC-III Waveform
Database was obtained from bedside monitors in an intensive care unit (ICU) within an
inpatient unit. Among the AF PPG recordings, 89.09% of patients had a sole diagnosis of
AF, while another 10.91% had a concurrent diagnosis of AF and other disorders; however,
detailed information regarding these disorders was not disclosed by the data organiza-
tion. ICU patients typically exhibit more severe physiological states due to high stress
levels and various comorbidities, which can introduce complexity into PPG recordings.
Consequently, these data might not accurately represent outpatient or community patient
populations, thereby limiting their applicability to other scenarios such as general wards or
outpatient clinics.

The experimental results in Figure 6 revealed four false positive samples, which can
be attributed to (1) significant individual differences among samples and (2) interference
from other diseases affecting the model’s learning of atrial fibrillation-related features.
Consequently, enhancing the model’s generalization ability will be a primary focus in our
team’s future research endeavors. Furthermore, incorporating more diverse population
data and exploring atrial fibrillation detection effectiveness across different contexts are es-
sential considerations. Additionally, future research should encompass classifying various
arrhythmias (e.g., ventricular premature beats and tachycardia) to offer a comprehensive
cardiovascular health monitoring solution while identifying other sources of interference
in arrhythmia signals.

5. Conclusions

In this study, an intelligent method named CEPNCC-BiLSTM has been proposed for
the detection and diagnosis of AF with long-term PPG recordings. This method significantly
improves the accuracy of AF detection and overcomes the limitations of intermittent
monitoring in traditional methods. Additionally, it achieves superior classification accuracy
while demonstrating improved computational efficiency compared to other long-term
monitoring methods. Specifically, our approach accurately identifies PPG signals with AF
characteristics, achieving an impressive accuracy rate of 99.2%. Moreover, it processes
2 min PPG recordings in just 5.8 s, making it the fastest among the five methods considered
in this study. Furthermore, we introduce a novel performance metric based on the ET-score
that incorporates a temporal dimension beyond F-measure evaluation. The ET-score for
CEPNCC-BiLSTM is evaluated to be the highest among all five methods, further confirming
its effectiveness. Importantly, our research findings demonstrate that PPG signals contain
sufficient information for precise and rapid differentiation between AF and normal NSR
using CEPNCC-BiLSTM. Therefore, long-term PPG recordings can be effectively used for
accurate AF detection.
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