ﬁ Sensors

Article

TransNeural: An Enhanced-Transformer-Based Performance
Pre-Validation Model for Split Learning Tasks

Guangyi Liu !, Mancong Kang 2%, Yanhong Zhu 1%*, Qingbi Zheng %, Maosheng Zhu % and Na Li #

check for
updates

Citation: Liu, G.; Kang, M.; Zhu, Y.;
Zheng, Q.; Zhu, M; Li, N.
TransNeural: An Enhanced-
Transformer-Based Performance
Pre-Validation Model for Split
Learning Tasks. Sensors 2024, 24, 5148.
https:/ /doi.org/10.3390/524165148

Academic Editor: Hazer Inaltekin

Received: 21 June 2024
Revised: 25 July 2024
Accepted: 6 August 2024
Published: 9 August 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

China Mobile Research Institute, Beijing 100053, China; liuguangyi@chinamobile.com (G.L.);

zhenggingbi@chinamobile.com (Q.Z.); linawx@chinamobile.com (N.L.)

School of Communications and Information Engineering, Beijing University of Posts and

Telecommunications, Beijing 100876, China

School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100091, China

ZGC Institute of Ubiquitous-X Innovation and Application, Beijing 100191, China

5 China Mobile (Suzhou) Software Technology Co., Ltd., Suzhou 215163, China;
zhumaosheng@cmss.chinamobile.com

* Correspondence: kmc@bupt.edu.cn (M.K.); zhuyanhongyjy@chinamobile.com (Y.Z.)

Abstract: While digital twin networks (DTNs) can potentially estimate network strategy performance
in pre-validation environments, they are still in their infancy for split learning (SL) tasks, facing
challenges like unknown non-i.i.d. data distributions, inaccurate channel states, and misreported
resource availability across devices. To address these challenges, this paper proposes a TransNeural
algorithm for DTN pre-validation environment to estimate SL latency and convergence. First, the
TransNeural algorithm integrates transformers to efficiently model data similarities between different
devices, considering different data distributions and device participate sequence greatly influence SL
training convergence. Second, it leverages neural network to automatically establish the complex
relationships between SL latency and convergence with data distributions, wireless and computing
resources, dataset sizes, and training iterations. Deviations in user reports are also accounted for
in the estimation process. Simulations show that the TransNeural algorithm improves latency
estimation accuracy by 9.3% and convergence estimation accuracy by 22.4% compared to traditional
equation-based methods.

Keywords: 6G; digital twin network; transformer; split learning; pre-validation environment

1. Introduction

In the era of the sixth generation mobile network (6G) [1,2], an increasing number of
artificial intelligence (AI) applications will rely on edge network to train their continually
expanding models based on massive amounts of user data [3]. While users may be willing to
provide their data with payment, they are concerned about data privacy issues. Meanwhile,
fully training AI models on user devices to upload only model parameters can address
privacy issues, but is often impractical due to constraint user resources [4]. Additionally,
companies are reluctant to fully disclose their model parameters, since these are valuable
assets [5]. In this context, split learning (SL) has emerged as a promising solution [6]. In
“SL for model training process”, an edge server (ES) connected with an access point (AP)
offloads only a few lower layers of Al models to a user device for local training, where
the device interacts intermediate results in forward and backward propagations with ES
to update the upper layers. Once a user device finishes updating using its own data, it
sends the updated lower layers to the next user device via AP, continuing this process
until all participants have contributed their data. This model training method protects
user privacy and conserves device resources, and we abbreviate it as “SL tasks”. The
applications include illness model training in healthcare [7] and user behavior analysis in
mobile networks [8], etc.

Sensors 2024, 24, 5148. https://doi.org/10.3390/s24165148

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s24165148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24165148
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24165148?type=check_update&version=1

Sensors 2024, 24, 5148

20f 18

With the adoption of SL technology, a crucial concern for Al application companies is
to pre-estimate SL latency and convergence performance under given resource allocation
strategy before paying users and operators for data, wireless, and computing resources [6].
However, under unknown non-i.i.d. data distribution [9], inaccurate wireless channel
state information (CSI), and misreported available computing resources on different user
devices, it becomes extremely difficult to accurately estimate the SL performance before
real physical executions. The reason is as follows. Suppose there are three participate user
devices: A, B, and C. If the data distribution on A is similar to that on C, but significantly
different from B, then the training sequences A-C-B and A-B-C will result in considerable
differences in SL training convergence, despite utilizing the same amount of resources.
The situation becomes even more problematic when there exists reporting deviations in
CSI, amount of data and computing resources on devices. Consequently, Al application
companies face high risks when investing heavily in network operators and user devices for
SL training on edge, without confidence in achieving their training latency and convergence
goals, which significantly dampens their enthusiasm.

The Digital Twin Network (DTN), emerging as a critical 6G technology [10], is an in-
telligent digital replica of a physical network that synchronizes physical states in real-time
and uses Al models to analyze the characteristics and relationships of network compo-
nents for accurate inferences in 6G network [11]. In the context of SL, DTN is expected
to automatically model data similarities between devices, account for user misreporting
and correct inaccurate CSI based on the unique profiles of different devices. Moreover, it
can learn the complex relationships between service performance and network parameters.
These functions can be realized based on Al models and form a pre-validation environment
in DTN for testing SL strategy performance. Based on the pre-validation results, DTN can
repeatedly optimize the SL strategy until it meets latency and convergence requirements
before deployment in the physical world.

Nevertheless, several challenges exist in establishing DTN pre-validation environment
for SL training tasks. First, learning data similarities between different physical devices
is difficult due to data privacy issues, which prevent the acquisition and analysis of user
data. Second, accurately estimating the misreported behaviors of each physical device
is challenging. These deviations depend on multiple factors such as device version, user
behavior, movement patterns, etc. However, the actual physical information is unattainable
due to user privacy, data collection errors, and other factors, making it impossible to
learn errors from historical data. Third, it is difficult to model the complex relationships
between various SL training performance metrics and network factors like data similarities,
dataset size, training iterations, device resources, wireless channel quality, and edge server
resources, particularly when unknown parameters exist. Fourth, the model needs to be
broadly applicable to various SL requirements (such as latency, convergence, and energy
efficiency) and different tasks. This would enable an autonomous modeling process for pre-
validation environments, advancing toward the ultimate goal of realizing fully automatic
network management in DTNs [12].

Existing Al models for the DTN pre-validation environment can be divided into
three categories. First, long short-term memory (LSTM) networks are used to establish
DTN models for predicting future states. For example, the authors of [13] used LSTM to
build a network traffic prediction model for DTN based on historical traffic data from a real
physical network, which can be utilized for network optimization. Similarly, the authors
of [14] employed LSTM to model and predict changes in reference signal receiving power,
aiming to reduce handover failures in DTN. Second, graph neural network (GNNs) are used
to model network topology for strategy pre-validation. For instance, the authors of [15]
designed a GNN-based pre-validation environment for DTN to estimate delay and jitter
under given queuing and routing strategies. Likewise, the authors of [16] proposed a GNN-
based pre-validation model to estimate end-to-end latencies for different network slicing
schemes. Third, a combination of GNN and transformer models is used to capture both
temporal and spatial relationships among network components. For example, the authors

Sensors 2024, 24, 5148

30f18

of [17] developed a DTN pre-validation environment that predicts end-to-end quality of
service for resource allocation strategies in cloud-native micro-service architectures.

Although existing methods are important explorations for building an intelligent DTN
pre-validation environment, several problems persist in the context of SL training tasks.
First, LSTM and GNN-based models are only adept at learning the relationships between
adjacent nodes, where the learning performance drops quickly as the device separation
grows. This property makes them suitable for scenarios where only the relationships
between adjacent nodes are critical, such as time-series predictions [18]. However, quickly
learning the data relationships between all devices is crucial for accurate SL performance
estimation, since every device has the potential to participate with a random sequence.
Second, while transformer-based models excel in learning inter-node relationships, they
may struggle with understanding the relationships within the feature vector of a single
node. This capability is vital for accurately modeling and predicting the performance of SL
training tasks in wireless network.

Based on these considerations, this paper presents a TransNeural algorithm for DTN
pre-validating environment towards SL training tasks. This algorithm integrates transform-
ers with neural network, leveraging the transformer’s strength in inter-node learning [19]
to capture data similarities among different user devices and the neural network’s strength
in inter-feature learning [20] to understand the complex relationships between various
system variables, SL training performances, and deviation characteristics between different
nodes. The contributions of this work can be summarized as follows:

* A mathematical model for SL training latency and convergence is established, which
jointly considers unknown non-i.i.d. data distributions, device participate sequence,
inaccurate CSI, and deviations in occupied computing resources. These are crucial
factors for SL training performance, but are often overlooked in existing SL studies.

¢ Toclose the gap in SL-target DTN pre-validation environment, we propose a TransNeu-
ral algorithm to estimate SL training latency and convergence under given resource
allocation strategies. This algorithm combines the transformer and neural network to
model data similarities between devices, establish complex relationships between SL
performance and network factors such as data distributions, wireless and computing
resources, dataset sizes, and training iterations, and learn the reporting deviation
characteristics of different devices.

¢ Simulations show that the proposed TransNeural algorithm improves latency esti-
mation accuracy by 13.44% compared to traditional equation-based algorithms and
enhances convergence estimation accuracy by 116.74%.

The remainder of our work is organized as follows. Section 2 gives the system model.
Section 3 designs the TransNeural algorithm in DTN for estimating the latency and con-
vergence of SL training tasks. Simulation results and discussions are given in Section 4.
Finally, we conclude this paper in Section 5.

2. System Description

In this section, we sequentially present the system model, communication model, SL
process and DTN.

2.1. System Model

Figure 1 gives the whole system of DTN-integrated network for SL training tasks.
In our system, there are N user devices access to an AP equipped with an edge server
(ES). Each device is characterized by some unique features, including data distributions,
the amount of available computing resources, misreporting behaviors, etc. On the n-th
device, the dataset is denoted as Q,, with total size Q5"™ = ||Q,||; the amount of available
computing resource is denoted as f,;. The data similarities between different devices depend
on their users habits (such as shopping habits) and behaviors. The distance between the
n-th device with AP is denoted as d. The index of key notations are listed in Table 1.

Sensors 2024, 24, 5148

40f18

/ Digital twin network \
Network managing requirements
Performance requirements
v

v
Strategy Pre-validation environment

Network strategy PerforAnce

Network database

((.)) |
Upper layers
Strategy \N"“d Af pperiay
g 00
Q’A

/

Data collection

-

E~-®

Dataset Lower layers Dataset Lower layers |

E > ® |

Dataset Lower layers

B[S g B[e

Dataset Dataset Dataset Dataset

Figure 1. DTN-integrated network for SL training tasks.

There is a DTN deployed on the ES, denoted as D. It synchronizes network states
via AP, and generates network strategies (such as resource allocation strategies) according
to requirements of oncoming tasks (such as SL training tasks). Specifically, it has a pre-
validation environment for testing and optimizing strategies before they are executed in
the real physical network, forming a closed-loop strategy optimization in DTN. The contri-
bution of our work is concentrated on the establishment of the pre-validation environment
for SL training tasks.

In SL training process, a target Al model is partitioned into “upper layers” and
“lower layers”. Under a given resource allocation strategy, the AP would sequentially
offload the lower layers to the participate devices, which are responsible for computing
forward and backward propagation for lower layers. The updated lower layers would be
transmitted to the next participate device via AP until all participants have contributed
and the final updated lower layers will be sent back to ES to merge with upper layer. This
process can train the target Al model while protecting user data privacy and conserving
device resources.

Table 1. Index of key notations.

Notation Description
Qu, Q5™ Dataset on the n-th device, size of dataset on the n-th device

D,0,G,E,Z DTN notgtion, network management module, network strategy module, pre-validation environment and network

database in DTN
favns fagns fus fi Reported and real available computing resources, expected and real computing resources allocating strategy
Ry, dns Rup; Rn ane K5 up Expected transmission rate in downlink and uplink; Real transmission rate in downlink and uplink
€5 s ssk pr SY Outage probability, computing divergence, final divergence on the si-th device
cY, Is, Data correlation matrix, training iteration

biw, hup/ bmid,fwr hmid,bk

Bit-size of lower and upper layers in target model, bit-size of middle parameter in forward and backward propagation

Sensors 2024, 24, 5148

50f18

2.2. Communication Model

The AP is equipped with M antenna, and each user device is equipped with one
antenna. The transmission rate of each user device is

R,; = B, -log, (1 + W) (1)
where By, is the allocated bandwidth for the n-th device, i = {up, dn} represent uplink and
downlink, P, ;; is the instant uplink or downlink transmitting powers between the n-th
device and AP in the ¢-th time slot, Ny is the power spectral density of noise, Hy,t = Ly, - Iy ¢
is the instant channel gain, where L, is large-scale fading and h,,; is small-scale fading.
The channel gain H;; is a circularly symmetric complex Gaussian with zero mean and
variance o2 [21], which randomly changes across different time slots. The probability
density functions (PDF) of H;,; in uplink and downlink are given in Theorem 1.

Theorem 1 (PDF for SIMO and MISO channels). The PDF of channel gain for SIMO and

MISO can be derived as u(x) = 02r1(M) (x/02)M=1e=%/7 according to [22,23].

To maximize transmission rate and cancel the influence from small-scale channel
gain changing, we adopt a small-scale power adaptation scheme from [24] on each time
slot. That is, the uplink allocated transmitting power P, of device n and the downlink
transmitting power Pap of AP are taken as the uplink and downlink average power between
different time slots. The scheme adapts the instantaneous power according to the channel
gain in the ¢-th time slot by

Pnitar :
e if H,: > H,
nit — { Hut 7 (2)

0, else,

where H is the lower bound of channel gain, P, tor is target receiving power. Take the
uplink transmission process of the n-th device as an example, the relationship between the
target receiving power with the average transmitting power P, is

x/a,%)Mﬁle’x/”r%

d
02T (M) - x *

®(
Pn =E [Pn,up,t] = Pn,up,tar . /
Hp

_ Puupgar TU(M —1,Hr/07})
- a7 I'(M) '

(3)

where TY(-) and I'P(-) are the upper and lower incomplete Gamma functions, respectively.
Therefore, the target receiving power at AP and the n-th device can be derived as

(M —1,H/o; TY(M —1,Hy /o2
Fruptar = Fu- : o2 F(ML) 2, Py dnar = Pap o2 F(ML) 2, (4)

n n

By introducing the small-scale power adaptation scheme, the maximized transmission rate
is converted from Equation (1) to

Pit
R,; = Bylog, (1 + I*;O‘Banr > (5)

2.3. Split Learning Process

The SL process trains its target Al model based on a given resource allocation scheme,
which chooses a set of user devices to participate the SL training process and decide their
working sequence. We use a variable s; (k = 1,2, -- ,K) to contain the device number,
which is assigned as the k-th working device participating in the SL training process. Then,
the target Al model is split into lower layers M{FF and upper layers MAFT. The bit-size

Sensors 2024, 24, 5148

6 of 18

of Mﬁf P is by, Then, the lower layer M{FT is offloaded to the device whose number is
s1. Then, the s1-th device extract a mini-batch from its local dataset to perform forward
propagation with computing workload (Qs, - cfgvrward), where Qs, is the size of a mini-
batch, which need to be smaller than the total amount of data (Qs, < Q3'™) on the si-th
device. Then, it passes the middle parameters of forward propagation to AP with bit-size
(Qs; * bmid fw), Where bpiq gy is the bit-size of the middle results of one training sample.
Based on the received middle parameters, the ES continues to perform forward propagation
for upper layers with computing workload (Qs, - cyp fw)- After that, it computes backward
propagation for upper layers with computing workload (Qs, - cyppk). Then, it sends
the middle parameter of backward propagation back to user device via AP, with bit-
size (Qs, - bmidpk). Next, user device computes backward propagation with computing
workload (Qs, - ciwpbk)- This process iterates Ij times. After that, the s user device would
send the updated lower layers to AP, which sends them to the next participate user si, 1 to
continue SL training process, until all participants has trained the target Al model.

2.4. Digital Twin Network

The DTN can be model as
D={0,G,E,Z}, (6)

where O, G, E, Z are network management module, network strategy module, pre-validation
environment and network database, respectively. Among them, the network management
module O is responsible for analyzing the requirements of different tasks (such as SL tasks),
and orchestrating different modules to reach the requirements. Network strategy module
G can generate resource allocation solutions based on intelligent algorithms (such as deep
reinforcement learning algorithms, generative Al algorithms, etc.), whose performance
can be tested in the pre-validation environment [E, and based on the testing results, the
module G can improve its strategy. The design of network strategy module is beyond the
scope of this work. Specifically, this paper focus on the establishment of pre-validation
environment E, which needs to estimate the performance of a resource allocation solution
for SL training tasks, which is essential to guarantee the SL performance. Its input includes
current network states and resource allocation solution; its output is the SL performance
metrics such as latency and convergence. Notice that the estimating process is challenge
because of unknown data distributions and misreported wireless channel qualities and
available computing resources. Finally, network database Z can be expressed as

L= {f:V,n/L;kuHQnH/fAP}/ (7)

g1y

where the superscript “*” represents that the recorded data in the DTN has some deviation
from the actual data. L}, is the recorded large-scale fading of the n-th device in the DTN,
corresponding to a deviated root square variant ;; of channel gain. Notice that the DTN
does not need to collect the small-scale fading, since we deploy a small-scale power
adaptation scheme on user devices and AP to deal with it in Section 2.2. f7, , is the
recorded available amount of computing resources of the n-th device in the DTN, which
may have error from the real amount of computing resources fay ;. The error becomes from
user misreported behavior, data collecting error, and sudden appeared emergency tasks.
Under a computing resource allocation solution f,; generated by network strategy module
G, the actual occupied computing resource on the n-th device is inaccurate compared with
the allocated computing resource f,;, which can be expressed as

f: = min{f:v,n/fn}‘ (8)

3. Transformer-Based Pre-Validation Model for DTN

The aim of this paper is to establish a pre-validation environment for estimating la-
tency and convergence of SL training tasks under given network states and strategies. To
do this, this section first analyzes the relationships between the estimation objects, i.e., SL

Sensors 2024, 24, 5148

7 of 18

training latency and convergence, with network states and strategies from mathematical
view, where several unknown parameters exist and makes the estimation process diffi-
cult. To cope with the difficulties, we propose a TransNeural algorithm which combines
transformer and neural network to learn inter-nodes and inter-feature relationships with
unknown parameters.

3.1. Problem Analysis for SL Convergence Estimation

The SL training process comprises iterative wireless transmission process and comput-
ing process on AP and different devices. Without causing ambiguity, we use divergence
¢ to replace convergence (1 — ¢). First, the wireless outage can cause transmission fail-
ure in middle parameter forward and backward propagations. Based on the small-scale
power adaptation scheme in Section 2.2 and PDF of channel gain in Theorem 1, the outage
probability in different wireless transmission process can be expressed as

ety TO(M HL/(03)?)
(o7 T(M) Tt

. /HL (x/(03))M! —x/ (0%,)2
0

Egptr =)
The outage probability is inaccurate because the root square variant o;; of channel gain is
inaccurate. Because of outage probability in uplink and downlink, the usable amount of
data in a mini-batch in one iteration changes from Qs, to ((1 — S:k,tr>2 . st>.

In addition, the original divergency rate in computing process can be expressed as

sCYp =exp(—pu"QI), (10)

where u" is an unknown divergence parameter depending on the data distribution on dif-
ferent devices. The superscript “Y” denotes that the value of a variable is unknown. Then,
considering outage probability in wireless transmission process, the finally divergence on
sk-th device is

ey, = oxp(=y - (1=) Qs Iy) (11)

The overall training divergence throughout different devices needs to consider data sim-
ilarity among different devices, which can be expressed with an unknown data correla-
tion matrix

Ci\;l e Ci;l\]fl Ci;N
C e CY C

cr= | Ny (12)
Cl\\(f,l e CK],N—l CKI,N

where C, = [Cky Gl CF N} is the data similarity vector of device k. Then, the overall
divergence can be expressed as

K K-1
sz)tal = exp ((Z (1 - E:k,tr)2l’lek QSkISk - Z (1 - S:k,tl‘)ZCS\]((,SkJrl QSkISk)) . (13)

k=1 k=1

3.2. Problem Analysis for SL Latency Estimation

The latency of SL training process is the sum of transmitting and computing latencies
on AP and different participate devices. In detail, first, the lower layers M with bit-size
by, is wirelessly transmitted to si-th device, where the downlink transmission latency is

D;kk,tr,oﬂd = blw/R;,dn' (14)

where the transmission rate is inaccurate. The reason is that the root square variant o;; of
channel gain is inaccurate, which leads the calculated target power P, g tar to be inaccu-

rate according to Equation (4); thus, the transmission rate R} , is inaccurate according

Sensors 2024, 24, 5148

8 of 18

to Equation (5). Then, the sx-th user device computes forward propagation with comput-
ing latency

Qs * Clw f

* _ k W,IwW

splefw — f* ’ (15)
Sk

where f; is actual allocated computing resources on the si-th device, which is inaccurate
according to Equation (8). Then, the middle results of forward propagation is transmitted
to AP with uplink transmission latency

« Qs; - bmid fw
sptrfw — kR* - . (16)
n,up
The AP performs forward propagation for the upper layers using the accepted middle data.
Then, it computes the loss function and performs backward propagation for the upper
layers. The total computing latency of this forward and backward propagation process is

" . (1 sk tr) st ’ (Cup,fw + Cup,bk) (17)
sp, AP T fAP ’

where outage probability in uplink transmission process leads an average of (g5 & - Qs,)
become unusable. After that, AP sends the backward middle results to user device with latency

(1 €, tr) st mld,bk

D:k,tr,bk - R* (18)
n,dn
Then, user device performs local backward propagation with computing latency
* _ (1 - Ssk,tr) : st " Clw,bk (19)
sk,lc,bk - f* 7
Sk
where outage probability in downlink transmission process leads another ¢; . rate of

unstable data. The above process iterates I, times. Finally, user device upload lower layers
to AP with latency

by
D :k,tr,upld R*W (20)

n,up

Therefore, the total latency with one device is

* * * * * * *
Dg, =Dg, trona T Isy - (Dsk,lc,fw + D trfw + D ap + Dy i + Dsk,lc,bk)
+ DF

(21)
sy tr,upld

The total latency of SL training process with all participate devices is

total 2 D (22)

3.3. Proposed Transformer-Based Pre-Validation Model
3.3.1. Overall Architecture

To accurately estimate SL training latency and divergence, a pre-validation model
needs to simultaneously model the inter-node relationships, the relationships between
different features and estimate output, and the unknown or inaccurate parameters, which
is challenging work. In detalil, first, the data correlation Csk St (k=1,---,K—1) between
adjacent participating devices greatly influence the overall training divergence, according
to Equation (13). Second, the relationships between network states (such as data similarities,
wireless channel quality, bit-size of lower layers by, etc.) and network resource allocation

Sensors 2024, 24, 5148

9of 18

Deviated Network states &
Resource allocation strategy

Device number
Channel Quality

Transmitting Power
Computing resource
Mini-batch dataset size

Training iteration

Device s;

variables (such as size of mini-batch Qs,, training iteration I, , wireless transmitting powers
P, etc.) with the training divergence and latency need to be intelligently and automatically
established to realize automatic network management in DTN, where the relationships are
obviously complex according to Equations (13) and (22). Third, the unknown parameters
(such as divergence parameter)) and inaccurate parameters (such as root square variant
o, of channel gain) need to learn without collecting their accurate values.

To do this, we propose a TransNeural algorithm, which combines transformer with
neural network to automatically learn the acquired models. The whole architecture is shown
in Figure 2. First, we use neural-based feature extracting layers to automatically classify
which group of features needs to model their relationships between different devices, and
which group of features needs to model their inner-relationship. Then, we design encoder-
based line to learn the inter-node relationships and neural-based line to learn inter-feature
relationships, respectively. Finally, the outputs of two lines are aggregated using neural
network to further learn the complex relationship between two lines with the estimate
outputs. In addition, thanks to the added neural network in different positions, the model
can learn the unknown or inaccurate parameters automatically.

Mixed
(relationships
Ee?mrf' P Encoderlayer 4 \between nodes(Estimation
xtracting . L ”
Layers Scaled Dot-Product \ _—~Multi-Head 6_} Seneratmg
Attention Attention (@) ayers
9, —). Latency
(@)
[
)
O —P. Divergency
”f,’:l Con@ Q
B »(_) Other metrics

Figure 2. Proposed TransNeural algorithm by combining encoder with neural network.
The proposed TransNeural algorithm can be expressed as a function

{D;,In(¢;)} = TransNeural ([x; s ; Xis,; - ; Xisg |)

51 Hs*1 PSl fs*1 QS] Isl

s, HY P Q0 I 23
= TransNeural ,SZ ,sz fsz .SZ s.2)

SK H:K Py fs*K Qse Isg
where all of the elements are mean normalized. The loss function is defined as

1 D; — Dyeal In(e;) — In(€rear))2
Loss — — i real i rea) 24
B ;(Dmax — Dmin 1n(5max) - 1n(ﬁnin) @)

where B is the size of training batch-size for the TransNeural algorithm.

3.3.2. Feature Extracting Layers

Feature extracting layers aim to automatically project different features into two groups,
deciding which group of features are highly combined with inter-node relationships (such
as device number), and which contribute to inter-feature learning for establishing complex
relationships between network strategy and performances. Elements in different groups

Sensors 2024, 24, 5148 10 of 18

may overlap. We use full connected layers to construct such feature extracting layers, which
can be expressed as a function by

_Sl QS] Isl 51 Hs*l e Isl

. SZ Q52 ISZ . 52 H;; o IS2
Linear . . . , Linear . .) .

SK QSK ISK SK HS*K ISK

* . (25)
S] Hsl PSl fSl Qsl Isl
= FtrEtrL S? Hs, P .52 f 5*2 952 I?2

Sk PSK fs*K QSK ISK

3.3.3. Positional Encoding Layer

In the SL training task, the device participation sequence greatly influences the training
performance, because the initial training divergence on a new device largely depends on
its data similarity with the previous training device. Therefore, we need to take the
device sequence into consideration to model the relationship between strategies and SL
performance. Thus, a positional encoding layer is introduced before the encoder layers.
Consistent with classical settings, the expression of positional encoding is based on sine

and cosine functions

PE 5;) = sin(k/10,000%/ 4moder) o
PE ;. 5i11) = cos(k/10,000%/ 4model)

where k is the participating sequence of a device, dyo4e1 i the input dimension of encoder
layer, and i denotes different input neural of the encoder layer.

3.3.4. Encoder Layers

The encoder layers use the classical components in encoders, including K, Q, V matri-
ces to learn the inter-node relationships by

. QKT
Attention(Q, K, V) = softmax (74 (27)
V dmodel

We apply multi-head attentions to learn different kind of relationships between devices by

MultiHead(Q, K, V) = Concat(head, - - - ,heady,)W©°,

where head; = Attention (QWZ.Q, KWiK, VWI-V> (28)
Finally, the encoder layer can expressed as
s1 Qs I
{15, Qs I, C5, Qs L, } = EncoderL S? Q:SZ Ifz 29)

SK QSK ISK

Modeling data similarities Cs, and divergency parameter ys, .

3.3.5. Inter-Feature Learning Layers

In the second line, we design inter-feature learning layers to non-linearly produce some
key elements for estimating SL performance based on a part of the features. Considering
that neural networks are inherently good at extracting the features of different levels in their
layers to finally establish the complex relationships between input and output, we simply
use fully connected neural network to construct the inter-feature learning layers. That is,

Sensors 2024, 24, 5148

11 0f 18

in our scenario, the inter-feature learning layers can output wireless outage probability
based on the input channel quality, and output SL latency based on the input transmitting
power, computing resources, etc. At the same time, it can automatically modify the error in
inaccurate computing resource and channel gain based on the device number. The function
can be expressed as

51 Hs*l Py, fs*l Qs I

s Hg Ps, fs Qs, I,
{Di/ [Ssl,trr SSz,tI‘/ oy SSK,tr]} = InFtrL 2 2 (30)
SK HS*K PSK fs*K QSK 151<

Modeling relationships and learn accurate Hs,, fs, .

3.3.6. Estimation Generating Layer

Two lines are finally combined in the fully connected layers, which would jointly
consider the inter-node relationships and inter-feature relationships to produce the final
estimated system performance, i.e., the SL training latency and accuracy in this scenario.

4. Simulation

In this section, we evaluate the proposed TransNeural algorithm in Python 3.7.6. We
suppose that there are N (N € [10,30]) devices access to an AP, where the path loss model
is (38.46 +201og,(d)) [25], d is the distance between device and AP. The communication
frequency is 2.6 GHz. Each device has a unique identity number from 1 to N, which is
uniquely projected to a virtual device with that number in DTN. In addition, each device
has a series of unique characteristics, which are unknown and about to be automatically
learned by DTN models. Their values are randomly set as follows: distance d}; € [10,900]
m, average reporting deviation on distance Ad; " € [1,10] m, average deviation between
allocated computing resource and actual provided computing resource Af;" € [0.1,1]
GHz, divergence related parameter ka € [1,10], each element in data similarity vector

cy e {[1,5] 3N, From the parameter settings, it can be seen that the range of value for
every parameter is obviously large, with the aim to include as many as network conditions
as possible. Notice that, in an SL training process, not all devices will be selected to join
the training process. However, the DTN model needs to learn the characteristics of all
device to better estimate the training performance for every given resource allocation
strategies. Without causing ambiguity, we use SL divergence to replace SL convergence
in the simulation section, to make analysis more clearly. Other parameters are given in
Table 2.

Table 2. Parameter settings.

Parameter Value Parameter Value
Qk [100,1000] I [5,100]
fx [0.1,2] G cycles/s f8 100 G cycles/s
B 10 MHz K 64
No 107204 HEF 140 x 1076
P [0.01,2] W Py 88 W
brmid,fw 1 Mbits Dmid,bk 1 Mbits
Cup,fw 100 M cycles Cup,bk 100 M cycles
clorward 1 M cycles Clwbk 1M cycles
bw 1 Gbits

Details of model in TransNeural algorithm are setting as follows. The dimension of
input array is 5, which is the feature dimension of one device. The structure of the feature

Sensors 2024, 24, 5148

12 of 18

extracting layer is 64 x 2, whose first layer and second layer take ReLu function and Linear
function as the activation functions, respectively. The encoder block has four encoder layers,
where each layer has eight heads for multi-head attention, and the dimension of input
vector is 64. The structure of inter-feature learning layer is 64 x 2, whose layers take ReLu
function as the activation functions. The structure of estimation generating layer is 64 x 2,
whose first layer and second layer take ReLu function and Linear function as the activation
functions, respectively.
The baselines are set as follows:

¢ Equation-based algorithm: this algorithm estimates latency and divergency based on
the equations in Sections 3.1 and 3.2.

¢ LSTMNeural algorithm: We merge the long short-term memory (LSTM) and neural
network to form a LSTMNeural algorithm. That is, in the architecture of proposed
TransNeural algorithm, the PE layer and encoder layer are replaced by an LSTM. The
input dimension of the LSTM is 16. The architecture of its hidden layer is 32 x 4.

Figure 3 gives learning convergence of the LSTMNeural and proposed TransNeural
algorithm. The figure indicates that the TransNeural algorithm converges faster than the
LSTMNeural algorithm, and can acquire a lower loss. The reason lies in the fact that, on
each data sample, LSTM can only learn the data correlations between adjacent participate
devices, while transformer can learn the data correlations between all of the participate
devices. Therefore, TransNeural algorithm has a much higher learning efficiency to estimate
network performance. In addition, the figure indicates that the TransNeural algorithm
converges fast under different size of SL participant group.

14 T T T T T
TransNeural N =6, K =4
TransNeural N =6, K =5
12| RNNerual N=6,K=5 |]
10 7
w2 8 i i
w
3
6 - B
4t _
2 o
O ——y . A L AA I N L /\ /L oL
20 40 . 60 80 100
Iteration

Figure 3. Learning convergence of proposed TransNeural algorithm.

Figures 4 and 5 give the total SL latency and estimation error with growing average
distance between selected user devices and AP. In general, the wireless transmission rate
will first drop as the distance grows. Considering the wireless transmission happens
frequently in each forward and backward propagation process, the transmission delay
will significantly influence the total SL training delay, which leads the total SL delay
increases as the distance grows. From the figure, since the DTN may not acquire accurate
CSI, latency estimation based on traditional equation-based method will have a high error,
especially under larger distance where CSI error becomes sensitive for latency estimation. In
comparison, the proposed TransNeural algorithm has a stable error with distance growing,
which stays under 240 s per omit-table because the total error is 2100-2300 s. However,
LSTMNeural has a large estimation error because of its low learning efficiency.

Sensors 2024, 24, 5148 13 of 18

Real SL latency
—v— Equation-based latency estimations
—A— TransNeural latency estimations
—6—LSTMNeural latency estimations

1900 _

1800‘- . i . L f .

200 300 400 500 600 700 800
Distances between devices and AP (m)

Figure 4. SL training latency vs. distances between devices and AP.

T T T T T T T 4

=% Error of equation-based estimations
—&— Error of TransNeural estimations
55()< —6— Error of LSTMNeural estimations .

600

Latency estimation error (s)
NN W W R A W
() W (e W (e (9,1 o
(e} (e} (e} OA (e} (e} [}

T T T T T
; > ; ; ;

150

200 300 400 500 600 700 800
Distances between devices and AP (m)

Figure 5. Estimation error of SL training latency vs. distances between devices and AP.

Figures 6 and 7 give the total SL latency and estimation error with a growing allocated
computing resources on devices. Because the user device needs to use their allocated
computing resources to compute forward and backward propagation of lower layers
in SL target models, the computing latency will decrease with the increasing allocated
computing resources, which leads the total latency decrease. However, because of user
misreport information, the real allocated computing resources may be smaller than the
amount of allocated resource in network strategies, which can not be modeled in traditional
equation-based latency estimation methods, leading to estimation errors. In comparison,
the proposed TransNeural algorithm and LSTMNeural algorithm can automatically learn
these misreport behaviors from historical data, thus better estimate the real latency than
traditional methods. Moreover, the TransNeural outperforms LSTMNeural because of high
learning efficiency.

Sensors 2024, 24, 5148

14 of 18

3600 F Real SL latency _
—v— Equation-based latency estimations

3400 F —A—TransNeural latency estimations g
—6—LSTMNeural latency estimations

(98]
[\
S
g

3000

SL overall Latency (s)

0.8 1 12 14 16 18 2 22 2.4?
Allocated computing resources on device « 1¢°

Figure 6. SL training latency vs. computing resources on devices.

—v—Error of equation-based estimations
—&— FError of TransNeural estimations
—o— Error of LSTMNeural estimations

12004

Latency estimation error (s)
P (o)) 0 5
(e (e S (=]
() o S (=}
T Lo T T
1 1 1 1

[\®)
e}
(e)
T
1

. . n .
1 1.5 2

Allocated computing resources on device x 1¢°

Figure 7. Estimation error of SL training latency vs. computing resources on devices.

Figure 8 gives the natural logarithm of the training divergence with growing average
size of mini-batch used for training on user devices. The divergence drops as the size
of mini-batch grows. Since the equation-based algorithm cannot learn the data correla-
tions between device and takes the average correlation value to estimate divergence, its
estimation has a large error compared with two other algorithms. In comparison, the
proposed TransNeural algorithm can accurately predict the divergency under various size
of mini-batch, thanks to its high learning ability. In addition, the figure indicates that
the LSTMNeural algorithm has a higher estimation error than the proposed TransNeural
algorithm. This is because that the LSTM algorithm cannot leverage dataset to learn data
correlations between different devices efficiently compared with the transformer algorithm,
as discussed earlier.

Sensors 2024, 24, 5148

15 of 18

Real SL divergency
—v— Equation-based divergency estimations
—&— TransNeural divergency estimations

—6—LSTMNeural divergency estimations

&
n

Natural logarithm of training divergency rate
IS

&
W

550 600 650 700 750 800 850 900 950
Average size of used mini-batch on devices

Figure 8. SL training divergence rate vs. average size of mini-batch used for training on devices.

Figure 9 gives the natural logarithm of training divergence with growing average
distances between selected devices and AP. As distance grows, outage probability in
wireless transmission process increases. It greatly influences the SL training divergence
considering the dense wireless transmission process exists in SL training, which is also
proved in the figure. In traditional equation-based algorithm, inaccurate CSI leads to a high
divergency estimation error compared with the other two algorithm, which could eliminate
error because of integrated neural network.

Real SL divergency
—v—Equation-based divergency estimations
—A—TransNeural divergency estimations

—6—LSTMNeural divergency estimations

o
(9]
T

1
—
T

' ' '

1 w 1 4 1 =

=S (o)) w W AN (@,
T T T T T T

Natural logarithm of training divergency rate
A
n

1
W

200 300 400 500 600 700 800
Distances between devices and AP (m)

Figure 9. SL training divergence rate vs. distances between devices and AP.

Figure 10 gives the natural logarithm of training divergence with growing average
training iterations among participating devices. In general, the divergence decreases as
the training iteration increasing. The equation-based algorithm has a higher estimating
error compared with two other algorithms because of lacking accurate data correlation
parameters. Moreover, the proposed TransNeural algorithm outperforms the LSTMNeural
algorithm because of high learning efficiency on given dataset.

Sensors 2024, 24, 5148

16 of 18

!
e
)

Real SL divergency
-5 [|=w—Equation-based divergency estimations
_5.5 ||~ TransNeural divergency estimations
—6—LSTMNeural divergency estimations

30 40 50 60 70 80 90
Average training iteration on devices

Natural logarithm of training divergency rate
&

Figure 10. SL training divergence rate vs. average training iterations among devices.

Table 3 compares the estimation accuracy on SL training latency and divergence under
different algorithms. As for the SL latency, the proposed TransNeural algorithm increases
the estimating accuracy by 9.3% and 6.5% compared with the equation-based algorithm and
LSTMNeural algorithm, respectively. As for the SL convergence, the proposed TransNeural
algorithm increases estimating accuracy by 22.41% and 2.34% compared with the equation-
based algorithm and LSTMNeural algorithm, respectively. The table proves that the
proposed algorithm can effectively improve the estimation accuracy for various types of
SL metrics.

Table 3. Comparison of deviant ratio for estimated latency and divergence in SL training process.

Latency Estimation (s) Accuracy
Actual SL latency 2316.0 /
TransNeural algorithm 2114.8 91.3%
LSTMNeural algorithm 1961.3 84.7%
Equation-based algorithm 1897.9 82.0%
Convergence Estimation Accuracy
Actual SL convergence 97.82% /
TransNeural algorithm 95.89% 98.03%
LSTMNeural algorithm 93.60% 95.69%
Equation-based algorithm 73.97% 75.62%

Tables 4 and 5 verify the algorithm scalability. In detail, Table 4 shows that the
proposed TransNeural algorithm remains a high latency estimation accuracy with growing
number of devices. The estimation accuracies under different numbers of devices exhibit
fluctuations, since different data distributions may result in different degrees of learning
difficulties. Fortunately, they are all higher than 90%, which verifies the scalabilities of the
proposed TransNeural algorithm. Similarly, Table 5 shows that the proposed TransNeural
algorithm remains a high convergence estimation accuracy with growing number of devices.
That is, all of the convergence estimation accuracies under different number of devices are
high than 95%, which again proves the well scalability of proposed TransNeural algorithm.

Table 4. Accuracy of latency estimation under different participant scales.

N=10,K=5 N=15K=10 N =20,K=15 N =25K =20 N =30,K=25
91.3% 93.8% 98.4% 99.5% 97.3%

Sensors 2024, 24, 5148 17 of 18

Table 5. Accuracy of convergence estimation under different participant scales.

N=10,K =5 N=15K=10 N =20,K=15 N =25K =20 N =30,K =25
98.0% 99.1% 99.7% 96.0% 97.2%

5. Conclusions

The paper closes the gap of studying the pre-validation environment for SL training
tasks. It proposes a TransNeural algorithm to estimates the latency and divergency of
SL training process under given resource allocation solution. In detail, the TransNeural
algorithm integrates the transformer and neural network to collaboratively learn data
similarities, complex relationships between SL performance (latency, divergency, etc.) and
participants selections, wireless/computing resource allocation, and the reported deviation
on wireless channels and available computing resources. Simulation shows the proposed
TransNeural algorithm can effectively improve the estimating accuracy by 9.3% on latency
and 22.4% on divergency compared with traditional equation-based algorithms.

Author Contributions: Conceptualization, G.L.; methodology, G.L., M.K,, Y.Z. and N.L.; software,
M.K. and M.Z;; validation, M.K. and Q.Z.; formal analysis, G.L., M.K. and Y.Z.; investigation, Y.Z.;
resources, G.L. and Y.Z.; data curation, M.K.; writing—original draft preparation, G.L. and M.K.;
writing—review and editing, Y.Z. and M.K.; visualization, M.K.; supervision, G.L. and Y.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Key R&D Program of China (2022YFB2902100).
Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be found in the article.

Conflicts of Interest: Author Guangyi Liu was employed by the company China Mobile Research
Institute. Author Mancong Kang is pursuing doctor degree in the School of Communications and
Information Engineering at Beijing University of Posts and Telecommunications. Author Yanhong
Zhu was employed by the company China Mobile Research Institute, and was pursuing doctor
degree in the School of Electronics and Information Engineering at Beijing Jiaotong University.
Author Qingbi Zheng was employed by the company China Mobile Research Institute and ZGC
Institute of Ubiquitous-X Innovation and Application. Author Maosheng Zhu was employed by the
company China Mobile (Suzhou) Software Technology Co., Ltd. Author Na Li was employed by
the company China Mobile Research Institute and ZGC Institute of Ubiquitous-X Innovation and
Application. The authors declare that the research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

References

1. An, K,; Sun, Y,; Lin, Z,; Zhu, Y.; Ni, W.; Al-Dhahir, N.; Wong, K.K.; Niyato, D. Exploiting Multi-Layer Refracting RIS-Assisted
Receiver for HAP-SWIPT Networks. IEEE Trans. Wirel. Commun. 2024, 1. [CrossRef]

2. Lin, Z,;Lin, M,; de Cola, T.; Wang,].B.; Zhu, W.P; Cheng, J. Supporting IoT With Rate-Splitting Multiple Access in Satellite and
Aerial-Integrated Networks. IEEE Internet Things J. 2021, 8, 11123-11134. [CrossRef]

3. Wang, Y, Yang, C.; Lan, S.; Zhu, L.; Zhang, Y. End-Edge-Cloud Collaborative Computing for Deep Learning: A Comprehensive
Survey. IEEE Commun. Surv. Tutor. 2024, 1. [CrossRef]

4. Wen,],; Zhang, Z.; Lan, Y.; Cui, Z; Cai,].; Zhang, W. A survey on federated learning: Challenges and applications. Int.]. Mach.
Learn. Cybern. 2023, 14, 513-535. [CrossRef] [PubMed]

5. Shen, X,; Liu, Y,; Liu, H,; Hong, J.; Duan, B.; Huang, Z.; Mao, Y.; Wu, Y.; Wu, D. A Split-and-Privatize Framework for Large
Language Model Fine-Tuning. arXiv 2023, arXiv:2312.15603.

6. Lin, Z,; Qu, G,; Chen, X.; Huang, K. Split Learning in 6G Edge Networks. IEEE Wirel. Commun. 2024, 31, 170-176. [CrossRef]

7. Satpathy, S.; Khalaf, O.; Kumar Shukla, D.; Chowdhary, M.; Algburi, S. A collective review of Terahertz technology integrated
with a newly proposed split learningbased algorithm for healthcare system. Int.]. Comput. Digit. Syst. 2024, 15, 1-9.

8. Wu, W.; Li, M,; Qu, K;; Zhou, C.; Shen, X.; Zhuang, W.; Li, X.; Shi, W. Split Learning Over Wireless Networks: Parallel Design and
Resource Management. IEEE |. Sel. Areas Commun. 2023, 41, 1051-1066. [CrossRef]

9. Lin, Z.; Zhu, G.; Deng, Y.; Chen, X.; Gao, Y.; Huang, K.; Fang, Y. Efficient Parallel Split Learning over Resource-constrained

Wireless Edge Networks. IEEE Trans. Mob. Comput. 2024, 1-16. [CrossRef]

http://doi.org/10.1109/TWC.2024.3394214
http://dx.doi.org/10.1109/JIOT.2021.3051603
http://dx.doi.org/10.1109/COMST.2024.3393230
http://dx.doi.org/10.1007/s13042-022-01647-y
http://www.ncbi.nlm.nih.gov/pubmed/36407495
http://dx.doi.org/10.1109/MWC.014.2300319
http://dx.doi.org/10.1109/JSAC.2023.3242704
http://dx.doi.org/10.1109/TMC.2024.3359040

Sensors 2024, 24, 5148 18 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Khan, L.U,; Saad, W.; Niyato, D.; Han, Z.; Hong, C.S. Digital-Twin-Enabled 6G: Vision, Architectural Trends, and Future
Directions. IEEE Commun. Mag. 2022, 60, 74-80. [CrossRef]

Kuruvatti, N.P.; Habibi, M.A_; Partani, S.; Han, B.; Fellan, A.; Schotten, H.D. Empowering 6G Communication Systems With
Digital Twin Technology: A Comprehensive Survey. IEEE Access 2022, 10, 112158-112186. [CrossRef]

Almasan, P.; Galmés, M.F; Paillisse,].; Sudrez-Varela, J.; Perino, D.; Lépez, D.R ; Perales, A.A.P,; Harvey, P; Ciavaglia, L.; Wong,
L.; et al. Digital Twin Network: Opportunities and Challenges. arXiv 2022, arXiv:2201.01144.

Lai, J.; Chen, Z.; Zhu, J.; Ma, W,; Gan, L.; Xie, S.; Li, G. Deep learning based traffic prediction method for digital twin network.
Cogn. Comput. 2023, 15, 1748-1766. [CrossRef] [PubMed]

He, J.; Xiang, T.; Wang, Y.; Ruan, H.; Zhang, X. A Reinforcement Learning Handover Parameter Adaptation Method Based on
LSTM-Aided Digital Twin for UDN. Sensors 2023, 23, 2191. [CrossRef] [PubMed]

Ferriol-Galmés, M.; Suarez-Varela, J.; Paillissé, J.; Shi, X.; Xiao, S.; Cheng, X.; Barlet-Ros, P.; Cabellos-Aparicio, A. Building
a Digital Twin for network optimization using Graph Neural Networks. Comput. Netw. 2022, 217, 109329. [CrossRef]

Wang, H.; Wu, Y.; Min, G.; Miao, W. A Graph Neural Network-Based Digital Twin for Network Slicing Management. IEEE Trans.
Ind. Inform. 2022, 18, 1367-1376. [CrossRef]

Tam, D.S.H,; Liu, Y.; Xu, H.; Xie, S.; Lau, W.C. PERT-GNN: Latency Prediction for Microservice-based Cloud-Native Applications
via Graph Neural Networks. In Proceedings of the KDD "23: 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, New York, NY, USA, 6-10 August 2023; pp. 2155-2165. [CrossRef]

Wang, H.; Xiao, P; Li, X. Channel Parameter Estimation of mmWave MIMO System in Urban Traffic Scene: A Training
Channel-Based Method. IEEE Trans. Intell. Transp. Syst. 2024, 25, 754-762. [CrossRef]

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4-9 December
2017 ; Volume 30.

LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436—444. [CrossRef]

Popovski, P; Trillingsgaard, K.F,; Simeone, O.; Durisi, G. 5G wireless network slicing for eMBB, URLLC, and mMTC:
A communication-theoretic view. IEEE Access 2018, 6, 55765-55779. [CrossRef]

Hou, Z,; She, C.; Li, Y.; Zhuo, L.; Vucetic, B. Prediction and Communication Co-Design for Ultra-Reliable and Low-Latency
Communications. IEEE Trans. Wirel. Commun. 2020, 19, 1196-1209. [CrossRef]

Schiessl, S.; Gross, J.; Skoglund, M.; Caire, G. Delay Performance of the Multiuser MISO Downlink under Imperfect CSI and
Finite Length Coding. IEEE]. Sel. Areas Commun. 2019, 37, 765-779. [CrossRef]

Kang, M.; Li, X,; Ji, H.; Zhang, H. Digital twin-based framework for wireless multimodal interactions over long distance. Int. J.
Commun. Syst. 2023, 36, €5603. [CrossRef]

3GPP 5G. Physical Layer Procedures for Data (Release 16); Technical Report, 3GPP TS 36.214; ETSI: Sophia Antipolis, France, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MCOM.001.21143
http://dx.doi.org/10.1109/ACCESS.2022.3215493
http://dx.doi.org/10.1007/s12559-023-10136-5
http://www.ncbi.nlm.nih.gov/pubmed/37362198
http://dx.doi.org/10.3390/s23042191
http://www.ncbi.nlm.nih.gov/pubmed/36850792
http://dx.doi.org/10.1016/j.comnet.2022.109329
http://dx.doi.org/10.1109/TII.2020.3047843
http://dx.doi.org/10.1145/3580305.3599465
http://dx.doi.org/10.1109/TITS.2022.3145363
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/ACCESS.2018.2872781
http://dx.doi.org/10.1109/TWC.2019.2951660
http://dx.doi.org/10.1109/JSAC.2019.2898759
http://dx.doi.org/10.1002/dac.5603

	Introduction
	System Description
	System Model
	Communication Model
	Split Learning Process
	Digital Twin Network

	Transformer-Based Pre-Validation Model for DTN
	Problem Analysis for SL Convergence Estimation
	Problem Analysis for SL Latency Estimation
	Proposed Transformer-Based Pre-Validation Model
	Overall Architecture
	Feature Extracting Layers
	Positional Encoding Layer
	Encoder Layers
	Inter-Feature Learning Layers
	Estimation Generating Layer

	Simulation
	Conclusions
	References

