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Abstract: Recent research has made significant progress in automated unmanned systems utilizing
Artificial Intelligence (Al)-based image processing to optimize the rebar manufacturing process
and minimize defects such as twisting during production. Despite various studies, including those
employing data augmentation through Generative Adversarial Networks (GANs), the performance
of rebar twist prediction has been limited due to image quality degradation caused by environmental
noise, such as insufficient image quality and inconsistent lighting conditions in rebar processing
environments. To address these challenges, we propose a novel approach for real-time rebar twist
prediction in manufacturing processes. Our method involves restoring low-quality grayscale images
to high resolution and employing an object detection model to identify and track rebar endpoints. We
then apply regression analysis to the coordinates obtained from the bounding boxes to estimate the
error rate of the rebar endpoint positions, thereby determining the occurrence of twisting. To achieve
this, we first developed a Unified-Channel Attention (UCA) module that is robust to changes in
intensity and contrast for grayscale images. The UCA can be integrated into image restoration models
to more accurately detect rebar endpoint characteristics in object detection models. Furthermore,
we introduce a method for predicting the future positions of rebar endpoints using various linear

check for and non-linear regression models. The predicted positions are used to calculate the error rate in
updates rebar endpoint locations, determined by the distance between the actual and predicted positions,
Citation: Park, J.-C.; Kim, G.-W. which is then used to classify the presence of rebar twisting. Our experimental results demonstrate
Improving Rebar Twist Prediction that integrating the UCA module with our image restoration model significantly improved existing
Exploiting Unified-Channel models in Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) metrics.
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F1 score for twist prediction. As a result, our approach offers a practical solution for rapid defect
detection in rebar manufacturing processes.
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1. Introduction

The need for automated solutions in rebar manufacturing has been recognized for
- decades. Early efforts to optimize rebar manufacturing processes through computer-aided
design and manufacturing began to emerge, addressing the limitations of traditional
manual processes and laying the foundation for current smart production systems [1,2].

Recent advancements in Artificial Intelligence (AI) and robotics have significantly
accelerated automation within the manufacturing industry. Deep learning, a crucial compo-
nent of Al, plays a vital role in developing fully automated industrial Al systems for smart
factories [3]. These systems aim to minimize defect rates in processes such as shaping rebar
into various forms and constructing concrete foundations [4].
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Despite these technological advancements, many rebar processing facilities still rely
on traditional workflows. These conventional methods, as illustrated in Figure 1, typically
involve using specialized equipment for cutting the rebar, followed by workers manually
counting, packaging, and loading the rebar for delivery to construction sites. These manual
processes heavily depend on the skill levels of workers to correct any production defects,
which affects both the timeliness and accuracy of these corrections. Consequently, this tra-
ditional approach is not only time-consuming and costly but also raises potential concerns
regarding quality and safety.

Figure 1. Traditional rebar processing site.

To address these issues, several studies have introduced automated smart produc-
tion systems aimed at reducing processing defects and enhancing productivity through
automated correction via real-time image processing. For instance, in the rebar processing
workflow, it is crucial to detect rebar twisting in real-time, from the start of production until
just before cutting. In the authors’ prior research [5], a machine vision camera was installed
at the location where the rebar is extruded, as shown in Figure 2a, to assess the twisting
of the rebar from after its extrusion until just before it is shaped. To analyze the captured
images, a combination of algorithms was employed, including Oriented FAST and Rotated
BRIEF (ORB), Region of Interest (ROI), and Hough Transform. These algorithms were
utilized to differentiate the rebar from the background and to conduct feature matching,
which determines the extent of the rebar’s twisting.
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(a) Machine vision camera installation. (b) Real-time rebar twist calibration.

Figure 2. (a) shows the installation of a machine vision camera; (b) illustrates real-time calibration
of rebar twist using grid cells. Detecting the rebar endpoint at the 60 cm mark from the extrusion
point is crucial for predicting its future location at the 80 cm mark. Within the grid cell, black dots
and green rectangular boundary boxes signify normal positions of rebar. Any deviation of rebar from
this boundary box is marked by a red dot within grid cells. This deviation is indicative of twisting.
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However, in actual manufacturing environments, the quality of images and lighting
conditions significantly impacts the accuracy of image processing. In particular, under poor
or irregular lighting conditions, the clarity and contrast of images can be reduced, leading
to difficulties in object detection and feature extraction [6]. Adjustments to the machine
vision camera’s focus distance, lens, and contrast brightness may not sufficiently counteract
camera shakes or changes in lighting due to external factors, introducing environmental
noise [7,8]. Consequently, existing image processing methods such as edge detection and
background subtraction have limitations under these conditions. The effectiveness of edge
detection can be compromised by low contrast between the rebar and its background
or by noise and interference, while variable lighting conditions can cause background
subtraction algorithms to misclassify image parts or fail to accurately isolate the rebar from
its surroundings [9].

Super-Resolution Generative Adversarial Networks (SRGAN) are widely used to
transform or restore low-resolution images to high-resolution images. This technique
is currently utilized as a method for data augmentation and noise reduction in various
fields, including medical imaging, satellite and aerial imagery, security cameras, disaster
management, and the entertainment industry, to enhance the performance of Al-based
systems when dealing with limited data [10-15]. However, not all information in the
augmented images created by converting low-resolution images to high-resolution images
with SRGAN significantly impacts the learning process of deep learning-based detection
or classification models [16]. This is due to the potential partial loss of fine texture and
essential information in the image or the excessive smoothing of the image’s characteristics.
Additionally, in manufacturing environments, grayscale images are frequently used due to
their processing speed and cost efficiency. However, since grayscale images rely solely on
intensity variations to convey information, they are particularly sensitive to noise and often
suffer from limited contrast [17]. This makes it difficult to distinguish between different
objects or features within the image. Moreover, directly using them in deep learning models
trained on RGB color images can lead to performance degradation. Therefore, enhancing
SRGAN to include processing features that are robust to the characteristic contrast and
intensity variations of grayscale images for specific areas can better preserve or highlight
the structure and texture of those areas, contributing to improved performance of detection
models.

Detecting rebar twisting through image processing is important. However, for in-
creased accuracy, it is essential to precisely recognize the state of rebar twisting by using the
coordinates of the dynamically extruded rebar endpoints, as illustrated in Figure 2b. More
specifically, predicting the future coordinates of the rebar endpoints means that the state of
rebar twisting can be more accurately represented, thereby reducing the prediction defect
rate. Additionally, this method decreases the possibility of defects when determining rebar
twisting based solely on image processing. However, due to the complexity of algorithms
required to accurately track and predict the coordinates of dynamically extruded rebar
endpoints in real-time within existing manufacturing processes, this method has not yet
been fully automated or standardized.

In this paper, we propose a novel method designed to predict the future endpoint
positions of rebar. This method aims to prevent potential twisting issues in rebar processing
operations. The Unified-Channel Attention (UCA) and regression techniques developed
for this purpose are capable of predicting the future endpoint positions of rebar with
high accuracy. UCA emphasizes subtle differences in contrast and texture to efficiently
extract crucial information from grayscale images, improving restoration and detection
performance. Moreover, when dealing with large amounts of twisted and abnormal
image data, issues such as bias are inevitably encountered during the training of object
detection models. To address these challenges, we focus on rebar endpoints, extracting
more information from existing small datasets of normal images and using them to convert
low-quality grayscale images into high-resolution images. We then employ an object
detection model to detect and track the endpoints of the rebar and apply regression analysis
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to the acquired coordinates to predict the error rate in the twisting of the rebar. The
future positions of the rebar endpoints, as predicted through regression analysis, serve as a
decisive indicator for determining the presence or absence of twists. The main contributions
of this paper are as follows:

e  Unified-Channel Attention (UCA) Module: This module combines average and max
pooling to emphasize important contrast and texture features of grayscale images,
enhancing the analysis and restoration of image brightness variations and dark area
details. This improves the performance of object detection models.

e  Rebar Endpoint Prediction Through Linear and Non-Linear Regression Models:
We employ various linear and non-linear regression models, including Simple Linear
Regression and Random Forest Regression, to predict future rebar endpoint locations
using the central coordinates of bounding boxes extracted from an object detection
model. During this process, the Euclidean distance is utilized to analyze the error rate
in the positions of rebar endpoints based on the predicted and actual locations. This
error rate is then used to classify the occurrence of rebar twisting, allowing for a more
precise determination of the presence of defects in rebar.

The remainder of this paper is organized as follows. Section 2 provides a literature
review of related work. Section 3 presents an overview and detailed methods of the
proposed technique. Section 4 discusses our results and findings. Section 5 concludes
the paper.

2. Related Work

Recent research has actively explored smart manufacturing systems that leverage
cutting-edge Al technologies to automate and optimize manufacturing processes. These
efforts focus primarily on the following areas:

Model Development for Defect Recognition and Efficiency Enhancement:
Caggiano et al. [18] proposed using Bit-Stream Deep Convolutional Neural Networks
(DCNN) for real-time defect recognition and classification during the Selective Laser Melt-
ing (SLM) process. Their model captures high-frequency features through dual streams
and integrates low-frequency features with skip connections, minimizing information loss
and enhancing classification accuracy. Kardovskyi et al. [19] developed an Artificial Intelli-
gence Quality Inspection Model (AI-QIM) to automate rebar quality inspection in concrete
structures. Utilizing Mask R-CNNs, for instance, segmentation and integration with a
stereo vision camera, their AI-QIM effectively estimates rebar quantity, spacing, diameter,
and length. Wang et al. [20] proposed an automatic rebar counting system using image
processing and machine learning techniques. This system starts with image preprocessing
tasks such as noise removal and edge detection from RGB images, followed by experiments
with various machine learning algorithms, including Decision Trees, K-Nearest Neighbors
(KNN), Support Vector Machines (SVM), traditional neural networks, and CNNs, with the
CNN-based VGG19 model demonstrating the highest accuracy.

Data Augmentation Techniques: Given the complex and dynamic nature of manufac-
turing environments, characterized by variable lighting, movement, potential obstructions,
and restricted access to certain areas for safety and efficiency, collecting high-quality train-
ing data is challenging. Tsai et al. [21] introduced CycleGAN for data augmentation in
automated defect detection, generating and annotating defect images processed by U-Net
to develop a Multi-scale Progressive Generative Adversarial Network (MAS-GAN) that
improves surface defect detection efficiency and accuracy. MAS-GAN addresses the lim-
itations posed by scarce surface defect samples and enhances detection model accuracy
by generating images that closely mimic real ones. Yun et al. [22] discussed how data
imbalance due to rare defects in the metal manufacturing industry, affects the general-
ization performance of Deep Convolutional Neural Networks (DCNNs). To overcome
this, they proposed an automated defect inspection system using deep learning and data
augmentation techniques. This system developed a new defect classification algorithm,
Conditional CVAE (CCVAE), integrating Conditional Variational Autoencoders (CVAE)
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with DCNNSs. The CCVAE effectively increases the quantity and diversity of training data
by artificially generating and expanding learning data for various defect types, including
rare ones, significantly improving the performance of DCNN models in experiments with
real metal defect images, leading to superior performance.

Image Restoration Techniques: Research in image processing for converting low-
resolution images to high-resolution as part of data augmentation has demonstrated mul-
tiple benefits. In manufacturing environments, where rapid data processing is crucial,
low-resolution images are preferred due to their reduced storage demands and smaller size,
which facilitate faster transmission. However, high-resolution images are more effective
for in-depth image analysis and interpretation during model training. Image restora-
tion techniques bridge this gap by enhancing low-resolution images to high-resolution,
improving the quality of data augmentation, and boosting the overall performance of
image-based models in these settings. Liu et al. [23] enhanced the Super-Resolution Gener-
ative Adversarial Network (SRGAN) by integrating a channel attention module to better
capture high-frequency features and enhanced network performance by eliminating batch
normalization layers. This reduction in computational complexity benefits tasks such as
super-resolution and deblurring, thereby increasing network efficiency. They also refined
the loss function to minimize the impact of noise, with their method surpassing other
approaches in restoring high-frequency information and achieving higher Peak Signal-
to-Noise Ratio (PSNR). In a related study, Liu et al. [24] proposed an efficient anomaly
detection network named Skip-Attention GAN (SAGAN) for image-based anomaly de-
tection. Traditional methods tend to overlook local anomalies by analyzing the overall
difference between input and generated images, leading to unreliable detections. Their
research introduced the skip-attention module to enhance the accuracy of the image’s latent
representation and reduced the model’s parameter count by applying depth-wise separable
convolution. Yang et al. [25] developed a Convolutional Block Attention Module (CBAM)
based on SRGAN. Their attention module focuses on emphasizing important features while
suppressing less critical ones, ensuring the quality of the network structure, and optimizing
the generator network of SRGAN. Their experimental results showed the ability to train
with fewer residual blocks, thereby reducing the reconstruction time.

Object Detection Performance Enhancement: Chen et al. [26] investigated the inter-
action between image restoration and object detection in underwater environments. They
used visually enhanced data generated through a Filtering Restoration Scheme (FRS) and a
Generative Adversarial Network Restoration Scheme (GAN-RS) to analyze the impact of
these restoration techniques on object detection performance. Their evaluations using object
detectors such as SSD and RetinaNet revealed that visual restoration plays a crucial role
in reducing the domain difference between the training data and real underwater scenes.
Liang et al. [27] introduced a Generalized Image Formation Model (GIFM) to address visual
degradation in low-visibility environments. Unlike existing image restoration models,
GIFM includes a light attenuation process within its new image formation model, showing
outstanding performance in various tasks such as keypoint detection, object detection, and
image segmentation.

Despite these advancements, several critical issues remain in the existing research on
rebar manufacturing environments. These challenges significantly impede the effective
detection and prevention of defects in the rebar production process, potentially resulting
in suboptimal product quality, increased production costs, and safety hazards. Firstly,
previous studies have predominantly focused on feature detection using traditional image
processing techniques, which involve extracting features from edges, corners, ridges, or
blobs before training deep learning models. However, these techniques may not effectively
capture subtle defects and variations on rebar surfaces, often leading to missed detections
or false positives. Moreover, there has been limited research on converting low-resolution
images to high-resolution during manufacturing processes, which is crucial for accurate
defect detection and analysis. Secondly, although our research includes detecting and
tracking rebar endpoints using object detection models, these models are typically trained
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on RGB images that contain color information. In manufacturing processes, where image
processing speed and efficiency are crucial, the use of grayscale images is advantageous.
However, research on effectively extracting and learning features from grayscale images
under varying brightness and contrast in manufacturing environments with irregular
lighting is lacking. This gap affects the accurate detection and tracking of rebar endpoints,
which is essential for identifying twists and ensuring product quality. Bui et al. [28]
and Cho et al. [29] have conducted studies that underscore the significance of grayscale
images in object recognition and detection. However, these approaches did not specifically
address the challenges faced in rebar manufacturing environments or the necessity for
real-time processing and adaptation to varying lighting conditions. Furthermore, despite
advancements in image restoration and object detection techniques, these approaches face
limitations in preemptively capturing product defects or errors during the manufacturing
processes. While object detection systems can accurately recognize product defects or
errors, it is crucial to track the coordinates of detected bounding boxes and analyze the
prediction error rate to predict and respond to product defects or errors in advance.

To address the limitations identified in existing research, we propose a novel method
that leverages image processing during the manufacturing process to overcome the con-
straints of image augmentation and manufacturing enhancement. Our research focuses
on effectively extracting and analyzing contrast and texture features in grayscale images,
aiming to develop a system capable of real-time processing that adapts to variations in
lighting. This approach improves the accuracy of endpoint detection and twist detection
in rebar manufacturing processes, facilitating precise quality control and classification. In
this paper, we apply a UCA module, specifically designed for grayscale images, to the
SRGAN to improve both image restoration and object detection performance. The UCA
module integrates average and max pooling to highlight the subtle features of contrast and
texture, enabling more effective extraction of essential information from grayscale images.
This method not only captures and accentuates various characteristics of an image but also
contributes to transforming low-resolution rebar images into high-resolution images. Fur-
thermore, the enhanced images are used in object detection models, enabling more accurate
detection of rebar endpoints. The bounding box coordinates obtained from this process are
then analyzed using various linear and non-linear regression models, significantly reducing
the prediction error rates. Our proposed method incorporates these regression models
to predict the future positions of rebar endpoints based on the bounding box coordinates
obtained from the object detection process. By analyzing the prediction error rate, our
method can identify potential defects or errors before they occur, thereby enabling proactive
quality control measures.

3. Proposed Method

This section provides a detailed description of our proposed method, illustrated in
Figure 3, which consists of five phases: (1) data collection, (2) image restoration, (3) rebar
endpoint detection, (4) regression model application, and (5) rebar twist detection.

During the data collection phase, the rebar extrusion process is captured on video
using a machine vision camera. The video is then decomposed into frames, and each
frame is converted into an image. The extracted images are divided into two groups
for image restoration: 1500 original rebar images and 1500 downscaled rebar images. In
the image restoration phase, we apply the UCA module to the SRGAN based on ResNet
to enhance the performance of rebar endpoint detection. This leads to the generation
of high-resolution rebar endpoint image sets. The UCA-SRGAN model plays a crucial
role in improving the quality of low-resolution grayscale images, which directly impacts
the accuracy of subsequent phases. The third phase, rebar endpoint detection, involves
selecting 500 high-resolution images from the generated rebar endpoint image sets to
train the YOLOv5s model. The trained YOLOv5s model then detects rebar endpoints
in real time by creating bounding boxes. Additionally, during this phase, the central
coordinates of the bounding boxes are obtained in real time. The performance of this
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phase is significantly influenced by the quality of the restored images from the previous
phase. During the regression model application phase, these central coordinates are used
to train various linear and non-linear regression models, which then predict the future
positions of the rebar endpoints every 60 frames. The accurate coordinates obtained from
high-resolution images play a crucial role in enhancing the prediction performance of the
regression model, thereby reducing the error rate in rebar twist detection. In the final
phase, rebar twist detection, we calculate the error rate based on the distance between the
actual and predicted rebar endpoint positions. We define a Rebar Twist as occurring when
this error rate exceeds 5%. Specifically, if the normalized Euclidean distance between the
predicted and actual rebar endpoint positions is greater than 5%, it is classified as a “twist’.
Conversely, a result that falls within this 5% threshold is considered ‘normal’. The accuracy
of this classification heavily depends on the precision of both the endpoint detection and
the regression model predictions.

2. Image Restoration 3. Rebar Endpoint Detection
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Figure 3. Overview of the proposed technique.

The interconnected nature of these phases is a crucial aspect of the proposed method.
The high-quality images produced by the image restoration phase significantly enhance
the accuracy of rebar endpoint detection. In turn, more accurate endpoint detection
provides better input data for the regression models, leading to more precise predictions
of future endpoint positions. These accurate predictions then contribute to more reliable
twist detection. This sequential improvement in each phase contributes to the overall
enhancement of the system’s performance in detecting rebar twists.

Furthermore, the results include predictions of rebar twists visualized in a video
format, incorporating grid cells to detect twists by comparing the actual and predicted co-
ordinates. Detailed explanations of each phase are provided in the subsequent subsections.

3.1. Dataset Collection

We installed a machine vision camera at the front of the rebar extrusion point and
collected a total of 27 videos. These videos were captured under three different lighting
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conditions to assess the system’s performance across various environmental settings. The
lighting conditions were as follows:

e  Standard brightness: Brightness level of approximately 64,200 W LED light, exposure
setting of 10 ms.

e  Medium brightness: Brightness level of approximately 96,200 W LED light, exposure
setting of 15 ms.

e  High brightness: Brightness level of approximately 128,200 W LED light, exposure
setting of 20 ms.

As shown in Figure 4, (a) represents videos collected under standard brightness
conditions, (b) under medium brightness, and (c) under high brightness. For each lighting
condition, we collected three videos depicting normal rebar extrusion processes and six
videos illustrating abnormal processes (i.e., twisting). This diverse collection of videos
under various lighting conditions was used to identify limitations through experiments and
to evaluate image restoration and detection performance across different lighting scenarios.

high_brightness_rebar_abnor
normal 01 normal_02 mal 01 mal_02 mal_03

rightness_rebar_abn medium_brightness_rebar_ab medium_brightness_rebar_ab medium_brightness_rebar_ab high_brightness_rebar_abnor high_brightness_rebar_abnor
normal 04 nomal_05 normal_06 mal 04 mal 05 mal 06

high_brightness_rebar_norma

medium_brightness_rebar_n medium_brightness_rebar_n  medium_brightness_rebar_n high_brightness_rebar_norma high_brightness_rebar_norma o

omal 01 ormal_02 ormal_03 101 102

(a) Standard brightness (b) Medium brightness (c) High brightness

Figure 4. 27 videos of the rebar extrusion process under different lighting conditions: (a) standard
brightness (brightness level ~64,200 W LED, 10 ms exposure); (b) medium brightness (brightness
level ~96,200 W LED, 15 ms exposure); (c) high brightness (brightness level ~128,200 W LED, 20 ms
exposure). Each row within a lighting condition shows abnormal (top and middle) and normal
(bottom) rebar extrusion processes.

During the image restoration phase, our goal is to use downscaled low-resolution
images as input to restore them to their original high-resolution state. To achieve this,
we selectively extracted 1500 original rebar images of 416 x 416 pixels from each set of
9 videos under different lighting conditions, as shown in Figure 5 (top). We then applied
the Bicubic Interpolation technique to downscale these images to 104 x 104 pixels, creating
1500 low-resolution rebar images for each lighting condition, as shown in Figure 5 (bottom).
This Bicubic Interpolation method interpolates the values of adjacent pixels, reducing the
resolution of the images while smoothly maintaining the details.

We trained an image restoration model by linking these low-resolution rebar images
with the original images as labels and evaluated the image restoration performance by
comparing the restored high-resolution images with the original images.
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(a) Standard Lighting (b) Medium Brightness (c) High Brightness

416x416

104x104

Figure 5. Image samples used in the restoration process: (top) 416 x 416 original high-resolution
rebar images extracted from videos; (bottom) 104 x 104 low-resolution rebar images downscaled
using Bicubic Interpolation.

3.2. Image Restoration

Our image restoration model leverages the ResNet architecture, incorporating several
residual blocks to facilitate effective learning within deep neural networks. A key feature of
this model is the integration of our proposed UCA module. The UCA-SRGAN model offers
several key structural characteristics and advantages that contribute to its effectiveness in
grayscale image restoration.

The UCA module efficiently utilizes channel information by combining average and
max pooling operations, emphasizing important contrast and texture features crucial
for accurate rebar endpoint detection. The model’s deep residual structure, comprising
16 residual blocks, mitigates the vanishing gradient problem and enables the learning of
complex features essential for high-quality image restoration. To ensure smooth upsam-
pling without artifacts, the model employs a pixel shuffle operation, efficiently transforming
low-resolution feature maps into high-resolution outputs. The incorporation of a discrim-
inator network in the adversarial training process encourages the generation of more
realistic, high-resolution images, further enhancing the overall restoration quality. Figure 6
shows the overall architecture of our image restoration model, named UCA-SRGAN.

The first convolution layer of the generator (k9n64s1) employs a 9 x 9 kernel size,
64 filters, and a stride of 1 to extract initial features, particularly those related to detailed
texture and contrast, from the input image. This layer is followed by 16 residual blocks,
each consisting of two convolution layers (k3n64s1). These blocks enable the network to
learn effectively without losing information in deep structures. Batch normalization and
PReLU activation functions are applied between each convolution layer to enhance the
network’s non-linear learning capabilities.

The UCA module operates on the feature maps extracted by the convolutional layers
of the SRGAN. It performs channel-wise average and max pooling operations to capture
the global and local importance of each feature channel. The AVG pooling identifies the
overall intensity level of each channel, while the MAX pooling captures the most salient
features. By considering both these aspects, the UCA module can effectively emphasize
the important contrast and texture information in the input image. The pooled features
are then concatenated and processed by two Fully Connected (FC) layers, which learn to
assign channel-specific weights. These weights are applied to the original feature maps via
element-wise multiplication, adaptively refining the feature representations. By employing
ReLU and Sigmoid activation functions, the importance of each channel is adjusted and
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then applied to the original feature maps, resulting in the creation of the Channel Attention
Map (Mc).

UCA-SRGAN
16 residual blocks Iesldualblocks

k9In64s1 1 k; 1 k9n3s1

k3n64s1 k3n256s1
a
d
a

Skip connection

PixelShuffler x2

UCA Module

Discriminator
Real/Fake
Classification

UCA Module

Input Feature F MaxPool

> AngooI @ 5

Channel Attention Mc

Shared FC

Figure 6. The overall architecture of UCA-SRGAN.

The refined feature maps are then passed through a series of upsampling blocks,
which progressively increase the spatial resolution. Each upsampling block consists of
a convolutional layer (k3n256s1), followed by a pixel shuffle operation. This operation
rearranges the elements of a tensor to increase the spatial dimensions while reducing the
channel dimensions, allowing for efficient and effective upsampling without introducing
checkerboard artifacts. These blocks transform low-resolution images into high-resolution
images using pixel shuffle operations and PReLU activation functions. The final convolu-
tion layer (k9n1sl) with a 9 x 9 kernel size, a single filter, and a stride of 1 generates the
final high-resolution rebar endpoint images. This process plays a crucial role in restoring
detailed and sophisticated high-resolution images. Lastly, a discriminator is employed
to distinguish between the real and synthesized images, ensuring the authenticity of the
restored images.

Figure 7 illustrates the detailed architecture of the UCA module. Algorithm 1 describes
the procedure for the UCA module.

Max Pool(x) Concat

BXxCX1X1 FClayerl [+ RelU |+ FClayer2 |— Sigmoid
Avg Pool(x) Bxac

BXCX1X1 Bx (C/R) BxC

BxCxWxH

X * expand(y)

Figure 7. Architecture of Unified-Channel Attention (UCA) module.
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Algorithm 1. UCA Module

Input: input feature map F with dimensions (B x C x W x H)
Output: channel attention map Mc with enhanced channel attention

[UCA Module Initialization]

1: initialize pooling operations and fully connected layers

2: define Avg_Pooling, Max_Pooling for spatial information aggregation

3: define FC_Layer1, FC_Layer2 for dimensionality reduction and expansion
4: set Activation (i.e., ReLU, Sigmoid) for non-linear transformation

[Feature Aggregation]

5: function aggregate_ feature(F):

6: for each feature map in F do:

7: apply Avg_Pooling, Max_Pooling

8: combined_features <—concatenate results of Avg_Pooling and Max_Pooling
9: return combined_features

10: end function
[Channel Importance Weighting]
11: function compute_importance_weights(combined_features):

12: initialize weights array

13: for each set of combined_features do:

14: reduced_features <— FC_Layer1(combined_features)

15: activated_features < Activation(ReLU, reduced_features)

16: importance_weights < Activation(Sigmoid, FC_Layer2(activeted_features))
17: update weights with importance_weights

18: end for

19: return weights

20: end function
[Apply Weights to Feature Maps]
21: function apply_weights_to_features(F, weights):

22: for each feature map F and corresponding weights do:
23: adjusted_F < F x weights

24: update Mc with adjusted_F

25: end for

26: end function

[Main UCA Module Process]

27: initialize input feature maps F with dimensions (B, C, W, H)
28: combined_features <— aggregate_ feature(F)

29: weights < compute_importance_weights(combined_features)

30: Mc « apply_weights_to_features(F, weights)

31: return channel attention maps Mc

The input format is B x C x W x H, where B denotes the batch size, C is the number
of channels (i.e., the number of feature maps), and W and H represent the width and
height of the tensor, respectively. Average and max pooling are performed to calculate
the average and maximum values for each channel, producing an output size of B x C
x 1 x 1. These pooling mechanisms are essential for capturing the overall and distinct
features of each channel, playing a critical role in estimating the brightness and darkness
levels within each channel. The results from the average and max pooling are combined
to form a vector of size B x 2C, which is then processed through two FC layers. The first
FC layer reduces the dimensionality and applies the ReLU activation function, while the
second layer normalizes the outputs to values between 0 and 1 using the sigmoid activation
function. This process of applying weights to the feature maps involves multiplying the
calculated importance weights by each channel of the input tensor ‘x’, adjusting the image
according to the significance of each channel. This adjustment enhances the image quality
by emphasizing important channels and suppressing less significant channels.

The integration of the UCA module is pivotal in effectively emphasizing and restoring
key features in grayscale images. In grayscale images, where channel information is
limited, accurately identifying and enhancing important information within each channel
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is crucial. Our UCA module addresses these challenges by identifying and adjusting the
significance of each channel, thereby effectively highlighting important features of grayscale
images. This enhances the accuracy of restoring fine textures and contrast. Additionally, the
inclusion of residual blocks and pixel shuffle operations facilitates the effective learning of
features in deep networks and a detailed transformation from low to high resolution. Our
methods significantly improve the ability of the model to detect small or subtle changes in
grayscale images and accurately restore details at higher resolutions.

3.3. Rebar Endpoint Detection

We employ the YOLOv5s model for the rapid and accurate detection of rebar endpoints.
As the lightest version among the YOLOv5 models, YOLOv5s excels in the realm of real-
time object detection. It provides fast processing speeds with high accuracy, making
it particularly suitable for real-time object detection in manufacturing settings where
computing resources are limited. The lightweight structure of YOLOv5s optimizes model
efficiency, enabling swift inference times that are ideal for detecting rebar endpoints in real
time.

The architecture of YOLOV5s is structured around three main components: Backbone,
Neck, and Head. These components collectively play a vital role in the object detection pro-
cess, directly influencing the overall functionality and performance of the model. Figure 8
illustrates the architecture of YOLOv5s as applied to rebar endpoint detection.

BACKBONE ;| NECK

i
4 —-I Focus | i !

5 I ¥ '
| |_conv(32) | | 3BottleNeckCSP |— 1 1 :
1 ! } ;

[ 3 BottleNeckcsP | { corICAT\ [ cowGa i
| cow32) | | UPSATMPLE | COI\fCAT
| 9 BottleNeckCSP | Convt(l,l) | 3 BottleNeckcsp
| Convl(3,2) | | 3BottIeLeckCSP | Convl(3,2)
| 9Bott|ell’\IeckCSP |
| Convl(3,2) | | upsampLe | (| 3 BottleNeckCSP

3 Conv (1,1)

Figure 8. The architecture of YOLOVS5s for detecting rebar endpoints.

The Backbone, serving as the core component, extracts feature maps of various sizes
from the input image. This extraction is achieved by dividing the image into four segments
and combining them at the channel level, effectively reducing the resolution while increas-
ing the density of critical information. It consists of several convolution and pooling layers,
employing BottleNeckCSP and Spatial Pyramid Pooling (SPP) techniques. BottleNeckCSP
enhances computational efficiency and gradient flow, thereby improving performance,
while SPP boosts the spatial information of feature maps by pooling with various filter
sizes. The Focus Layer, within the Backbone, serves as the basic feature extraction block,
incorporating batch normalization and a leaky ReLU activation function. Following this, a
Convolutional Layer (e.g., Conv(3,2)) with a 3 x 3 kernel reduces dimensions, and the initial
three BottleNeckCSP layers enhance the model’s learning capabilities. After the second
Conv(3,2), nine BottleNeckCSP layers are arranged sequentially to further enhance complex
pattern recognition. The SPP layer then extracts features of varying sizes, enabling the
model to recognize objects across different scales.
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The Neck effectively refines and reorganizes feature maps of various sizes by com-
bining low-level and high-level features to enhance the accuracy and reliability of object
detection. Following the Backbone’s SPP, a1 x 1 convolution layer in the Neck increases
the resolution of the feature maps through two upsampling processes, incorporating three
BottleNeckCSP layers. This process, combined with intermediate output from the Back-
bone’s nine BottleNeckCSP layers via a Concat layer, integrates information and functional
features from the Backbone, further refining the details. Additional operations involve
three BottleneckCSP, Conv(3,2), and Concat layers, setting the stage for the model’s Head to
perform object detection functionalities.

The Head translates features from the Neck into final outputs, with object detection
performed across three different Detect layers connected to the Neck’s BottleNeckCSP layers.
Each Detect layer contains convolution layers that predict the bounding box parameters (x,
y, w, h), object presence probability, and class probability. These parameters are essential for
accurately determining the position, size, and class of objects. The bounding box parameters
specify the object’s position and size, while the object and class probabilities indicate the
likelihood of an object’s presence at that location and its classification, respectively.

After generating the bounding box for the detected rebar endpoints, we calculated the
center coordinates (x, y) of the bounding box. The center coordinates of the bounding box
are calculated as follows:

Center(x,y) = (xl + %, n+ Z) (1)

where x1 and y; are the coordinates of the top-left corner, and w and h represent the width
and height of the bounding box, respectively.

3.4. Regression Model Applications

In this phase, we utilized the central coordinates obtained from the object detection
model to predict the future endpoint locations of the rebar using both linear and non-
linear regression models. Although movements or location changes of objects within an
image may initially appear straightforward, they often present complex challenges in
actual manufacturing environments due to environmental noise from variations in image
quality and lighting conditions. This complexity underscores the importance of selecting
the appropriate regression model for each situation. For instance, while linear regression
models may be susceptible to environmental noise, non-linear regression models offer
enhanced robustness against specific types of noise and outliers.

Figure 9 illustrates the application of linear and non-linear regression models for
predicting the rebar endpoint location. Figure 9a depicts a linear regression model applied
in scenarios with minimal environmental noise, visualizing both the actual and predicted
locations of the rebar endpoint along the X- and Y-axes. Conversely, Figure 9b shows how
a non-linear regression model effectively captures complex patterns and dynamic changes
in data influenced by environmental noise. Although normal rebar extrusion typically
exhibits a linear pattern, the endpoint of the rebar may exhibit slight shaking phenomena,
adding non-linear characteristics. In contrast, abnormal extrusions reveal more non-linear
patterns, increasing the uncertainty in prediction performance.

To address these challenges, we employed a variety of regression models to predict
the future endpoint locations of the rebar, including Simple Linear Regression (SLR),
Ridge Regression (RR), Lasso Regression (LR), Elastic Net (EN), Polynomial Regression
(PR), Support Vector Regression (SVR), Decision Tree Regression (DTR), Random Forest
Regression (RFR), and Multilayer Regression (MLR). These models, encompassing both
linear and non-linear types, were selected to accommodate both normal and abnormal
input images affected by environmental noise.
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Figure 9. Application of linear and non-linear regression models for predicting rebar endpoint
location: (a) linear regression applied to linear data with minimal environmental noise; (b) non-linear
regression applied to non-linear data with environmental noise.

For each regression model, we used the central coordinates of the detected bound-
ing boxes as input features and the corresponding future coordinates as target variables.
Specifically, for a given frame t, we extracted the x and y coordinates of the rebar endpoints
from the bounding boxes. These coordinates were then used to predict the y-coordinate of
the endpoints in frame t+60, corresponding to approximately 2 s in the future. To ensure
accurate parameter calibration and optimal hyperparameter selection for each regression
model, we utilized GridSearchCV in our hyperparameter tuning process. To mitigate bias
during model training, we randomly shuffled the training data and employed a stratified
sampling strategy. The performance of each hyperparameter combination was evaluated
using 5-fold cross-validation, with the mean squared error (MSE) as the scoring metric. In
this process, the dataset was divided into five folds, with one fold serving as the validation
set and the remaining four as the training set. This approach enables a comprehensive
exploration of the hyperparameter combinations for each model through a rigorous 5-fold
cross-validation process, repeated ten times. The combination yielding the lowest average
MSE across the folds was selected as the optimal setting for each model. Table 1 lists the
nine regressors we used, along with their respective hyperparameter settings.

Table 1. Candidate regressors and hyperparameter settings.

Type Regressor Name Parameter Setting
Simple Linear Regression (SLR) None
Ri R ion (RR Alpha:1.
Linear idge Regression (RR) pha:1.0
Lasso Regression (LR) Alpha:1.0
Elastic Net (EN) Alpha:1.0, L1_ratio: 0.5
Polynomial Regression (PR) Degree: 2
. C: 1.0, Epsilon:0.1, Kernel: Radial Basis Function
Support Vector Regression (SVR) (RBF), Polynomial, Sigmoid
Non-linear Decision Tree Regression (DTR) Max_depth:None, Min_samples_split:2,

Min_samples_leaf: 1

N_estimators:100, Max_depth:None,

Random Forest Regression (RFR) N_jobs: —1, Min_sample_split: 2

Hidden_layer_sizes:100, Activation: tanh,

Multi-Layer Regression (MLR) Solver: adam, Max_iter: 200
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3.5. Rebar Twist Detection

In this phase, we calculate the error rate based on the endpoint locations predicted
by each regression model and select the model with the lowest error. Subsequently, we
classify results that fall within a specific error rate threshold in the rebar manufacturing
environment as ‘Normal’, while those exceeding thresholds are classified as ‘Twist’. To
ensure accurate and reliable detection in real-time manufacturing environments, we define
criteria for identifying Rebar Twist. The primary criterion for identifying a twist is an
error rate exceeding 5%. This error rate is calculated as the normalized Euclidean distance
between the predicted and actual positions of the rebar endpoint relative to the image’s
diagonal length.

Initially, we calculated the error rate as the percentage obtained by normalizing the
Euclidean distance between the predicted and actual positions relative to the diagonal
length of the image. The error rate can be defined as follows:

2 2
\/(xpredicted - xuctuul) + (}/predicted - yuctual>

Error Rate =
\/img_widthz + img_height?

x 100% )

where Xpregicteds Ypredicted Tepresent the predicted positions, and Xaetual, Yactual denote the actual
positions of the rebar endpoints within the grid boxes. The image width and height are
represented by imguyigmn, iMgneight, respectively.

We iteratively predicted the locations of the rebar endpoints using a set of linear
and non-linear regression models, calculating the error rate for each prediction. This
involves maintaining a cumulative error rate and counting the number of predictions
to compute an average error rate for each model. The model with the lowest average
error rate was identified as the best model. This model was then utilized for rebar twist
detection, applying a predefined threshold. Algorithm 2 describes the procedure for rebar
twist detection.

This approach is designed to identify the most accurate model from a list of regression
models for predicting the actual positions of rebar endpoints. The algorithm selects the
model with the lowest average error rate for classification by evaluating the prediction
error rate for each model against each dataset. A rebar condition is classified as “Normal’ if
the lowest error rate is less than or equal to 5%; otherwise, it is considered a “Twist’.

To effectively communicate the results, the findings are presented in a video format,
utilizing grid cells to aid in rebar twist detection by contrasting the actual and predicted
coordinates. Figure 10 illustrates the visualization of the grid cells for twist detection,
displaying both the actual center coordinates and the predicted coordinates along with a 5%
error threshold. In the normal rebar scenario (Figure 10a), there is a close match between
the actual and predicted coordinates, with the error falling within the acceptable range.
Conversely, in the case of twisted rebar (Figure 10b), there is a significant deviation between
the actual and predicted coordinates, exceeding the 5% threshold, thereby triggering the
twist detection mechanism.
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Algorithm 2. Rebar Twist Detection

Input: dataset D containing (Xactuat, Yactual, M8 widths 1M8height), and a list of regression models M
Output: classification results indicating ‘Normal” or ‘Twist’ and the best model M” with the lowest
error rate

[Calculate Error Rate]

1: function calc_error_rate(Xpregicted, Ypredicted: 1MSuwidths 1MSheight):

2: error_rate <—calculate the prediction error rate with (X,ct01, Yactual)

3: return error_rate

4: end function

[Model Selection]

5: define model list M (M = {SLR, RR, LR, EN, PR, SVR, DTR, RFR, and MLR})
6: initialize best model M’ as None and lowest_error_rate as 0.0

7: for each model in M do:

8: initialize total_error_rate as 0.0 and count as 0

9: for each data point (x,y) in dataset D do:

10: Xpredicteds Ypredicted <—Predict using each model for data point

11: error_rate <—call function calc_error_mte(xpredicted, Ypredictedr 1MSuwidths MSheight)
12: total_error_rate < total_error_rate + error_rate

13: count < count +1

14: end for

15:  average_error_rate < total_error_rate/count
16:  if average_error_rate < lowest_error_rate:

17: lowest_error_rate <— average_error_rate
18: best_model M’ < model
19: end for

[Twist Classification]

20: if lowest_error_rate < 5%:

21:  classification <'Normal’

22: else:

23:  classification < Twist’

24: return best model M’, classification

(b)

Figure 10. Visualization of grid cells for twist detection: (a) normal and (b) twist, displaying actual

center coordinates and 5% threshold.

4. Experiments and Results

In this section, we provide a comprehensive description of the performance evaluation
of our proposed techniques. We introduce the metrics used to evaluate our methods and
present a detailed discussion of the performance evaluation results. The performance of our
techniques was evaluated through four experiments: (1) performance results of rebar twist
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detection, (2) threshold for the error rate parameter, (3) evaluation of the image restoration
model’s performance, and (4) analysis of the rebar endpoint detection performance.

4.1. Evaluation Metrics

To evaluate the performance of rebar twist detection, we utilized four standard eval-
uation metrics commonly used in classification tasks: accuracy, precision, recall, and F1
score. These metrics were derived from the confusion matrix, which includes True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). Specifically, TP
represents the number of instances where the model correctly predicts the presence of a
twist in the rebar. TN refers to the number of instances where the model correctly identifies
the absence of a twist, accurately recognizing rebar without any twisting. FP is the number
of instances where the model incorrectly identifies non-twisted rebar as ‘twist’, representing
a misclassification where the model predicts a twist in error. FN represents the number
of instances where the model fails to detect a twist in the rebar, incorrectly labeling it as
‘normal” when it actually contains a ‘twist’.

Accuracy indicates how often the model makes correct predictions out of all pre-
dictions and serves as a measure of the model’s overall performance. The equation for
accuracy is defined as follows:

TP+TN
TP+TN+FP+FN

Accuracy = 3)

Precision represents the proportion of instances predicted as ‘twist’ by the model that
is actually ‘twist’. This metric reflects the model’s ability to avoid false positives. The
equation for precision is defined as follows:

TP
Precision = ———— 4
recision TP+ EP 4)
Recall represents the proportion of actual ‘twist’ instances that the model correctly
identifies. This metric indicates the model’s ability to detect all positive instances. The
equation for recall is defined as follows:

TP

Recall - m

(5)

The F1 score is the harmonic mean of precision and recall and provides a balanced
measure of the model’s performance. It considers both FP and FN, offering a comprehensive
view of how effectively the model performs its predictions. The equation for the F1 score is

defined as follows:

Precision x Recall
F1S =2
core % Precision + Recall ©)

In addition to these classification metrics, we also employed the PSNR and the SSIM
to evaluate the performance of our image restoration model. PSNR measures the ratio
between the maximum possible power of a signal and the power of corrupting noise,
expressed in decibels. A higher PSNR value indicates better image quality. The equation
for PSNR is defined as follows:

(7)

2
PSNR =10 - logq (MAX )

MSE

where MAX represents the maximum possible pixel value in the image, and MSE represents
the mean square error between the original and restored images.

SSIM evaluates the quality of an image by comparing its luminance, contrast, and
structure with those of the original image. The SSIM values range from 0 to 1, with higher
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values indicating greater structural similarity between the original and restored images.
The equation for SSIM is defined as follows:

(2yxw + cl) (zaxy + C2>

(13412 +C1) (03403 + o)

SSIM = (8)

where x and y are the original and restored images, respectively; yix and y, are the means
of x and y; oy and ¢y, are the variances of x and y; oy, is the covariance between x and y; and
C1 and C; are small constants to avoid instability when the denominator is close to zero.

4.2. Performance Results of Rebar Twist Detection

To evaluate the performance of our rebar twist detection technique, we conducted
comparative experiments using various image processing and analysis techniques. These
approaches were categorized into six groups: (1) traditional image processing, (2) low-
resolution, (3) high-resolution, (4) enhanced high-resolution, (5) proposed enhancements,
and (6) the proposed model.

For all comparison approaches, we first identified the rebar endpoints and obtained
their coordinates. Then, we calculated the error rate, classifying an error rate of less than
5% as ‘normal” and an error rate of more than 5% as “twist’. When using object detection
to detect rebar endpoints, we employed YOLOvVS5s. Experiments were conducted for each
approach, considering cases both with and without regression to predict rebar endpoint
locations. When regression was used, we selected the model with the lowest average error
rate from nine possible linear and non-linear regression models, such as Simple Linear
Regression (SLR) and Support Vector Regression (SVR). When regression was not used, we
calculated the alignment and orthogonality among the rebars to estimate the error rate at
the rebar endpoint locations. To ensure robustness, we carried out an iterative evaluation
for each approach. This evaluation involved 27 videos, each containing 30 frames, and
was repeated 200 times across five sets, resulting in a total of 1000 iterations. Finally, we
recorded and compared the average performance results for each approach.

Table 2 presents the performance results of the rebar twist detection. Proposed model
indicates the highest-performing results and their corresponding scores.

Table 2. Performance results of the rebar twist detection.

Group Model Accuracy Precision Recall F1 Score
Edge Detection +
Traditional Image Hough Transform (Canny Edge) 0.3625 0.2664 0.1354 0.1947
Processing -
Background Subtraction +
Regression Model (Gaussian Mixture Model) 04892 05110 0.2156 0.3033
Low Resolution + Object Detection 0.5775 0.5482 0.5073 0.5270
Low-Resolution Low Resolution + Object Detection + 0.7172 0.7108 06846 0.6975
Regression Model (Decision Tree (DT)) ' ’ ’ ’
SRGAN + Object Detection 0.7960 0.7847 0.7447 0.7642
High-Resolution SRGAN + Object Detection +
Regression Model (Multi-Layer 0.8138 0.8437 0.7961 0.8192
Regression (MLR))
CBAM-SRGAN + Object Detection 0.7766 0.7649 0.7045 0.7335
Enhanced
High-Resolution CBAM-SRGAN + Object Detection +
Regression Model (Random Forest (RF)) 0.8103 0.7097 0.7809 0.7436
Proposed UCA-SRGAN + Object Detection 0.8644 0.7983 0.9169 0.8535
Enhancements
Proposed UCA-SRGAN + Object Detection +
Model Regression Model (Random Forest (RF)) 0.8829 0.9376 0.9029 0.9199
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In the traditional image processing group, we evaluated the effectiveness of two
existing approaches: edge detection + Hough transform based on the Canny edge and
background subtraction + regression model (Gaussian mixture model). The edge detection
+ Hough transform approach, utilizing the Canny edge, exhibited the lowest performance
metrics, with an accuracy of 0.3625, precision of 0.2664, recall of 0.1354, and F1 score of
0.1947. These results can be attributed to the method’s reliance on extracting edges from
moving regions in the video and then detecting line segments using the Hough transform.
However, the edge detection step often produces numerous irrelevant edges in the presence
of lighting variations and background noise. Consequently, the Hough transform identified
multiple line segments, some of which were mistakenly recognized as the endpoints of the
rebar, leading to frequent misidentification of twisted rebars. Figure 11a,b illustrate how the
detection of unnecessary line segments poses significant challenges to the precise identifica-
tion of twist patterns in lighting-sensitive manufacturing environments, indicating that the
edge detection + Hough transform approach is inadequate for handling the deformation of
complex objects such as twisted rebars and fails to provide accurate central coordinates for
the algorithm to effectively distinguish between twisted rebars. However, the background
subtraction and regression model (Gaussian mixture model) approach demonstrated higher
performance compared to the edge detection + Hough transform approach. It achieved an
accuracy of 0.4892, a precision of 0.5110, a recall of 0.2156, and an F1 score of 0.3033. By
incorporating the regression model, the error rate of the rebar endpoint location can be
estimated more precisely, which contributes to improving the twist detection performance.
As shown in Figure 11c, this approach effectively removed the background and accurately
extracted the center coordinates of the moving area, which corresponded to the endpoint of
the rebar. This enables more precise tracking of the endpoint location, facilitating improved
twist detection performance. These results are particularly important for capturing the
rebar movement in dynamic environments.

(a) Edge and line segment detection (b) Rebar endpoint detection (c) Background subtraction

Figure 11. Results of traditional image processing techniques: (a) edge detection and line segment
detection results based on Canny edge, (b) rebar endpoint detection results using Hough transform,
(c) results of background subtraction and real-time tracking of center coordinates of moving area.

In the low-resolution group, we explored the impact of object detection and regression
models on the performance of rebar twist detection using low-resolution images. This
group served as a baseline to demonstrate the effectiveness of incorporating object de-
tection and regression models compared with traditional image processing approaches.
The low-resolution + object detection approach achieved an accuracy of 0.5775, precision
of 0.5482, recall of 0.5073, and an F1 score of 0.5270. These results indicate that even
with low-resolution images, employing object detection techniques can lead to improved
performance compared to traditional image processing approaches. The object detection
model can effectively localize the rebar endpoints, enabling better twist detection perfor-
mance. Furthermore, when a regression model (Decision Tree) was incorporated alongside
object detection, the performance of the low-resolution group further improved. The low-
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resolution + object detection + regression model showed an accuracy of 0.7172, precision
of 0.7108, recall of 0.6846, and an F1 score of 0.6975. The integration of the regression
model allows for more accurate prediction of the rebar endpoint positions, considering
the spatial relationships and dependencies between the detected endpoints. However,
while the low-resolution group demonstrates the benefits of object detection and regression
models over traditional image processing approaches, their performance is still lower
compared to high-resolution image restoration-based models. The characteristics of low-
resolution images pose challenges in capturing fine details and accurately localizing the
rebar endpoints, limiting the overall twist detection performance. This highlights the need
to explore image restoration techniques to enhance the quality of low-resolution images
before applying object detection and regression models, aiming to achieve even higher
twist detection performance.

In the high-resolution group, we explored the impact of the image restoration tech-
nique, SRGAN, on rebar twist detection. Initially, we utilized SRGAN to enhance the
spatial resolution of input images before applying object detection algorithms. We then
evaluated the performance of SRGAN + Object Detection. The combination of SRGAN and
object detection achieved an accuracy of 0.7960, precision of 0.7847, recall of 0.7447, and
an F1 score of 0.7642, outperforming the traditional image processing and low-resolution
approaches. Furthermore, we evaluated the combination of SRGAN + Object Detection
with a regression model (Multi-Layer Regression (MLR)), which aimed to estimate the error
rate at rebar endpoint locations more accurately. When MLR was used in conjunction with
SRGAN and object detection, the performance further improved, with an accuracy of 0.8138,
precision of 0.8437, recall of 0.7961, and an F1 score of 0.8192. These results demonstrate
that the integration of object detection with super-resolution techniques can help capture
spatial dependencies and improve the prediction of rebar endpoint locations. Moreover,
incorporating a regression model enhances the ability to predict the future position of
the rebar endpoint by considering its location variability, consequently leading to better
twist detection performance. However, the existing simple detection methods for align-
ment and orthogonality among rebars, which estimate the error rate, cannot sufficiently
predict the position of the rebar that continuously changes with high variability in real
manufacturing environments. In contrast, applying a regression model accommodates this
visual variability by modeling how the rebar’s position will change over time, enabling
more accurate predictions of the future position of the rebar endpoint in a dynamically
changing environment.

In the enhanced high-resolution group, we evaluated attention mechanisms to im-
prove the quality of the image restoration technique. Attention mechanisms emphasize
important features while suppressing irrelevant ones, ensuring the quality of the network
structure. However, CBAM-SRGAN + Object Detection achieved a lower accuracy of
0.7766, precision of 0.7649, recall of 0.7045, and an F1 score of 0.7335 compared to SRGAN +
Object Detection. This can be attributed to the limitations of channel attention in CBAM
when dealing with grayscale images, as the amount of information that can be obtained
through channel attention may be relatively limited compared to color images. Further-
more, spatial attention in grayscale images relies only on spatial characteristics such as
texture and shape, which may not be sufficient for identifying important regions. The
incorporation of a regression model with CBAM-SRGAN and object detection led to a
decrease in performance compared to SRGAN + Object Detection + Regression Model
(Multi-Layer Regression (MLR)). These findings underscore the importance of considering
grayscale-specific approaches in improving the high-resolution image restoration process
and their subsequent impact on twist detection performance.

The proposed enhancements group evaluated the approach using UCA-SRGAN +
Object Detection, which achieved an accuracy of 0.8644, precision of 0.7983, recall of 0.9169,
and an F1 score of 0.8535. The UCA module, specifically designed for grayscale images,
was applied to SRGAN to improve image restoration and object detection performance.
This approach proved to be particularly effective in extracting and learning features from
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grayscale images despite variations in brightness and contrast. Consequently, UCA-SRGAN
can improve performance by effectively capturing and enhancing the relevant features in
the rebar images, leading to improved object detection and twist detection performance
without the need for regression modeling.

Finally, the proposed model group, comprising UCA-SRGAN for high-resolution im-
age restoration, Object Detection for detecting rebar endpoints, and a regression model (Ran-
dom Forest) for accurately estimating the error rate in rebar endpoint locations, achieved
the highest performance among all the evaluated methods. It obtained an accuracy of
0.8829, a precision of 0.9376, a recall of 0.9029, and an F1 score of 0.9199. The UCA-SRGAN
model enhances image quality and captures fine-grained details, while the object detection
algorithm accurately localizes the rebar endpoints. The regression model, with its ability
to handle complex non-linear relationships and its robustness to outliers, effectively esti-
mates the error rate at the rebar endpoint locations. By leveraging the strengths of each
component, the proposed model achieves significant improvements in accuracy, precision,
recall, and F1 score for rebar twist detection, demonstrating its superior capability in this
challenging application.

The experimental results demonstrate the effectiveness of our proposed approach in
accurately detecting rebar twists in manufacturing processes. The integration of grayscale
image restoration techniques, such as UCA-SRGAN, with object detection and regression
modeling, significantly improves twist detection performance compared to traditional
image processing techniques and standard super-resolution approaches. The attention
mechanisms employed in UCA-SRGAN play a crucial role in enhancing the quality of the
super-resolved images, leading to better object detection and twist detection performance.
Furthermore, the incorporation of regression modeling helps estimate the error rate ac-
curately at the rebar endpoint locations, contributing to the overall effectiveness of our
proposed method.

4.3. Impact of Threshold for Error Rate

The values of the error rate threshold used for classifying rebar twists can significantly
affect the performance of our proposed technique. In this experiment, we thoroughly
analyzed the impact of threshold values on the detection performance using the F1 score.
To determine the optimal threshold value, we varied the threshold from 1% to 20% in
increments of 1% and evaluated the corresponding F1 score at each step. Figure 12 il-
lustrates the impact of different threshold values on the performance of our rebar twist
detection technique.

5% 10% 15% 20%

Threshold Ratio

Threshold Ratio

1%

2% 3% 4% 5% 6% 7% 8% 9% 10% 1% 12% 13% 14% 15% 16% 17% 18% | 19% | 20%

F1-Score

0.8467

0.8520 | 08790 | 09084 | 09199 | 08903 | 0.8850 | 0.8684 | 0.8632 | 0.8633 | 0.8262 | 0.8163 | 0.8009 | 0.7929 | 0.7852 | 0.7698 | 0.7381 | 0.7379 | 07187 | 0.7182

Figure 12. Change in F1 score according to threshold values ranging from 1% to 20%.



Sensors 2024, 24, 4757

22 of 30

As shown in Figure 11, the F1 score demonstrates significant variance as the threshold
for the error rate is varied. When the threshold value is set too low, such as 1% or 2%,
our proposed technique becomes overly sensitive to minor deviations in the rebar shape,
leading to a high number of false positives. As the threshold value increases from 1% to 5%,
there is an initial improvement in the F1 score, suggesting that allowing a certain degree of
tolerance towards error enhances the ability of our proposed technique to accurately classify
twists. However, after 5%, further increasing the threshold value leads to a reduction in
the F1 score. This reduction signifies a decline in the balance between precision and recall.
As the threshold value increases, the model can begin to overlook actual twists, leading to
an increase in false negatives, or it may misidentify regular rebars as twisted, resulting in
an increase in false positives. Consequently, we have adopted this optimal 5% threshold
for classifying rebar twists in our proposed technique. This threshold value enables our
technique to accurately detect and classify rebar twists while minimizing false positives
and false negatives.

4.4. Evaluation of the Image Restoration Model’s Performance

In this section, we compare the performance of our proposed model, combining
the UCA module with SRGAN against three existing GAN and eight CNN-based image
restoration models. The dataset used for training consisted of low-resolution grayscale
rebar images, each with a size of 104 x 104 pixels. We evaluated the image restoration
performance by comparing the restored high-resolution images with the corresponding
original images, which have a size of 416 x 416 pixels. To ensure a fair comparison, the
training parameters were set to a learning rate of 0.0002, a batch size of 1, and 500 epochs for
all models. These images were collected by considering a diverse range of environmental
noise, including camera shake and varying lighting conditions. To compare performance,
we conducted a comprehensive analysis using PSNR and SSIM metrics. Additionally,
we performed experiments to evaluate the image restoration models’ performance under
medium and high-brightness lighting conditions.

Table 3 presents the comprehensive performance comparison of GAN and CNN-based
image restoration models. Proposed model indicates the highest-performing results and
their corresponding scores.

Table 3. Performance comparison of GAN and CNN-based image restoration models.

Group Model PSNR SSIM PSNR SSIM PSNR SSIM
(Standard) (Standard) (Medium) (Medium) (High) (High)

GAN 3.9015 0.0778 3.8527 0.0752 2.1315 0.0636

GAN-based SRGAN 36.4418 0.9287 32.5474 0.9237 17.9010 0.8686
models CBAM + SRGAN 212176 0.9145 32.4397 0.9280 19.0736 0.8797
gglfiethéfﬁl) 40.5468 0.9716 34.9033 0.9425 29.8700 0.8878

SRCNN 31.0370 0.8925 31.3183 0.8923 18.3161 0.8651

ESPCN 33.2466 0.9278 19.9263 0.8563 19.1112 0.8296

EDSR 21.3800 0.7261 19.8732 0.8782 19.0482 0.8565

CNN-based LapSRN 18.6787 0.6135 14.6029 0.4940 13.2134 0.4257
models DRCN 29.6144 0.8502 29.0567 0.8979 28.4577 0.8748
DBPN 312165 0.9028 25.7865 0.8607 25.0529 0.8272

CARN 21.4092 0.7636 19.9406 0.8797 19.1812 0.8564

RCAN 33.8889 0.9368 292515 0.9005 28.8500 0.8792

As shown in Table 3, the proposed UCA-SRGAN model consistently outperforms
other models across all lighting conditions. Under standard brightness, it achieves the
highest PSNR (40.5468) and SSIM (0.9716) scores. This superior performance is maintained
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under medium and high brightness conditions, although there is a general decrease in
performance for all models as lighting intensity increases.

Analysis of the image restoration quality of the GAN-based model group revealed that
the GAN model had the lowest PSNR and SSIM values. This indicates that the GAN models
encountered difficulties in learning the distribution of grayscale rebar images, negatively
impacting their image generation capabilities. The SRGAN model showed sufficient image
restoration quality with a PSNR of 36.4418 and an SSIM of 0.9287, but its performance was
relatively lower compared to the proposed UCA-SRGAN model. The CBAM + SRGAN
model achieved a PSNR of 21.2176 and an SSIM of 0.9145, which is significantly lower
than both SRGAN and UCA-SRGAN. The lower performance of SRGAN and CBAM +
SRGAN can be attributed to their primary design focus on the restoration of color images.
Color images inherently offer rich information on object boundaries, textures, and contrasts,
which these models are optimized to exploit. In contrast, grayscale images lack these clear
visual cues, making it more challenging for SRGAN and CBAM + SRGAN to distinguish
between rebar and background areas effectively. Consequently, improving sharpness and
detail in grayscale images becomes more difficult for these models, as they rely heavily on
color information to guide the restoration process.

On the other hand, the proposed UCA-SRGAN model achieved the highest PSNR of
40.5468 and SSIM of 0.9716, demonstrating superior performance compared to other models
within the group. This can be attributed to the UCA module’s effectiveness in emphasizing
important features in grayscale images while suppressing irrelevant background noise. By
focusing on these key characteristics, the UCA module enables the model to better capture
and enhance the structure, texture, and contrast changes in the restored images. As a result,
the UCA-SRGAN model is able to accurately detect rebar endpoints, even in the absence of
color information.

In the CNN-based model group, ESPCN, RCAN, SRCNN, and DBPN show relatively
high PSNR and SSIM scores, indicating their effectiveness in capturing local features
and hierarchical representations of the input images. However, their performance is still
lower than that of the UCA-SRGAN model. The EDSR, LapSRN, DRCN, and CARN
models demonstrate moderate performance, with PSNR values ranging from 18.68 to 29.61
and SSIM values between 0.6135 and 0.8502. CNN-based models tackle the grayscale
limitation by learning hierarchical features that capture the inherent structure and patterns
of rebar images. These models employ deep convolutional layers to extract meaningful
representations from the grayscale input, allowing them to restore missing details and
improve image quality. However, the lack of color information may still affect their ability
to precisely localize rebar endpoints, particularly in cases where the contrast between rebar
and background is subtle. GAN-based models, particularly our proposed UCA-SRGAN,
show better resilience to changing lighting conditions compared to CNN-based models.
This is evidenced by the smaller performance drop in PSNR and SSIM scores across different
lighting scenarios.

In the experiments, under medium brightness conditions, the ESPCN, RCAN, SRCNN,
and DBPN models maintained relatively high scores in PSNR and SSIM but still performed
somewhat lower than the UCA-SRGAN model. Overall performance decreased under
medium brightness conditions, but the proposed UCA-SRGAN model still showed the
highest performance. However, under high brightness conditions, the performance of all
models significantly dropped. This can be attributed to the similarity in color between
the rebar endpoints and background noise, leading to many false detections, as well as
additional noise caused by flickering phenomena. This suggests that model performance
can vary greatly depending on lighting conditions. Additionally, it was difficult to use
these images for training YOLOV5, and additional noise occurred due to flickering during
the process of collecting endpoint data under high brightness.

To further illustrate the qualitative differences between the models, Figure 13 presents
visual comparisons of the restored images for rebar endpoints generated by five representa-
tive models: ESPCN, RCAN, SRGAN, CBAM-SRGAN, and the proposed UCA-SRGAN.
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2X

4X

CARN

For each model, images magnified by 2x and 4x are provided. The UCA-SRGAN model
produces visually sharper and more detailed images compared to other models, with better
preservation of rebar textures and edges. In the case of SRGAN and CBAM-SRGAN, blurry
rebar patterns are observed when visually magnified. Interestingly, despite good quality
metrics, images from the ESPCN and RCAN models sometimes appear to have lower
perceptual quality to the human eye, with less defined edges and slightly fuzzy textures.

RCAN SRGAN SRGAN + CBAM Proposed

Figure 13. Comparative results of images generated by image restoration model: CARN, RCAN,
SRGAN, CBAM + SRGAN, and the proposed model.

4.5. Analysis of Rebar Endpoint Detection Performance

In this section, we compare the object detection performance of YOLOv5s models
trained on four different rebar image datasets: (1) low-resolution images, (2) original
images, (3) images generated by SRGAN, and (4) images generated by our proposed
UCA-SRGAN model. Each dataset consists of 1500 images, and the ratio of training and
validation data was set to 8:2. To comprehensively evaluate the model’s performance under
various lighting conditions, we conducted experiments under standard, medium, and high
brightness settings.

To optimize the performance of the YOLOv5s models on these datasets, we carefully
tuned both the model and data augmentation hyperparameters. The model hyperparame-
ters, such as learning rate and number of epochs, directly influence the model’s training
process and performance. To effectively calibrate the parameters and ensure the optimal
selection of hyperparameters, we employed Optuna [30] in our hyperparameter tuning
process. Optuna is an automatic hyperparameter optimization framework that efficiently
searches for the best combination of hyperparameters, minimizing the time and effort re-
quired for manual tuning. Data augmentation hyperparameters control the augmentation
techniques used to expand and diversify the training dataset. YOLOVS5s relies on data
augmentation to improve its robustness and prevent overfitting, especially when working
with limited datasets. By applying transformations such as random rotations, flips, scale
changes, and color variations to the training images, we can simulate various scenarios and
enhance the model’s ability to detect rebar endpoints under different conditions. The hy-
perparameter values for data augmentation were empirically adapted, considering changes
in lighting, scale, and orientation.

Tables 4 and 5 present the YOLOv5s model hyperparameters and data augmentation
hyperparameters used in our experiments, respectively.
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Table 4. YOLOV5s training hyperparameters.

Hyperparameter Value
Initial Learning Rate 0.01
Final OneCycleLR Learning Rate 0.2
Momentum 0.937
Weight Decay 0.0005
Warmup Epochs 3.0
IoU Training Threshold (IoU_t) 0.20
Anchor Multiple Threshold (anchor_t) 4.0

Table 5. YOLOv5s data augmentation hyperparameters.

Hyperparameter Value
HSV-Hue Augmentation (hsv_h) 0.01
HSV-Saturation Augmentation (hsv_s) 0.7
HSV-Value Augmentation (hsv_v) 0.4
Horizontal Flip (flipir) 0.5
Mosaic 1.0
Adjust Contrast Gray 0.5

The YOLOv5s models’ performance on each dataset was evaluated using precision-
confidence and Fl-confidence curves. These curves plot the precision and Fl-score, re-
spectively, against the confidence threshold used for detecting objects. By varying the
confidence threshold, we can evaluate the model’s performance at different levels of de-
tection certainty. In real-world manufacturing settings, these curves can be utilized in
real-time video processing to enable accurate object detection under various environmental
conditions, such as changes in lighting, machine movement, and orientation. Additionally,
these curves can be used to find the optimal balance between precision and recall, minimiz-
ing false positives (i.e., incorrectly detecting non-rebar objects as rebar endpoints) and false
negatives (i.e., failing to detect actual rebar endpoints) based on the specific requirements
of the application. Table 6 presents the detection results for each dataset under standard,
medium, and high brightness settings.

Table 6. YOLOV5s object detection performance results for each dataset under different brightness settings.

Standard Brightness Medium Brightness High Brightness
Dataset Type Precision- F1- Precision- F1- Precision- F1-
Confidence Confidence Confidence Confidence Confidence Confidence
Low-Resolution 0.736 0.711 0.602 0.554 0.602 0.554
Original 0.793 0.742 0.671 0.626 0.635 0.587
SRGAN 0.805 0.756 0.709 0.664 0.669 0.621
Proposed Model 0.848 0.798 0.741 0.693 0.702 0.654

For the standard brightness, the low-resolution images dataset achieved a precision-
confidence curve of 0.736 and an Fl1-confidence curve of 0.711, highlighting the challenges
in accurate rebar endpoint detection. The low resolution and presence of noise hinder
the model’s ability to distinguish between rebar endpoints and background. The original
dataset showed slightly improved performance, with a precision-confidence curve of
0.793 and an Fl-confidence curve of 0.742. The SRGAN dataset further enhanced the
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results, achieving 0.805 and 0.756, respectively. This improvement can be attributed to
SRGAN's attention mechanism, which helps focus on salient features of the rebar images.
Our proposed model’s dataset demonstrated the highest performance, with a precision-
confidence curve of 0.848 and an F1-confidence curve of 0.798. This significant improvement
demonstrates the effectiveness of our proposed image restoration model. The UCA module
in our model adaptively emphasizes important features in the grayscale rebar images
while suppressing irrelevant background noise, resulting in restored images with enhanced
structural details and clearer boundaries.

For the medium brightness, overall performance decreased compared to the standard
brightness. The low-resolution medium dataset brightness achieved 0.602 and 0.554 for
precision and F1 curves, respectively, showing a significant performance drop. The original
medium brightness dataset improved slightly to 0.671 and 0.626 but still underperformed
compared to the standard brightness. The SRGAN medium brightness dataset showed
improved performance at 0.709 and 0.664 yet still fell short of the standard brightness results.
Our proposed model’s medium brightness dataset achieved the highest performance in
this category, with 0.741 and 0.693, but still showed decreased performance compared to
the standard brightness.

For the high brightness, the performance degradation was even more pronounced.
The low-resolution high-brightness dataset achieved 0.602 and 0.554 for precision and F1
curves. The original high brightness dataset slightly improved to 0.635 and 0.587. The
SRGAN high brightness dataset showed better performance at 0.669 and 0.621 but still
significantly underperformed compared to the standard brightness. Our proposed model’s
high brightness dataset achieved 0.702 and 0.654, showing the highest performance in
this category but still demonstrating a substantial decrease compared to the standard
brightness results.

These results clearly demonstrate that performance degrades as lighting intensity
increases (i.e., moving from standard to medium to high brightness datasets). This degrada-
tion is likely due to the increased difficulty in distinguishing between rebar and background
in brighter images. Our proposed model shows the best performance across all brightness
levels, particularly excelling with the standard brightness dataset. It effectively captures
important features of rebar images while suppressing background noise.

Figure 14a—c show the rebar detection performance graphs of YOLOVS5 trained on
datasets generated by our proposed image restoration model for standard, medium, and
high brightness, respectively. Notably, in all graphs, the F1 performance of the standard
brightness dataset is superior when the confidence exceeds 0.8. This indicates that our
proposed model performs best on the standard brightness dataset, effectively capturing
crucial features of rebar images.

To further validate the performance of our proposed model, we conducted real-time de-
tection experiments using nine rebar videos under standard brightness conditions. Table 7
compares the average number of detections per frame and the average detection confidence
for YOLOVS5 models trained on three datasets: the SRGAN dataset, the Original dataset
with contrast adjustment (Original + DA), and our proposed image restoration model
dataset. Figure 15 presents visualizations of the detected rebar endpoints for each dataset
under standard brightness conditions.

Table 7. Real-time YOLOV5 detection performance experiment results under standard brightness settings.

Dataset Type Detection per Frame Detection Confidence
Original + DA (Standard) 408 0.7582
SRGAN (Standard) 380 0.6708

Proposed Model (Standard) 410 0.7748




Sensors 2024, 24, 4757 27 of 30

i5 Precision-Confidence Curve 06 F1-Confidence Curve
—— rebar 1.00 at 0.848 —— rebar 1.00 at 0.798
0.8 0.8
06 0.6
(<}
@ —
O (T
L
S04 0.4
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Confidence Confidence
(a)
i6 Precision-Confidence Curve 7 F1-Confidence Curve
—— rebar 1.00 at 0.741 —— rebar 1.00 at 0.693
0.8 0.8
2 06 0.6
2
o o~
O (T8
<
204 0.4
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Confidence Confidence
ib Precision-Confidence Curve b F1-Confidence Curve
—— rebar 1.00 at 0.702 —— rebar 1.00 at 0.654
0.8 0.8
206 0.6
5=}
0o —
%3 w
9
04 0.4
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Confidence Confidence
(©)

Figure 14. YOLOVS training performance graphs for datasets generated by the proposed image
restoration model: (a) Precision and F1 graphs for standard brightness resolution, (b) Precision and F1
graphs for medium brightness resolution, (c) Precision and F1 graphs for high brightness resolution.

The SRGAN dataset achieves an average of 380 detections per frame with an average
detection confidence of 0.6708. The Original + DA dataset improves upon this, with an
average of 408 detections per frame and an average detection confidence of 0.7582. However,
our proposed model dataset outperforms both, achieving an average of 410 detections per
frame with an average detection confidence of 0.7748. The higher detection confidence
indicates that our model is more certain about its predictions, reducing the likelihood of
false positives and false negatives.
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Figure 15. Visualizations of the detected rebar endpoints for each dataset.

We observed that as time progressed, the confidence values of the predicted bounding
boxes tended to decrease. As shown in Figure 15, when selecting only the bounding box
with the highest confidence value above a 60% threshold, we found that for the original
and SRGAN datasets, no bounding boxes met this criterion after a certain point, resulting
in no detection. This leads to an increase in false negatives, where the model fails to detect
actual rebar endpoints. This issue was not observed with our proposed model, which
consistently maintained higher confidence values throughout the detection process. On
average, the confidence values decreased by 0.05 per frame for the Original + DA dataset
and 0.07 per frame for the SRGAN dataset, while our proposed model showed a decrease
of only 0.02 per frame. This slower rate of decrease in confidence values for our model
contributes to its superior performance in real-time detection tasks.

These real-time detection results demonstrate the practical applicability of our pro-
posed image restoration model in enhancing the performance of rebar endpoint detection
in manufacturing environments. By accurately restoring high-quality images from low-
resolution and noisy inputs, our model enables the YOLOvV5 object detector to achieve
robust and reliable performance, even under challenging real-world conditions. The ability
of our model to maintain higher confidence values over time further highlights its supe-
riority in real-time detection tasks, ensuring consistent and accurate detection of rebar
endpoints throughout the manufacturing process.

5. Conclusions

In this paper, we proposed a novel rebar twist detection technique that leverages
high-resolution rebar images generated by a SRGAN integrated with a UCA module.
Our approach accurately detects the center coordinates of the rebar using YOLOv5s and
employs various regression models in real time to predict the future position of the rebar
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and determine the presence of twists. By experimentally comparing and analyzing several
linear and non-linear models, we identified the model with the lowest error rate to maximize
twist detection performance. This method can effectively respond to various types of data
patterns, and by selecting an optimal model, the reliability and accuracy of the rebar twist
detection process can be enhanced. The proposed system has the potential to significantly
contribute to quality control and safety assessment in the construction and manufacturing
industries by enabling more accurate identification of rebar twists.

However, our research has limitations that should be addressed in future work. One
major limitation is the absence of experiments under varied lighting conditions and back-
ground noise levels, which could affect the system’s performance in real-world environ-
ments. To overcome this, we plan to develop a model that can dynamically adjust to
different lighting conditions and thresholds. This will involve collecting a diverse dataset
that encompasses a broad range of lighting conditions and background noise levels and
training the model to adapt to these variations. Future work will also explore the appli-
cation of advanced artificial intelligence learning methods, such as transfer learning and
reinforcement learning, to further enhance the efficiency and performance of the system.
Transfer learning can utilize knowledge from related tasks or domains to improve the
accuracy and speed of rebar twist detection, while reinforcement learning can enable the
system to adapt to changing environments and optimize its performance over time. We
intend to conduct a series of experiments to assess the effectiveness of these methods and
their impact on overall system performance. To ensure the practicality and applicability
of the proposed system, we also plan to evaluate its performance at actual manufacturing
sites for real-time processing optimization. This will involve conducting field tests and
assessing the system’s performance in terms of processing speed, accuracy, and robustness,
thereby providing a comprehensive validation of its capabilities in practical settings.
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