
Citation: Wu, S.; Lu, X.; Guo, C.; Guo,

H. Accurate UAV Small Object

Detection Based on HRFPN and

EfficentVMamba. Sensors 2024, 24,

4966. https://doi.org/10.3390/

s24154966

Academic Editor: Biswajeet Pradhan

Received: 20 June 2024

Revised: 27 July 2024

Accepted: 29 July 2024

Published: 31 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Accurate UAV Small Object Detection Based on HRFPN
and EfficentVMamba
Shixiao Wu 1, Xingyuan Lu 2,* , Chengcheng Guo 3,4,* and Hong Guo 5

1 School of Information Engineering, Wuhan Business University, Wuhan 430056, China;
wushixiao@whu.edu.cn

2 Key Laboratory of Computer Vision and System, Ministry of Education, Tianjin University of Technology,
Tianjin 300384, China

3 School of Information Engineering, Wuhan College, Wuhan 430212, China
4 School of Electronic Information, Wuhan University, Wuhan 430072, China
5 School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;

20150725230@mail.sdufe.edu.cn
* Correspondence: lxy1466792674@stud.tjut.edu.cn (X.L.); netccg@whu.edu.cn (C.G.)

Abstract: (1) Background: Small objects in Unmanned Aerial Vehicle (UAV) images are often scattered
throughout various regions of the image, such as the corners, and may be blocked by larger objects,
as well as susceptible to image noise. Moreover, due to their small size, these objects occupy a
limited area in the image, resulting in a scarcity of effective features for detection. (2) Methods:
To address the detection of small objects in UAV imagery, we introduce a novel algorithm called
High-Resolution Feature Pyramid Network Mamba-Based YOLO (HRMamba-YOLO). This algorithm
leverages the strengths of a High-Resolution Network (HRNet), EfficientVMamba, and YOLOv8,
integrating a Double Spatial Pyramid Pooling (Double SPP) module, an Efficient Mamba Module
(EMM), and a Fusion Mamba Module (FMM) to enhance feature extraction and capture contextual
information. Additionally, a new Multi-Scale Feature Fusion Network, High-Resolution Feature
Pyramid Network (HRFPN), and FMM improved feature interactions and enhanced the performance
of small object detection. (3) Results: For the VisDroneDET dataset, the proposed algorithm achieved
a 4.4% higher Mean Average Precision (mAP) compared to YOLOv8-m. The experimental results
showed that HRMamba achieved a mAP of 37.1%, surpassing YOLOv8-m by 3.8% (Dota1.5 dataset).
For the UCAS_AOD dataset and the DIOR dataset, our model had a mAP 1.5% and 0.3% higher than
the YOLOv8-m model, respectively. To be fair, all the models were trained without a pre-trained
model. (4) Conclusions: This study not only highlights the exceptional performance and efficiency of
HRMamba-YOLO in small object detection tasks but also provides innovative solutions and valuable
insights for future research.

Keywords: small object detection; deep learning; HRNet; Mamba; YOLO; feature fusion

1. Introduction

Under the rapid development of deep learning, significant progress has been made in
object detection technology. Some general object detection algorithms perform excellently
on mainstream large-scale datasets [1–3]. However, these algorithms often fall short when
it comes to small object datasets like UAVs. UAVs operate in a dynamic and diverse
low-altitude setting, characterized by numerous obstacles and impediments (like trees,
buildings, etc.) as well as unpredictable factors such as weather, lighting, noise, kites, and
birds; small objects for UAVs (typically defined as targets with pixels fewer than 32 × 32)
are frequently disregarded, thereby intensifying the challenge of detection [4].

Small object datasets have the following characteristics: (1) difficulty in feature ex-
traction, as small objects occupy a small area of the image, resulting in fewer effective
features available for detection; (2) high requirements for localization accuracy, where
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small objects may be distributed across various regions of the image, including corners,
and may be occluded by larger objects, while also being susceptible to image noise;
(3) an uneven proportion and distribution of small objects, such that they may be densely
packed or scattered throughout the image; and (4) imbalanced samples, which refers to a
situation where the number of samples of different categories in a dataset varies greatly.
Sample imbalance in the context of UAV data can pose significant challenges, especially
in applications such as object detection, anomaly detection, and land cover classification.
UAVs often collect vast amounts of data, but certain classes (e.g., specific objects or types of
terrain) may be underrepresented. Addressing sample imbalance is crucial for building
accurate and reliable models in these applications. Leveraging a multi-scale feature fusion
approach can effectively address the issue of increasing small objects by detecting objects
of various sizes through distinct feature levels. This study aims to address the issue of
detecting small objects in UAV imagery through improved feature extraction.

Inspired by HRNet, Mamba, and YOLO architecture, this research proposes HRMamba-
YOLO, a small object detection algorithm. It integrates Mamba’s long-range modeling
capabilities, HRNet’s high-resolution representation learning, and YOLO’s fast and accu-
rate detection capabilities, aiming to efficiently detect small objects (partial results can be
seen in Figure 1).

Sensors 2024, 24, x FOR PEER REVIEW 2 of 25 
 

 

features available for detection; (2) high requirements for localization accuracy, where 
small objects may be distributed across various regions of the image, including corners, 
and may be occluded by larger objects, while also being susceptible to image noise; (3) an 
uneven proportion and distribution of small objects, such that they may be densely 
packed or scattered throughout the image; and (4) imbalanced samples, which refers to a 
situation where the number of samples of different categories in a dataset varies greatly. 
Sample imbalance in the context of UAV data can pose significant challenges, especially 
in applications such as object detection, anomaly detection, and land cover classification. 
UAVs often collect vast amounts of data, but certain classes (e.g., specific objects or types 
of terrain) may be underrepresented. Addressing sample imbalance is crucial for building 
accurate and reliable models in these applications. Leveraging a multi-scale feature fusion 
approach can effectively address the issue of increasing small objects by detecting objects 
of various sizes through distinct feature levels. This study aims to address the issue of 
detecting small objects in UAV imagery through improved feature extraction. 

Inspired by HRNet, Mamba, and YOLO architecture, this research proposes 
HRMamba-YOLO, a small object detection algorithm. It integrates Mamba’s long-range 
modeling capabilities, HRNet’s high-resolution representation learning, and YOLO’s fast 
and accurate detection capabilities, aiming to efficiently detect small objects (partial re-
sults can be seen in Figure 1).  

 
Figure 1. Comparison of various methods [2,5–7]. 

The main contributions of this research can be summarized as the following: 
(1) We introduce a module named Double SPP designed to enhance a feature extraction 

network’s performance and adapt more effectively to small object detection tasks. 
This module, by incorporating an additional spatial pyramid pooling layer, improves 
the network’s ability to extract features across different scales. 

(2) in this study, we also developed EMM and FMM, both based on efficient 2D scanning 
(ES2D) design. They enhance feature representation and a network’s ability to cap-
ture contextual information by processing multi-scale feature information. 

(3) Additionally, we redesigned a Multi-Scale Feature Fusion Network, termed the 
HRFPN. Based on HRNet architecture, this network improves feature information at 
all scales through intra-scale feature processing and cross-scale feature fusion. 

(4) Finally, building on the proposed modules and networks, we established a novel 
small object detection network, HRMamba-YOLO. This network combines the 
strengths of Mamba, HRNet, and YOLO to achieve the high-performance detection 
of small objects. From Figure 1, it can be observed that although the speed advantage 

YOLOv5-m 
[Jocher, 2024]

YOLOv6-m 
[Li, 2022]

YOLOv7 
[Wang, 2023]

YOLOv8-m 
[Jocher, 2024]YOLOX-m [Ge, 2021)]

HRMamba-YOLO (Ours)

33

34

35

36

37

38

39

40

0 5 10 15 20 25 30 35 40

m
A

P(
%

)

Latency(ms)

visdrone2019

Figure 1. Comparison of various methods [2,5–7].

The main contributions of this research can be summarized as the following:

(1) We introduce a module named Double SPP designed to enhance a feature extraction
network’s performance and adapt more effectively to small object detection tasks.
This module, by incorporating an additional spatial pyramid pooling layer, improves
the network’s ability to extract features across different scales.

(2) In this study, we also developed EMM and FMM, both based on efficient 2D scanning
(ES2D) design. They enhance feature representation and a network’s ability to capture
contextual information by processing multi-scale feature information.

(3) Additionally, we redesigned a Multi-Scale Feature Fusion Network, termed the
HRFPN. Based on HRNet architecture, this network improves feature information at
all scales through intra-scale feature processing and cross-scale feature fusion.

(4) Finally, building on the proposed modules and networks, we established a novel small
object detection network, HRMamba-YOLO. This network combines the strengths of
Mamba, HRNet, and YOLO to achieve the high-performance detection of small objects.
From Figure 1, it can be observed that although the speed advantage decreased, the
mAP of the proposed algorithm on the VisDrone dataset reached the highest mAP in
a comparative range.
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2. Related Work
2.1. Small Object Detection

Guangyi Tang Tang conducted a survey on object detection for UAVs using deep learn-
ing techniques [8]. He offered a review of UAV evolution and consolidated deep learning
approaches in UAV object detection. Furthermore, he examined critical challenges in UAV
object detection, including but not limited to small object detection, identifying objects
against intricate backgrounds, handling object rotation and scale variations, and tackling
categorical imbalance issues. The method of multi-scale feature fusion can effectively
address the challenge of rising small objects by detecting objects of varying sizes using
diverse levels of features. In early UAV object detection research, Sevo and Avramovic
demonstrated the effective integration of CNNs into aerial image object detection algo-
rithms [9]. Sommer et al. utilized a Fast R-CNN and Faster R-CNN for vehicle detection
in aerial images [10]. Unfortunately, the algorithms proposed in these two papers could
not achieve real-time performance. Despite the generalization ability of CNNs, extracting
effective features from small objects that occupy limited pixels in images poses a challenge.
Additionally, CNNs may not be robust enough to handle rotation, occlusion, illumination,
and other variations in small objects, leading to potential false positives or false negatives.
To enhance small object detection performance, Liu et al. introduced UAV-YOLO, which
optimized the ResBlock in darknet by connecting two ResNet units with equal width and
height [11]. The fps of UAV-YOLO is only 20, which is a bit slow. Zeng et al. incorporated a
hybrid attention mechanism involving coordinate-related attention and multi-layer feature
fusion to effectively differentiate foreground and background features in aerial images,
enriching the semantic information of shallow features [12]. This algorithm is based on
YOLOv5 and demonstrated improved accuracy and detection speed on the VisDrone2020
dataset, though it may not be fit for other datasets. Qian et al. combined Haar-like features
with the MobileNet-SSD algorithm, employing a top–down and horizontal connection
approach to building a feature pyramid with high resolution and strong semantics, facili-
tating multi-scale UAV feature representation and detection [13]. The algorithm improved
recognition accuracy but did not address the discussion of an mAP metric. Tian et al. intro-
duced the DNOD method, which utilizes a VGG network for feature map extraction from
UAV images and the integrated location information of suspected regions for secondary
identification, reducing false negatives in small object detection [14]. They further validated
the algorithm’s reliability and effectiveness by combining Yolov4 and EfficientDet-D7,
but they did not mention other algorithms. Additionally, there was no description of the
detection speed on the Visdrone dataset.

The algorithms mentioned above utilize one-stage object detection algorithms to
tackle the issue of small object detection. However, many studies have employed two-
stage object detection algorithms to address small object detection challenges. Jinshan Cao
et al. proposed a GhostConv-based lightweight YOLO network specifically tailored for
the detection of small objects in UAV images [15]. This method was based on YOLOv5
and used the VisDrone-DET2021 dataset, though it may not be well suited for the YOLOv8
model and other datasets. To enhance the detection performance of small objects in UAV
images, Zhu et al. introduced transformer prediction heads (TPHs) and a convolutional
block attention model into the YOLOv5 network, creating a TPH-YOLOv5 network [16].
TPH-YOLOv5 was based on the design of YOLOv5 and had a significantly improved mAP,
but there was no discussion on its speed. Sun et al. proposed a real-time small object
detection (RSOD) method for UAV-based traffic monitoring based on YOLOv3 [17]. The
RSOD’s mAP improved significantly, but the speed was only 28. Li et al. explored an image
cropping strategy and presented a density map-guided object detection network (DMNet)
that leveraged spatial and contextual information between objects to enhance detection
accuracy [18]. The DMNet’s mAP was a little lower, at only 28.2. Liu et al. developed the
MYOLO-lite network, a lightweight variant of YOLOv4 with a MobileNet as the backbone,
effectively reducing network parameters and computational complexity to meet the speed
requirements in UAV object detection applications [19]. This paper reported results for only



Sensors 2024, 24, 4966 4 of 23

one class and did not been validate the network on a public dataset. Zhang et al. introduced
SlimYOLOv3, a pruned version of YOLOv3, achieving twice the detection speed while
maintaining the detection accuracy [20]. The mAP of SlimYOLOv3-SPP3-95 was only 21.2.

2.2. Feature Pyramid Network

Introducing a pyramid network enables an object detection algorithm to better handle
multi-scale targets, enhance semantic information, and improve detection performance,
making the algorithm perform better in object detection tasks. Common feature pyramid
networks are described as follows.

A Feature Pyramid Network (FPN) is a deep neural network architecture widely used
in object detection tasks [21]. It aims to address the challenge of detecting objects at different
scales by constructing a feature pyramid from a single-scale input. An FPN enhances per-
formance by incorporating multi-scale features at different levels of the network, enabling
the detection of objects of various sizes.

A Bidirectional Feature Pyramid Network (BiFPN) is an extension of the FPN archi-
tecture but introduces bidirectional connections between different levels of the feature
pyramid [22]. By incorporating both top–down and bottom–up pathways, a BiFPN en-
hances the flow of information across different scales, leading to improved object detection
performance. In EfficientDet, the BiFPN emphasizes bidirectional cross-scale connections
and weighted feature fusion. In the BiFPN, connections between feature layers are bidirec-
tional, and the introduction of weights differentiates the importance of different feature
layers for more effective feature fusion.

A Path Aggregation Network (PANet) is a network architecture designed for, for
instance, segmentation tasks, which involve both object detection and pixel-wise seg-
mentation. A PANet introduces a path aggregation module to aggregate features from
different levels of the feature pyramid, improving the quality of feature representations
and enhancing the segmentation accuracy [23].

A Recursive Feature Pyramid Network (Recursive-FPN) is a variant of the FPN ar-
chitecture that incorporates recursive connections between different levels of the feature
pyramid [24,25]. By recursively aggregating features from multiple scales, a Recursive-FPN
aims to capture rich contextual information and enhance the detection of objects across
various scales.

However, while these classic multi-scale feature fusion methods perform well in general
object detection, they may not be fully applicable to small object detection scenarios [26,27].
Therefore, this study proposes a new feature fusion method, HRFPN, designed to address the
specific challenges of small object detection and effectively learn more contextual information.
The HRFPN combines the HRNet and high-resolution representation learning with advanced
feature fusion concepts, providing a new solution for small object detection.

2.3. State Space Model on Visual Recognition

In the field of deep learning, State Space Models (SSMs) have emerged as a key tech-
nology for handling long-range dependencies in sequential data, demonstrating significant
application potential [28–30]. Inspired by continuous control systems and combined with
HiPPO initialization, the LSSL model has showcased the immense potential of SSMs,
despite challenges in computational complexity and storage requirements. With the in-
troduction of the Structured State Spaces for Sequence Modeling (S4) model, significant
performance improvements have been achieved through optimized parametric structures
and the adoption of normalization methods. Subsequently, various innovative SSM archi-
tectures, such as complex diagonal structures and selection mechanisms, have provided
notable advantages across multiple application scenarios.

In the realm of visual recognition, Vision Mamba (Vim) has pioneered the introduction
of a Bidirectional State Space Model to enhance visual representation learning. Compared
to DeiT, Vim has achieved superior performance across multiple visual tasks while main-
taining high efficiency [31]. VMamba addresses global perception in a two-dimensional
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image space through the introduction of a Cross-Scan Module (CSM), maintaining linear
computational complexity and significantly enhancing input scaling efficiency. Models
like MedMamba, Swin-UMamba, and U-Mamba are specifically tailored for medical image
tasks, combining the local feature extraction capabilities of convolutional layers with the
long-range dependency-capturing abilities of SSMs, effectively modeling different modal-
ities of medical images through the SS-Conv-SSM module. EfficientVMamba, through
efficient skip sampling and regrouped, dilated, selective scanning methods, integrates SSM
blocks with convolutional branches, significantly reducing computational complexity and
achieving competitive results across multiple visual tasks [32–35].

Against this backdrop, our proposed HRMamba-YOLO model ingeniously integrates
SSMs with lightweight object detection algorithms, specifically optimized for small object
detection, resulting in a marked performance enhancement.

3. Methods
3.1. Overall Architecture

The detailed structure of the HRMamba-YOLO architecture proposed in this article is
shown in Figure 2. The network is primarily composed of five parts: a backbone, an EMM,
an HRFPN, an FMM, and a YOLO Head.
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different feature maps, and the other color arrows represent the forward transfer of feature maps
with different resolutions).

Backbone: We employed the YOLOv8 backbone as the fundamental feature extraction
network [5]. Following an initial stem downsampling operation, the backbone was divided
into four main stages, outputting feature maps at 1/4, 1/8, 1/16, and 1/32 scales, providing
inputs for the subsequent feature fusion network. Additionally, we introduced a Double
SPP module at the end of the backbone to enhance the receptive field and enrich the features.
In the backbone, there are four C2f modules from top to bottom, where the values of n
are 1, 2, 2, and 1, respectively.
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EMM: The primary purpose of an EMM is to expand a mode’s global receptive field
before feature fusion, enhancing the capture of extensive contextual information. The EMM
mainly targets feature maps at 1/8, 1/16, and 1/32 scales and combines the features from
corresponding scales with those of larger scales.

HRFPN: An HRFPN is a feature fusion network designed based on HRNet architecture,
specifically optimized for small object detection tasks. The characteristic of HRNet is
maintaining high-resolution feature maps throughout a network, thus improving the
detection efficiency of small objects. The HRFPN is responsible for implementing efficient
feature fusion across 1/8, 1/16, and 1/32 scales. In this article, HRFPN refers to the part of
the neck excluding the EMM module.

FMM: An FMM also applies Mamba technology, effectively leveraging useful infor-
mation from various scales to output feature maps of the current scale.

YOLO Head: We followed the detection head design of YOLOv8, performing classifi-
cation and position prediction analyses on the processed feature maps across three scales
to accurately identify targets within the image.

3.2. Double SPP in Backbone

The Double SPP module (Figure 3), designed to enhance the accuracy of small object
detection, extends the traditional SPP technique. By performing pooling operations at
different scales, Double SPP captures multi-scale contextual information, which is crucial
for the effective detection of small objects. Double SPP employs two independent SPP
modules operating on two separate branches, enhancing the extraction of multi-scale
features and facilitating a more detailed capture of small object characteristics [36].
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One branch integrates the Squeeze-and-Excitation (SE) attention module, which dy-
namically adjusts channel weights by evaluating the importance of feature channels, achiev-
ing feature recalibration [37]. In small object detection, the SE module is particularly critical
as it guides the network to focus on features related to small objects and suppresses irrel-
evant information, thereby improving detection accuracy. Deploying the SE module on
one branch allows the network to more effectively extract subtle features of small objects,
enhancing performance in subsequent detection stages.

The feature maps from both branches are merged through an addition operation, a
strategy that enables the network to synthesize the strengths of both branches, producing
richer and more robust feature representations. For small object detection, this approach
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provides the model with more comprehensive contextual information, helping to reduce
the probability of false positives and misses.

3.3. Neck
3.3.1. EfficientVMamba

SSMs are continuous system models inspired by the classical Kalman filter model.
These models map one-dimensional functions or sequences to hidden states through an
evolution parameter and a projection parameter. The dynamics of the system are described
by the following set of equations:

h′(t) = Ah(t) + Bw(t) (1)

y(t) = Ch(t) (2)

where A ∈ ℜN×N, B ∈ ℜD×N, and C ∈ ℜD×N.
Discretization involves converting continuous differential equations into discrete

functions to match the sampling frequency of the input signal, thereby enhancing computa-
tional efficiency. Continuous parameters (A, B) can be discretized using the zero-order hold
method at a specified sampling interval ∆ ∈ ℜD:

A = e∆A,

B = (e∆A − I)A−1B,

C = C, (3)

B ≈ (∆A)(∆A)−1 AB = ∆B,

h(t) = Ah(t− 1) + Bx(t),

y(t) = Ch(t).

ES2D is an advanced two-dimensional scanning method designed to address the
computational bottlenecks in visual tasks (Figure 4). The process is illustrated in Figure 5.
Traditional SSMs face limitations when dealing with large-scale visual tasks due to their
global information extraction, which has a time complexity of O(N2). ES2D innovatively
alleviates this issue by introducing a selective scanning strategy based on dilated convolu-
tions and an efficient skip sampling mechanism, effectively reducing the number of tokens
to be processed in the spatial dimension.
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Figure 4. Description of ES2D (ES2D adopts a strategy of scanning forward vertically and horizontally
while skipping patches and maintaining the number of patches unchanged. Their efficient visual state
space (EVSS) block comprises a convolutional branch for local features, uses ES2D as the SSM branch
for global features, and all branches end through a squeeze–excitation block. They employ EVSS
blocks for the horizontal direction (marked with green lines), while opting for inverted residual blocks
for the vertical direction (marked with red lines), to enhance the capture of global representations).



Sensors 2024, 24, 4966 8 of 23

Sensors 2024, 24, x FOR PEER REVIEW 9 of 25 
 

 

，)~(]::,::[:,Y iOmergepnpm ←  

))2(
2

cos(
2
1

2
1,)2(

2
sin(

2
1

2
1(), 



 −+



 −+= iinm ππ

（  (5)

By employing this strategy, ES2D reduces the complexity from O(N2) to O(N/p2), 
maintaining a global receptive field while significantly decreasing computational de-
mands. This increase in computational efficiency is crucial for handling large datasets, and 
by merging the processed feature patches, ES2D can reconstruct the global structure of 
the feature map, capturing more comprehensive contextual information. 

Mamba improves the performance of the SSM by introducing a Selective State Space 
(S6), which allows continuous parameters to vary with input, enhancing selective infor-
mation processing between sequences. This extends the discretization process through a 
selection mechanism. 

，)(SB B x=  (6)

),x(SC c=  (7)

)).(PaA xSrameter A+=Δ （τ  (8)

Here, (x)S B  and (x)S c  project the input x into an N-dimensional space, where (x)S A  
expands a D-dimensional linear projection to the necessary dimensionality. 

3.3.2. EMM 
This study introduces an efficient neural network module named EMM, whose core 

design philosophy is to enhance detection performance by integrating multi-scale feature 
fusion techniques with attention mechanisms. The specific structure is shown in Figure 5. 

 
Figure 5. The EMM module. 

Specifically, EMM takes high-resolution feature maps and corresponding scale fea-
ture maps as inputs. It adjusts the high-resolution input to match the current scale through 

Figure 5. The EMM module.

ES2D organizes data blocks by omitting the sampling step and then performing intra-
group traversal. In this method, the input feature map (X ∈ RC×H×W) is divided into
multiple patches, which are then selectively scanned through skip sampling with a stride
(p). The ES2D does not scan entire blocks crosswise; instead, it skips scanning blocks with a
stride of p, segmenting them into selected spatial dimension features {Oi}4

i=1. This process
can be expressed as the following:

Oi ↔ X[:, m :: p, n :: p],{
Õi

}4

i=1
← SS2D({Oi}4

i=1) (4)

where Oi, Õi ∈ ℜC× H
P ×

W
P , and ((m,n)) identifies the sampling starting point, ensuring

interval sampling across the feature map. The operation [:, m::p, n::p] represents the slicing
of the matrix for each channel, starting at m in height (H) and n in width (W), and skipping
p steps. The skip sampling of the local receptive field reduces computational complexity
by selectively scanning smaller blocks of the feature map. With a stride of p, the authors
sample blocks of size (C, H/p, W/p) at intervals of p. Compared to (C, H, W) in SS2D, the
amount of data processed in each scan and merge operation is reduced from N to N/P2,
improving the efficiency of feature extraction. These patches, after being processed by

SS2D, form a new feature set
{

Õi

}4

i=1
, which is ultimately merged back into the output

feature map (Y) as the following:

Y[:, m :: p, n :: p]← merge(Õi),

(m, n) = (

⌊
1
2
+

1
2

sin(
π

2
(i− 2)

⌋
,
⌊

1
2
+

1
2

cos(
π

2
(i− 2)

⌋
) (5)

By employing this strategy, ES2D reduces the complexity from O(N2) to O(N/p2),
maintaining a global receptive field while significantly decreasing computational demands.
This increase in computational efficiency is crucial for handling large datasets, and by
merging the processed feature patches, ES2D can reconstruct the global structure of the
feature map, capturing more comprehensive contextual information.
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Mamba improves the performance of the SSM by introducing a Selective State Space
(S6), which allows continuous parameters to vary with input, enhancing selective infor-
mation processing between sequences. This extends the discretization process through a
selection mechanism.

B = SB(x), (6)

C = Sc(x), (7)

∆ = τA(Parameter + SA(x)). (8)

Here, SB(x) and Sc(x) project the input x into an N-dimensional space, where SA(x)
expands a D-dimensional linear projection to the necessary dimensionality.

3.3.2. EMM

This study introduces an efficient neural network module named EMM, whose core
design philosophy is to enhance detection performance by integrating multi-scale feature
fusion techniques with attention mechanisms. The specific structure is shown in Figure 5.

Specifically, EMM takes high-resolution feature maps and corresponding scale feature
maps as inputs. It adjusts the high-resolution input to match the current scale through
downsampling operations. Subsequently, both inputs undergo 1 × 1 convolutions to
transform the features, which are then merged through a concatenation (Concat) operation.
The merged features are further processed by another 1 × 1 convolution for dimensionality
reduction. For an efficient visual state space (EVSS) block, the features are split in the
channel dimension into two parts: one part undergoes a residual connection, while the
other is fed into a dual-branch structure. In the dual-branch structure, the first branch
reshapes the global feature map using the ES2D module to capture contextual information
at a lower cost, followed by an SE attention module for feature recalibration. The second
branch implements feature transformation and recalibration through a 1 × 1 convolution, a
depthwise separable convolution (DWConv 3 × 3), and an SE attention module. Finally,
the outputs of both branches are combined and concatenated with the previous residual
connection, and a final 1 × 1 convolution produces the ultimate feature map.

In ES2D, reorganizing the global spatial feature map involves combining processed
blocks to reconstruct the global structure of the feature map. This integration captures a
broader context, balancing local details and the global context in feature extraction. The
EVSS block aims to synergistically fuse global and local feature representations while
maintaining computational efficiency. It leverages an ES2D modified by squeezing to
capture global information and customizes a convolutional branch to extract crucial local
features, with both branches going through subsequent SE blocks.

3.3.3. High-Resolution Feature Pyramid Network

The core of our method lies in designing and implementing a novel feature fusion
network, dubbed the HRFPN, inspired by the state-of-the-art HRNet architecture. The
specific structure is shown in Figure 6. Our goal is to enhance small object detection by
effectively integrating features of different scales, leveraging unique attributes inherent to
each scale, such as texture detail and receptive field size.

Cross-Scale Feature Fusion: HRFPN seamlessly integrates features at 1/8, 1/16,
and 1/32 scales through its core component, the cross-scale feature fusion module. The
module’s fusion strategy maximizes the complementarity of features at different resolutions,
combining fine-scale textural details with coarse-scale comprehensive representations to
improve small object recognition.

Intra-Scale Feature Processing: We deployed a C2Layer and 1 × 1 convolution layers
within each scale to refine feature information, ensuring the network captures small object
details. This step crucially enhances the network’s sensitivity and recognition capabilities
for small-scale objects.

Implementation Details: For object detection at 1280 × 1280 resolution, we particularly
focused on processing larger scale features. Thus, we increased the convolutional processing of
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larger-scale features to ensure the network’s capacity to distinguish small objects. Concurrently,
we adopted HRNetv2’s strategies for network simplification to enhance efficiency, as indicated
by the purple areas in Figure 7, which mark the parts we pruned.
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Figure 6 provides a comparison of various feature pyramids, with the pyramid net-
work proposed by us being HRFPN. FPN layers transmit strong semantic features from top
to bottom, while the feature pyramid conveys strong localization features from bottom to
top. These two approaches work together, aggregating parameters from different backbone
layers to various detection layers. PANet is an improvement over FPN, designed to add a
bottom–up pyramid after FPN. PANet introduces path aggregation, which combines shal-
low feature maps (low-resolution but weak semantic information) and deep feature maps
(high-resolution but rich semantic information), and it passes feature information along
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specific paths, conveying strong localization features from lower layers upward. NAS-
FPN utilizes a reinforcement learning-based search algorithm to discover optimal network
structures for feature fusion. This method automatically finds better FPN architectures,
optimizing both accuracy and efficiency. The BiFPN uses bidirectional cross-scale con-
nections with learnable weights to efficiently combine features from different resolutions.
For the COCO validation set, the AP values for repeated top–down FPN, repeated FPN +
PANet, NAS-FPN, and BiFPN are 42.29, 44.08, 43.16, and 44.39, respectively. HRNet-W48
can achieve an AP of 76.3, so we chose HRNet as the direction for improvement.

In Figure 7, the pink arrows represent the new connections added in the HRFPN based
on HRNetv2.

3.3.4. Fusion Mamba Module

The FMM is positioned between the HRFPN and the YOLO Head, responsible for
final feature fusion and processing. Figure 8 showcases the detailed structure of the FMM.
The FMM receives feature information from the current scale, supplemented by features
from two other scales. First, the auxiliary inputs are adjusted to the same resolution as the
main input through upsampling or downsampling, followed by a transformation using
1 × 1 convolution. These three transformed inputs are concatenated in the channel di-
mension, followed by another transformation using 1 × 1 convolution. Subsequently, the
sequence is processed through ES2D and a feedforward network (FFN), with residual
connections introduced to prevent information loss. The processing result is concatenated
with the initial main input, followed by a final transformation and output.
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FMM is designed to optimize feature representation, enhancing small object detection
performance by considering the relevance of current features with cross-scale features. The
processing of current features involves multiple applications of 1× 1 convolutions for linear
transformations and a residual connection with the initial input before the final output to
ensure information integrity. Cross-scale feature processing integrates information from
other scales, efficiently enhancing the interaction between the main and related features
through ES2D and FFN. This approach deeply explores the relationships between different
features and captures long-distance dependencies across multiple scale resolutions.

In addition, as shown in Figure 9, we also provide the visualization results of the
feature maps output by the backbone (including our proposed Double SPP module), as
well as the visualization results of the feature maps output by EMM and FMM. From the
figure, it can be seen that with the combined effects of the Double SPP, EMM, and FMM
modules, the detection of objects becomes increasingly precise.
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4. Results
4.1. Datasets

The VisDroneDET 2019 dataset presents significant challenges in the field of object
detection due to its characteristics such as scale variation, occlusion issues, and class
imbalance. The dataset consists of 8629 images, distributed according to the following:
6471 images for the training set, 548 for the validation set, and 1610 for the test set [4]. These
images were captured by various cameras mounted on drones across 14 different cities in
China, spanning thousands of kilometers and covering diverse environments ranging from
urban to rural areas. The dataset encompasses a wide variety of object types, including
pedestrians, vehicles, bicycles, and more, with varying scene densities from sparse to
crowded. Additionally, the collection of this dataset involved multiple drone platforms
and was conducted under different scenarios, weather conditions, and lighting to achieve
diverse data acquisition. Figure 10 shows the annotation, location, and size distribution of
images in the Visdrone2019 datasets.
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4.2. Implementation Details

In terms of implementation details, this research builds upon the YOLOv8 model with
a series of improvements. Specifically, the input image resolution was set to 1280 × 1280,
and the Mosaic data augmentation technique was employed. The training process lasted
for 120 epochs, with an initial learning rate of 0.01, using SGD as the optimizer and setting
the momentum parameter to 0.937. Throughout the training process, we used the Geforce
Gigabyte RTX 3090 GPU (Shenzhen Whale Spring Technology Co., Ltd., Shenzhen, China)
and ensured consistency in environmental settings and random seeds to guarantee the
reproducibility of the experiments and the accuracy of the results.

4.3. Evaluation Metrics

Precision: This metric evaluates the proportion of actual positives among the samples
predicted as positive by the model. The formula for precision is

Precision =
TP

TP + FP
(9)

In this formula, True Positives (TPs) represent the number of samples correctly iden-
tified as positive, while False Positives (FPs) refer to those samples that are incorrectly
classified as positive when they are actually negative. A high level of precision reflects the
model’s accuracy and reliability in discriminating positive samples.

Recall measures the proportion of actual positive samples that the model successfully
identifies, indicating the model’s ability to recognize true positives. The recall calculation
formula is

Recall =
TP

TP + FN
(10)

False Negatives (FNs) indicate the number of actual positive samples that the model
incorrectly labels as negative.

AP stands for Average Precision (AP), which is simply the mean of the Precision values
on the Precision–Recall (PR) curve. We used integration to calculate the PR curve. The AP
formula is

AP =
∫ 1

0
p(r)dr (11)

In practical applications, the PR curve is not directly calculated. Instead, we smoothed
the PR curve by taking the maximum precision value to the right of each point on the curve.

The mean Average Precision (mAP) measures the overall performance of a model in
multi-class detection tasks and is the arithmetic mean of the AP values for all categories.
The calculation of the mAP is described as
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mAP =
1
N

N

∑
i=1

APi (12)

Here, APi represents the average precision score for the i-th category, while N is the
total number of categories. A high mAP value indicates that a model performs with high
precision and recall on average across all categories, making it a key metric for evaluating a
model’s comprehensive performance in multi-class recognition tasks.

4.4. Comparison of State-of-the-Art Methods

Table 1 presents a quantitative comparison on the Visdrone dataset with existing state-
of-the-art methods. The results show that HRMamba-YOLO outperforms other methods
in mAP metrics. Notably, this new algorithm in the YOLO series maintains good perfor-
mance in detecting small objects while keeping the model lightweight. HRMamba-YOLO
achieves the best detection results while maintaining real-time inference, demonstrating its
effectiveness and efficiency.

Table 1. Comparison of state-of-the-art methods.

Method mAP (%) Latency (ms)

YOLOv3-tiny [26] 15.9 3.2
YOLOv4-tiny [1] 27.6 20

YOLOv5-s [5] 29.1 10.8
YOLOv5-m [5] 33.9 22.1
YOLOv6-s [6] 30.2 12.8
YOLOv6-m [6] 33.7 21.9

YOLOv7 [2] 36.3 34.6
YOLOv7-tiny [2] 29.8 7.5

YOLOv8-s [5] 34.8 12.3
YOLOv8-m [5] 34.5 26.9
YOLOX-s [7] 32.7 11.5
YOLOX-m [7] 34.2 24.6

Faster-RCNN [38] 21.4 –
CenterNet [39] 29.1 –

DMNet [40] 28.7 –
SSD [3] 25.3 –

ClusDet [41] 31.7 –
DREN [42] 30.3 –

GLSAN [24] 32.5 –
QueryDet [43] 28.3 –

HRMamba-YOLO (Ours) 38.9 31.1

4.5. Ablation Experiments and Analysis

(1) Ablation experiments on Double SPP

In this section, we conducted a series of ablation experiments to evaluate the effective-
ness of the Double SPP module on the Visdrone dataset. The experiments used the original
YOLOv8-m as the baseline model and gradually incorporated different enhancements.
Specifically, we compared the following four variants:

• Variant A—Utilizing the original single-branch SPP structure;
• Variant B—Adding an SE module after the single-branch SPP;
• Variant C—Introducing a second SPP branch;
• Variant D—A dual-branch SPP structure with an SE module added to one branch.

As shown in Table 2, both Variants B and C showed improvements over A, indicating
that the SE module and the additional SPP branch contributed to performance enhance-
ment. More importantly, Variant D outperformed all other variants across all performance
metrics, demonstrating that the Double SPP structure effectively enhanced feature extrac-
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tion capabilities. Although there was an increase in computational load and latency (from
Variants A to D, latency from 12.3 ms to 12.9 ms), these increases were within acceptable
limits. These results confirm that the introduction of Double SPP significantly contributes
to model performance improvement.

Table 2. Ablation experiments on Double SPP.

Variant SPP’s Number SE mAP (%) Latency (ms)

A 1 34.8 12.3
B 1 ✓ 34.9 12.5
C 2 34.9 12.7
D 2 ✓ 35.1 12.9

(2) Ablation experiments on EMM

To validate the efficacy of the EMM module, we performed ablation experiments
using the modified YOLOv8-m with the Double SPP as the baseline. The EMM module
is designed to enhance features prior to the feature fusion network by capturing and
integrating high-resolution feature information into lower-resolution features. This module
models both global (using the Mamba technique) and local (using the DWConv technique)
perspectives for broader contextual information capture. As indicated in Table 3, the
experimental results show the following:

• When only global processing (Mamba technique) was used, there was a performance
increase, despite a decrease in inference speed.

• When only local processing (DWConv technique) was used, performance also im-
proved, albeit to a lesser extent than global processing.

• When both global and local processing were employed, there was a significant uplift
in overall model performance, albeit at the cost of further reduced inference speed.

Table 3. Ablation experiments on EMM.

Global Local Param (M) GFLOPs mAP (%) Latency (ms)

15.2 32.1 35.1 12.9

✓ 17.6 35.1 35.6 17.4

✓ ✓ 16.9 35.2 35.3 16.4

✓ 17.7 35.4 35.9 18.7

These results confirm the effectiveness of the EMM module, particularly when global
and local processing are combined, significantly enhancing the detection performance of the
model. While there is a trade-off in inference speed, the performance gains suggest that this
compromise is worthwhile, especially in applications that demand high detection accuracy.

(3) Effectiveness of Multi-Scale Input in FMM

To validate the effectiveness of multi-scale input in the FMM module, we conducted a
series of comparative experiments. The FMM module’s input includes not only the features
of the current scale but also auxiliary feature information from two other distinct scales. This
design can be seen as an enhancement to the HRFPN, achieving additional feature fusion and
strengthening the feature representation capability. Through the ES2D mechanism, FMM can
reconstruct global features containing extensive contextual information, while the nonlinear
transformation applied by the FFN further enhances the model’s representational power.

We designed two experimental setups:

• With auxiliary input—Utilizing multi-scale feature information in FMM;
• Without auxiliary input—Using only the feature information of the current scale.
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The experimental results, as shown in Table 4, indicate that the input of multi-scale
feature information in FMM is effective.

Table 4. Experiment to validate the effectiveness of multi-scale input (FMM).

Method mAP (%) Latency (ms)

w/Auxiliary Input 36.4 25.5
w/o Auxiliary Input 35.6 24.7

(4) Structural Analysis of HRFPN

In this section, we delve into the analysis of HRFPN and three other feature fusion
network structures for comparison. Table 5 demonstrates that, for small object detection
tasks, the HRNet style feature fusion network significantly surpasses the performance
of the PANet used in YOLOv8. Furthermore, the integration of additional upsampling
and concatenation operations into the HRNetv2 style network, while slightly increasing
inference latency, notably enhances network performance.

Table 5. Comparison experiment of different feature fusion networks.

Method Param (M) GFLOPs mAP (%) Latency (ms)

PANet 15.2 32.1 35.1 12.9
HRNetv1 style 19.4 42.5 35.9 19.2
HRNetv2 style 14.9 35.5 36.2 16.2

HRFPN 15.1 36.8 36.6 16.4

(5) Step-by-Step Ablation Experiments

In this experiment, the YOLOv8-m model was selected as the baseline (Variant A) for
study. Initially, the original SPP module was replaced with a Double SPP module, signifi-
cantly enhancing model performance. Building upon Variant B, the EMM (Variant C) and
FMM (Variant D) were integrated, with the results indicating that the Mamba structure and
the fusion of multi-scale feature information markedly improved small object detection per-
formance. Furthermore, substituting YOLOv8′s feature fusion network PANet with HRFPN
(Variant F) resulted in a notable increase in model accuracy. Combination experiments
of EMM, FMM, and HRFPN (Variants E, G, and H) demonstrated the efficacy of these
integrated modules. Ultimately, the final model, named HRMamba-YOLO (Variant I),
incurred a slight increase in inference time, from 12.3 milliseconds for Variant A to
31.1 milliseconds; however, the mean Average Precision (mAP) rose dramatically from
30.8% to 35.5% (Table 6).

Table 6. The step-by-step ablation experiment for HRMamba-YOLO.

Variant Double SPP PANet HRFPN EMM FMM Param (M) GFLOPs mAP (%) Latency (ms)

A ✓ 11.2 28.8 34.8 12.3
B ✓ ✓ 15.2 32.1 35.1 12.9
C ✓ ✓ ✓ 17.7 35.4 35.9 18.7
D ✓ ✓ ✓ 31.6 90.3 36.4 25.5
E ✓ ✓ ✓ ✓ 34.1 93.6 37.4 27.4
F ✓ ✓ 15.1 36.8 36.6 16.4
G ✓ ✓ ✓ 17.6 39.9 38.2 23
H ✓ ✓ ✓ 31.4 94.8 38.5 29.8
I ✓ ✓ ✓ ✓ 33.5 96.4 38.9 31.1

4.6. Visualization and Detection Results

Figure 11 shows the feature map visualization results of several algorithms. It can be
seen from the figure that the visualization results of the proposed algorithm HRMamba-
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YOLO are clearer. To clearly demonstrate the detection results, differently colored boxes
were used to distinguish various detection scenarios: green boxes indicate TP, where both
classification and localization were accurate; blue boxes symbolize FP, indicating errors
in classification or localization; and red boxes represent FN, where both classification and
localization errors occurred, or the target was not detected. Figure 12 vividly displays
these results, clearly revealing HRMamba-YOLO’s superior classification and localization
abilities on small object datasets. HRMamba-YOLO was not only capable of capturing nu-
merous small objects that YOLOv8-m failed to recognize but also demonstrated remarkable
performance in detecting densely packed crowds in the first image, showcasing its high
detection precision and efficiency.
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Table 7 presents a comparison of the mAP values for different classes in YOLOv5-m,
YOLOv6-m, YOLOv7, YOLOv8-m, YOLOX-m, and the proposed method, HRMamba-
YOLO. It can be seen from the figure that the proposed method achieved the highest mAP
detection results.

Table 7. A mAP comparison of different classes in Visdrone2019.

Model mAP (%) Pedestrian People Bicycle Car Van Truck Tricycle Awning-Tricycle Bus Motor

YOLOv5-m [5] 33.9 34.1 23.8 17.3 64.6 41.2 35.0 25.4 16.7 49.0 31.7
YOLOv6-m [6] 33.7 32.8 23.1 17.0 64.0 41.4 35.5 26.1 17.0 49.8 30.6

YOLOv7 [2] 36.3 36.9 25.4 19.7 66.8 44.4 37.6 26.2 16.7 55.5 33.7
YOLOv8-m [5] 34.5 34.6 23.9 17.8 65.1 42.0 36.5 25.4 16.1 51.4 32.2
YOLOX-m [7] 34.2 34.7 24.3 17.9 65.5 42.3 33.5 25.0 17.1 49.3 32.0

HRMamba-
YOLO (Ours) 38.9 37.5 26.8 21.6 68.2 46.8 41.6 30.9 19.9 58.9 36.8

4.7. Expansion Experiment

The Dota1.5 dataset is a remote-sensing image dataset used for object detection and
tracking. The dataset is mainly used for object detection and tracking research in UAV
scenarios. The Dota1.5 dataset is an extension and improvement of the original Dota dataset
to better meet the needs of UAV visual tasks. This dataset includes UAV images in different
environmental conditions, covering various real-world object categories, providing rich
data resources for related research.

In Tables 8 and 9, we present a comparison of the detection results for various methods
in the Dota1.5 dataset. It can be seen from the figure that the proposed algorithm achieved
the highest mAP detection value.

Table 8. The mAP comparison for different classes in Dota1.5 (part 1).

Method mAP (%) Plane Ship Storage
Tank

Baseball
Diamond Tennis Court Basketball

Court
Ground

Track Field

YOLOv5-m [5] 31.1 58.9 44.1 38.5 27.2 74.0 20.2 19.2
YOLOv6-m [6] 32.0 60.2 44.9 39.5 29.6 77.9 24.2 21.1

YOLOv7 [2] 34.4 63.5 48.2 43.6 32.1 78.1 23.8 19.5
YOLOv8-m [5] 33.3 60.3 45.8 40.6 31.1 78.1 22.7 22.9
YOLOX-m [7] 30.7 60.2 45.2 39.6 29.9 72.0 18.8 15.4

HRMamba-YOLO (Ours) 37.1 64.6 48.2 39.6 39.3 83.0 25.8 26.0

Table 9. The mAP comparison for different classes in Dota1.5 (part 2).

Method mAP (%) Bridge Large
Vehicle

Small
Vehicle Helicopter Roundabout Soccer Ball

Field
Swimming

Pool

YOLOv5-m [5] 31.1 2.7 56.0 34.6 14.1 9.2 18.5 19.6
YOLOv6-m [6] 32.0 2.5 55.7 36.0 16.7 8.5 18.7 15.5

YOLOv7 [2] 34.4 5.0 56.3 36.0 24.3 15.1 20.9 20.7
YOLOv8-m [5] 33.3 3.7 55.7 35.3 19.9 11.4 21.7 19.8
YOLOX-m [7] 30.7 2.2 55.7 34.6 14.2 10.5 18.1 17.3

HRMamba-YOLO (Ours) 37.1 6.9 59.7 38.8 26.5 15.1 19.0 28.0

From the comparison of the detection results in Figure 13 for algorithms YOLOv5-
m(a), YOLOv6-m(b), YOLOv7(c), YOLOv8-m(d), and YOLOX-m(e), it is evident that the
proposed HRMamba-YOLO(f) algorithm provided the most accurate detection and could
identify more small objects. The UCAS-AOD dataset is a remote-sensing image dataset
mainly used for object detection and recognition tasks. The dataset includes two types of
objects, cars and airplanes, as well as background negative samples. Table 10 gives the
mAP comparison for these two classes. The dataset for vehicles comprises 310 images
containing 2819 vehicle samples, while the dataset for planes consists of 600 images with
3210 plane samples. The samples were meticulously chosen to ensure even distribution of
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object orientations in the datasets. Each dataset was divided into two subsets: (250 images,
60 images) and (500 images, 100 images). One subset was allocated for training, while the
other was designated for testing.
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Table 10. The mAP comparison for different classes in UCAS-AOD.

Method mAP (%) Plane Car

YOLOv5-m [5] 64.5 72.7 56.4
YOLOv6-m [6] 64.7 72.4 57.1

YOLOv7 [2] 64.6 70.9 58.3
YOLOv8-m [5] 65.2 71.9 58.5
YOLOX-m [7] 63.9 72.2 55.5

HRMamba-YOLO (Ours) 66.7 73.2 60.1

The research team led by Han Junwei from Xi’an University of Technology proposed
the large-scale benchmark dataset “DIOR” for object detection in optical remote-sensing
images. The dataset consists of 23,463 images and 190,288 object instances. Tables 11–13
give mAP comparisons for different classes in the DIOR dataset.

Table 11. The mAP comparison for different classes in DIOR (part 1).

Method mAP (%) Airplane Airport Baseball
Field

Basketball
Court Bridge Chimney Dam

YOLOv5-m [5] 56.3 72.1 50.3 78.4 77.2 27.5 72.6 36.0
YOLOv6-m [6] 55.0 71.9 47.7 77.5 76.1 25.4 73.6 34.2

YOLOv7 [2] 58.8 73.9 60.0 79.8 78.9 29.2 75.5 37.4
YOLOv8-m [5] 65.8 78.2 70.7 82.4 83.3 37.4 81.7 53.1
YOLOX-m [7] 64.6 77.4 66.4 82.1 82.1 38.3 80.0 50.1

HRMamba-YOLO (Ours) 66.1 79.1 71.4 83.0 83.4 38.1 81.0 51.7

Table 12. The mAP comparison for different classes in DIOR (part 2).

Method mAP (%) Expressway
Service Area

Expressway
toll Station

Golf
Field

Ground
Track Field Harbor Overpass Ship

YOLOv5-m [5] 56.3 62.9 51.2 59.7 70.1 45.8 42.2 57.0
YOLOv6-m [6] 55.0 60.4 52.3 53.3 69.3 42.5 40.7 55.7

YOLOv7 [2] 58.8 65.1 55.7 64.9 72.5 46.5 42.6 57.6
YOLOv8-m [5] 65.8 75.1 65.8 75.2 78.3 55.3 50.5 61.5
YOLOX-m [7] 64.6 74.6 64.4 71.1 76.9 55.4 48.9 61.0

HRMamba-YOLO (Ours) 66.1 75.7 66.0 75.4 78.1 55.3 50.5 61.5

Table 13. The mAP comparison for different classes in DIOR (part 3).

Method mAP (%) Stadium Storage Tank Tennis Court Train Station Vehicle Windmill

YOLOv5-m [5] 56.3 76.7 56.7 83.7 25.4 34.1 45.8
YOLOv6-m [6] 55.0 74.7 53.6 82.8 27.5 33.3 46.6

YOLOv7 [2] 58.8 77.8 57.7 84.6 33.2 36.0 47.7
YOLOv8-m [5] 65.8 84.6 60.9 87.0 41.0 40.5 54.3
YOLOX-m [7] 64.6 83.1 60.5 86.4 41.2 40.1 52.9

HRMamba-YOLO (Ours) 66.1 86.4 61.3 87.1 41.4 40.9 55.2

5. Conclusions

We introduced a small object detection algorithm named HRMamba-YOLO, which
effectively detects small objects by combining the strengths of HRNet, EfficientVMamba,
and YOLO. This study opened by incorporating a dual-branch SPP structure with an SE
attention module integrated into one branch, significantly enhancing the network’s capacity
to extract features from small objects, thus improving detection precision. Then, based on
HRNet, an HRFPN was designed to enhance the efficiency of small object detection through
cross-scale and within-scale feature fusion, while maintaining high-resolution feature maps
conducive to small object recognition. Subsequently, EMM and FMM were developed
utilizing multi-scale feature fusion techniques and an ES2D selective scanning mechanism,
reinforcing the interaction between features and boosting the model’s performance in small
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object detection. Experiments on the VisDroneDET dataset demonstrated that HRMamba-
YOLO outperformed existing methods in mAP and latency metrics, proving its effectiveness
and efficiency in small object detection tasks.

For the VisDroneDET dataset, the proposed algorithm achieved a 4.4% higher mAP
compared to YOLOv8-m. The experimental results showed that HRMamba achieved a
mAP of 37.1%, surpassing YOLOv8-m by 3.8% (Dota1.5 dataset). For the UCAS_AOD
dataset and the DIOR dataset, our model had a mAP 1.5 percent and 0.3 percent higher
than the YOLOv8-m model, respectively. To be fair, all the models were trained without a
pre-trained model. This consistent improvement may indicate that HRMamba-YOLO has
better performance and universality in handling drone images. These results could be of
significant inspiration for research and practice in the field of drone vision.
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