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Abstract: The purpose of this study was to examine the validity of two wearable smartwatches (the
Apple Watch 6 (AW) and the Galaxy Watch 4 (GW)) and smartphone applications (Apple Health for
iPhone mobiles and Samsung Health for Android mobiles) for estimating step counts in daily life. A
total of 104 healthy adults (36 AW, 25 GW, and 43 smartphone application users) were engaged in
daily activities for 24 h while wearing an ActivPAL accelerometer on the thigh and a smartwatch on
the wrist. The validities of the smartwatch and smartphone estimates of step counts were evaluated
relative to criterion values obtained from an ActivPAL accelerometer. The strongest relationship
between the ActivPAL accelerometer and the devices was found for the AW (r = 0.99, p < 0.001),
followed by the GW (r = 0.82, p < 0.001), and the smartphone applications (r = 0.93, p < 0.001). For
overall group comparisons, the MAPE (Mean Absolute Percentage Error) values (computed as the
average absolute value of the group-level errors) were 6.4%, 10.5%, and 29.6% for the AW, GW, and
smartphone applications, respectively. The results of the present study indicate that the AW and
GW showed strong validity in measuring steps, while the smartphone applications did not provide
reliable step counts in free-living conditions.

Keywords: ActivPAL; Apple Watch 6; Galaxy Watch 4; wearable devices; step counts

1. Introduction

Engaging in regular physical activity (PA) is a widely recognized foundational deter-
minant for enhancing overall health [1]. It plays a pivotal role in disease prevention and the
promotion of well-being across all age groups [2]. Despite the clear benefits of PA, a 2020
report issued by the World Health Organization (WHO) highlights a significant deficiency
in meeting recommended PA guidelines, with a substantial segment of the population
falling short of the minimum advised levels of moderate to vigorous PA [3]. Specifically,
this deficiency pertains to individuals who do not attain a minimum of 150 min of moderate
intensity PA or 75 min of vigorous intensity PA per week. The insufficiency in PA levels
may constitute a contributory element to the prevalence of obesity [4] and a spectrum
of associated diseases. Consequently, the waning prevalence of PA among adults exerts
a pervasive influence on individuals throughout their lifespan and imposes substantial
financial burdens on the healthcare system and society at large [5].

Smartphones were once pivotal tools for boosting regular PA through their various ap-
plications that measured activity levels. However, their accuracy did face some constraints
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based on whether they involved direct contact or were non-contact [6]. Both Samsung
and iPhone, for instance, featured built-in applications that tracked daily step counts. As
technology advanced, smart wearables subsequently emerged, setting a new standard in
personal health tracking. This category encompasses a spectrum of devices, including
fitness trackers, smartwatches, heart rate monitors, and GPS tracking devices, which have
revolutionized our approach to PA and holistic health management [7,8]. Among these
technological innovations, smartwatches have emerged as pioneering instruments for the
enhancement of individual health. Going beyond their original functions of timekeeping
and notification delivery, smartwatches have evolved into versatile health management
tools [2,9]. Equipped with an array of sensors, smartwatches enable users to engage in
self-monitoring of various health parameters. Self-monitoring of PA stands as an efficacious
strategy for improving PA levels [10,11]. Basic fitness tracking capabilities encompass the
recording of steps taken, distance covered, and calories expended. Furthermore, contem-
porary smartwatches extend their capabilities to encompass more sophisticated health
metrics, including heart rate, sleep quality, stress levels, and even oxygen saturation.

In the realm of wearable technology, the landscape is dominated by two prominent
providers, namely Apple and Samsung. As a titan of the technology industry, Apple’s
market value holds the top position, while Samsung is ranked eighth [12]. According to a
2024 study by Counterpoint Research, Apple is the leading company in the smartwatch
industry in terms of shipment share, accounting for 26 percent of worldwide shipments as
of the first quarter of 2023. This was followed by Samsung with nine percent of the market
share [13]. Moreover, since its launch in 2015, the Apple Watch has become the best-selling
wearable/smartwatch worldwide, with sales surpassing 12 million units. Samsung has
also seen an increasingly positive consumer response, recording second place [14]. With
the widespread use of smartwatches, the scale of interventions for PA is also increasing [15].
These two formidable smartwatch offerings have exerted a progressively substantial influ-
ence across various domains, with a particular emphasis on their impact in the arena of
health monitoring and management [9,16]. However, despite the considerable prevalence
of these devices, the accuracy of step-count measurement in free-living conditions remains
an underexplored area in the existing body of research.

The quantification of step counts serves as a fundamental and indispensable metric
in assessing an individual’s daily PA level. These step counts, conventionally monitored
through devices such as pedometers and contemporary smartwatches, provide a cumula-
tive measure of daily energy expenditure. There is a close and intricate relationship between
step counts, the volume of PA, and its associated intensity [9,17]. Therefore, this study
investigated step counts, one of the fundamental metrics of evaluating an individual’s
PA level in daily life. Recent research conducted by Chaudhry (2020) has elucidated that
the utilization of pedometers or similar step-count tracking devices specifically designed
for health monitoring leads to a notable improvements in recorded step counts compared
to conventional care groups [18,19]. This improvement is made possible by the sensors
embedded within modern smartphones and smartwatches, which are capable of detecting
and recording human activities [20]. These sensors, which include tri-axis acceleration and
tri-axis angular velocity measurements, are critical for the accurate quantification of an
individual’s step count [21].

In the current global context of increased smartwatch and smartphone usage and
heightened interest in personalized health monitoring and management, it is essential to
evaluate the validity of PA measurements by these devices. Previous research indicates
that while smartwatches accurately monitor heart rate during activities like walking and
running, their accuracy declines with increased intensity of activity [22,23]. Despite several
studies addressing the accuracy of activity measurement by smartwatches, a comprehensive
examination of step-count accuracy in free-living conditions remains lacking. Specifically,
comparative studies on the accuracy of major smartwatches, such as the Apple Watch
and Samsung Galaxy Watch, are scarce. Additionally, there is limited analysis of accuracy
variations across different activity levels, which is essential for evaluating the practical
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utility and validity of wearable devices. Therefore, this study aims to assess the accuracy
of step counts measured by the Apple Watch and Samsung Galaxy Watch in daily life,
comparing them with the ActivPAL accelerometer as a criterion measure. This research
seeks to provide an in-depth evaluation of the practical application and contribution of
smartwatches to health monitoring.

2. Materials and Methods
2.1. Participants

In this study, a total of 104 participants, comprising 36 Apple Watch 6 users (17 males
and 19 females), 25 Galaxy Watch 4 users (10 males and 15 females), and 43 individuals
(21 males and 22 females) who did not wear smartwatches (referred to as the “Smartphone
Application” group), were included. The number of participants required to ensure suffi-
cient statistical power was calculated using G*Power 3.1.9.7 software and the effect size
reported in previous studies [24]. G*Power is a program used to calculate the necessary
sample size before conducting a study. Based on an effect size (Cohen’s f) of 0.25, a Type I
error rate of 5% (α error), and a power of 95% (power = 1 − β), the required total sample
size was determined to be 45 participants. The participants, aged between 18 and 53 years,
were recruited through word of mouth and direct approach. This study excluded variables
that significantly affect PA in daily life, such as chronic diseases, physical disabilities, and
pulmonary conditions, ensuring the selection of participants who could wear the devices
without difficulty. In addition, if participants did not wear their smartwatches for more
than 2 h a day, excluding sleep time, or if there was a discrepancy in the wearing periods
between their ActivPAL devices and their smartwatches, the data were considered missing
and excluded. To minimize any unreasonable discrepancies in measurements, participants
were restricted from engaging in high-intensity activities and were instructed to record
the time if they engaged in such activities. Each participant was instructed to wear both a
smartwatch on their wrist and an ActivPAL device on their thigh continuously for 24 h.
Furthermore, the smartphone application group consisted of participants who solely wore
the ActivPAL device on their thighs. The number of steps of the participants in this group
was measured by utilizing smartphone applications in conjunction with the ActivPAL
device. To minimize error and ensure precise measurement, participants were instructed to
continuously wear their smartwatches throughout each day, excluding sleep time, and to
carry their mobile phones with them at all times. The Institutional Review Board of Kyung
Hee University approved the study (KHGIRB-23-095).

2.2. Instruments

The study’s participants were instructed to utilize two distinct categories of activity
monitoring devices. Each participant was required to wear a smartwatch on their wrist
(Figure 1) in addition to wearing an ActivPAL device affixed to their thigh (Figure 2).
In the case of the smartphone applications, they were held in the hand or carried in the
participant’s clothes, while the smartphone-based accelerometer measured the step counts
in the direction of the starting point of motion for each step [25]. Table 1 presents a
comprehensive list of the devices used in this study and some extra information.

Table 1. A list of devices included in this study by versions used, locations worn, and software.

Device Version Location Worn Software

ActivPAL (PAL Technologies Ltd., Glasgow, UK) ActivPAL4 Thigh AcivPAL4 v8.12.6
Apple Watch (Apple, Cupertino, CA, USA) Apple Watch se2 Wrist Apple Watch 6 v9.3.1

Galaxy Watch (Samsung, Suwon-si, Republic of Korea) Galaxy Watch 4 Wrist Galaxy Watch 4
v2.2.11.23082851

Apple iPhone (Apple, Cupertino, CA, USA) iPhone - iPhone app; Health (iOS 16)
Samsung Galaxy Phone (Samsung,

Suwon-si, Republic of Korea) Galaxy Phone - Galaxy Phone app; Samsung
Health (UI 5.0)

app: application.
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Figure 2. Images showing how the ActivPAL accelerometer is worn on the thigh.

2.2.1. ActivPAL (ActivPAL 4 v8.12.6) (AP)

The ActivPAL accelerometer is a small capacitance-based accelerometer
(5.3 cm × 3.5 cm × 0.7 cm) and light (15 g). During the study, the ActivPAL device
was affixed to the thigh using hypoallergenic tape and was not detached except in special
or hazardous situations. It could later be verified through the data analysis process. This
procedure minimized errors in the criterion values. The ActivPAL device functions as an in-
strument for analyzing PA based on body positioning or morphology. Precisely, it possesses
the capability to discern between three distinct activity states: sitting/lying, standing, and
stepping, as expounded upon in reference [26]. The ActivPAL accelerometer was selected
as the criterion measure for this study due to its proven accuracy and reliability in measur-
ing PA and stepping activities [27,28]. The ActivPAL accelerometer is widely recognized
in the field of PA research for its high validity in various settings, including free-living
conditions. Additionally, it has been extensively validated against other gold-standard
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methods, making it an ideal benchmark for evaluating the performance of consumer-grade
wearable devices such as smartwatches.

2.2.2. Smartwatches (Apple Watch 6 and Galaxy Watch 4)

In this study, we evaluated the functionality of two distinct smart wearables devices:
the Apple Watch 6 and the Galaxy Watch 4, occupying the highest ranks in the current
technology market values [12]. This study selected the latest versions available at the time
of the research to investigate the accuracy of their measurements. The Apple Watch Series 6
and the Galaxy Watch 4 are equipped with an array of sensors designed to monitor various
health metrics. The Apple Watch Series 6 includes an accelerometer, gyroscope, heart
rate monitor, and blood oxygen (SpO2) sensor. These sensors enable the device to track
physical activity, detect irregular heart rhythms, and measure blood oxygen levels [29]. The
Galaxy Watch 4 also features an accelerometer, gyroscope, heart rate monitor, and body
composition sensor, which provides additional insights into the user’s health by estimating
metrics such as body fat percentage and skeletal muscle mass. The accelerometer and
gyroscope in both devices allow for the detection of movement and orientation, which are
crucial for accurately counting steps and assessing physical activity levels. The heart rate
monitors use photoplethysmography (PPG) to measure the user’s pulse by detecting blood
flow changes in the wrist. The SpO2 sensor in the Apple Watch and the body composition
sensor in the Galaxy Watch enhance the devices’ abilities to provide comprehensive health
monitoring. By incorporating these advanced sensors, both smartwatches offer robust
health tracking capabilities that are critical for the accurate measurement of step counts and
other physical activity metrics. This could provide valuable information to a wide range
of users. These devices are seamlessly integrated with their respective smartphones, the
iPhone and Samsung Galaxy phone, facilitating the effortless visualization of data through
mobile applications.

Both wearable devices are equipped with the capability to accurately quantify step
counts, relying on tri-axis acceleration and tri-axis angular velocity measurements [30]
to discern various physical activities, including walking and running. This capacity en-
ables the smartwatches to effectively monitor and record step counts by analyzing the
user’s PA. Furthermore, wearable sensor technology advancements are closely linked to
the development of low-power soft transistors and flexible electronic devices. Liu et al.
(2024) demonstrated that low-power soft transistors could greatly enhance the efficiency of
wearable devices by reducing energy consumption and maintaining stable performance
over extended periods [31]. Additionally, Zhang et al. (2023) explored how flexible elec-
tronic devices could be utilized in cardiovascular healthcare monitoring, explaining that
the application of flexible electronics plays a crucial role in improving the reliability and
accuracy of wearable devices [32]. Thus, the accurate step-count measurement capabilities
of the Apple Watch 6 and Galaxy Watch 4 are further enhanced by the application of the
latest low-power soft transistor and flexible electronics technologies. The collected step
data are automatically synchronized with the corresponding mobile application; namely,
Apple Watch’s Health application, and Galaxy Watch’s Samsung Health application. All
study participants were instructed to wear these smartwatches continuously for each 24 h
period, with exceptions made solely in cases of health-related emergencies.

2.3. Study Protocol

At the beginning of the data acquisition, anthropometric measurements were ascer-
tained. Participants’ height and weight were garnered through self-report health history,
subsequently permitting the calculation of their Body Mass Index (BMI) as the ratio of
weight (kg) to height squared (m2). Subsequently, the ActivPAL device was affixed to the
participants’ thighs as per the manufacturer’s recommendation. While both wearing the
ActivPAL device and either wearing a smartwatch or carrying a smartphone featuring a
health application, participants’ step counts were recorded in free-living conditions for 24 h.
During a follow-up meeting, the ActivPAL device and the amassed data were retrieved. To
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enhance the precision and reliability of the study’s outcomes, an assessment was conducted
to identify instances where the smartwatch had been detached for more than one hour, and
such instances were categorized as missing data values.

2.4. Data Analysis

All data processing and statistical analyses in this study were conducted using SPSS
version 28.0 (SPSS Inc., Chicago, IL, USA). Descriptive statistics were employed to suc-
cinctly summarize the demographic characteristics of the study participants, including
gender, age, height, weight, and BMI. To evaluate the correlation between the smartwatch
(or smartphone application) and the ActivPAL accelerometer in measuring step counts,
Kendall’s tau-b and Pearson’s correlation coefficients were computed. The Mean Absolute
Percent Error (MAPE) was calculated as the average of the absolute difference between
the criterion measure value (as measured by the ActivPAL accelerometer) and the values
recorded by each device, divided by the criterion measure value, then multiplied by 100.
Furthermore, a paired-sample t-test was utilized to identify any significant mean differ-
ences between the ActivPAL accelerometer and each respective device. In analyzing the
step-count data from all the devices, we applied equivalence testing, a novel statistical
approach designed to assess the equivalence between diverse measures, as opposed to
solely testing against a null hypothesis of zero difference [33]. To examine the proportional
systematic biases, Bland–Altman plots were utilized. These plots incorporate 95% limits
of agreement and fitted lines derived from regression analyses comparing the criterion
measure to the differences in values obtained from the ActivPAL accelerometer and each
other device. Parameters such as intercept and slope were included in the analyses to
provide a comprehensive evaluation of the agreement between the devices.

3. Results

A total of 104 participants (48 male and 56 female) were involved in this study. All
participants had smartwatches or smartphones. Table 2 presents comprehensive descriptive
statistics summarizing the anthropometric characteristics of all the study participants.

Table 2. Physical characteristics of participants (n = 104).

Variables
Apple Watch Galaxy Watch Smartphone Applications

No. (%) Mean (SD) No. (%) Mean (SD) No. (%) Mean (SD)

Gender
Male 17 (47.2%) - 10 (40%) - 21 (48.8%) -

Female 19 (52.8%) - 15 (60%) - 22 (51.2%) -

Anthropometrics

Male

Age (year)

17

25.7 (5.6)

10

31.1 (11.8)

21

27.9 (8.6)
Height (cm) 175.2 (0.1) 177.0 (0.0) 176.0 (0.1)
Weight (kg) 73.9 (6.9) 82.7 (13.1) 77.4 (8.7)

BMI (kg/m2) 24.1 (1.6) 26.4 (4.3) 25.0 (2.5)

Female

Age (year)

19

23.3 (3.6)

15

27.3 (10.2)

22

25.0 (5.1)
Height (cm) 163.8 (0.0) 165.9 (0.0) 163.8 (0.0)
Weight (kg) 50.3 (3.6) 52.3 (1.8) 52.6 (3.7)

BMI (kg/m2) 18.8 (1.4) 19.0 (1.3) 19.6 (1.3)

Total

Age (year)

36

24.4 (4.7)

25

28.8 (10.8)

43

26.4 (7.1)
Height (cm) 169.2 (0.1) 170.4 (0.1) 169.7 (0.1)
Weight (kg) 61.5 (13.1) 64.5 (17.2) 64.7 (14.1)

BMI (kg/m2) 21.3 (3.1) 22.0 (4.6) 22.2 (3.4)

BMI: Body Mass Index; SD: standard deviation.

Meanwhile, Table 3 displays the correlation coefficients (r) representing the relation-
ships between the ActivPAL accelerometer and three distinct devices; the Apple Watch
6, Galaxy Watch 4, and smartphone applications. These devices exhibited substantial
correlations with the ActivPAL device (Apple Watch 6: r = 0.986, p < 0.01; Galaxy Watch
4: r = 0.824, p < 0.01; and smartphone applications: r = 0.926, p < 0.01), with the strongest
association observed between the ActivPAL device and the Apple Watch 6.
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Table 3. Correlations between the ActivPAL accelerometer and the Apple Watch, Galaxy Watch, and
non-wearable smartphone applications (n = 104).

Correlation
ActivPAL Apple Watch Galaxy Watch Smartphone Applications

ActivPAL 1 0.986 ** 0.824 ** 0.926 **

** Correlation is significant at the 0.01 level (2-tailed).

Figure 3 shows the MAPE for each device, computed as the average absolute error
relative to the ActivPAL criterion. The smallest errors were associated with the Apple
Watch 6 (6.4%), followed by the Galaxy Watch 4 (10.5%), and the smartphone applications
(29.6%). These findings underscore the superior accuracy of smartwatches in comparison
to smartphone applications, with the Apple Watch 6 demonstrating the lowest MAPE and,
consequently, the highest accuracy.
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The results from equivalence testing are delineated in Figure 4, demonstrating the
substantial equivalence of the smartwatches with the criterion measure. Specifically, the
step counts recorded by the Apple Watch 6 and the Galaxy Watch 4 largely fell within
the equivalence zone (90% confidence interval within the equivalence zone: Apple Watch
6 = 7770.0–9886.1 and Galaxy Watch 4 = 7732.6–10022.9). Conversely, the step counts from
the smartphone applications were outside the equivalence zone (smartphone applications’
90% confidence interval outside of the equivalence zone: 6681.0–9718.2).

Bland–Altman plot analyses, as displayed in Figure 5, were carried out to assess
the distribution of errors and identify the potential proportional systematic biases in the
estimates. These plots show the differences between the criterion measure (the ActivPAL
device) and each device on the Y-axis, plotted against the average step counts of the
criterion and each device on the X-axis. Notably, the narrowest 95% limits of agreement
were observed for the Apple Watch 6 (difference = 2494.7), with slightly wider limits for the
Galaxy Watch 4 (difference = 3609.7). In contrast, the smartphone applications exhibited
the widest limits (difference = 9455.9). The distribution of points around the mean was
more concentrated for the Apple Watch 6, followed by the Galaxy Watch 4, while the
smartphone applications displayed more dispersed data points. Furthermore, the fitted
line slopes for all the devices were found to be statistically nonsignificant (Apple Watch 6:
slope = −0.10, p = 0.923; Galaxy Watch 4: slope = −0.11, p = 0.891; and smartphone
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applications: slope = 0.31, p = 0.442), indicating the absence of substantial patterns of
proportional systematic bias with these devices.
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by ActivPAL.



Sensors 2024, 24, 4658 9 of 13

Figure 6 illustrates the outcomes of a paired-sample t-test comparing the criterion
measure (the ActivPAL accelerometer) against the various devices. This analysis indicates
a lack of statistically significant difference between the Galaxy Watch 4 and the criterion
measure (p = 0.198), with a small effect size (d = 0.265). However, notable disparities
were observed between the criterion measure and the Apple Watch 6 (p < 0.05, p = 0.033),
reflecting a small effect size (d = 0.369), as well as with the smartphone applications
(p < 0.01), with a large effect size (d = 0.945).
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4. Discussion

This is a valuable study to assess the validity of the Apple Watch, the Galaxy Watch,
and smartphone applications for measuring step counts compared to the criterion measure
of the ActivPAL accelerometer under free-living conditions. Previous studies have also
documented the measurement accuracy of the smartwatches, particularly in the reliable
quantification of heart rate and energy expenditure [34,35], and it is evident that the
measurement accuracy of the smartwatches varies with the intensity of the exercise [22,23].
Additionally, according to prior studies that measured the Apple Watch’s step counts
on a treadmill at varying speeds, the most accurate readings occurred at moderate pace,
with the tendency to undercount or overcount at faster or slower speeds, respectively [36].
However, questions remain regarding the details of how the Apple Watch and the Galaxy
Watch measure PA [15]. Furthermore, research is required related to measuring PA in
free-living conditions, not fixed to any specific intensity. Therefore, the present study assists
smartwatch users in accurately gauging their PA levels in daily life, and the significance
lies in the ability to increase exercise and enhance overall health based on such precise data.

Numerous studies have been conducted to assess variations in measurement accuracy
associated with different types of research-oriented activity monitors [37–39]. Hergenroeder
et al. conducted a study wherein participants underwent two 100-step walking tests while
simultaneously wearing three research-grade activity monitors. The step-count accuracy
of these devices was evaluated by comparison with a manual step-count hand tally [38].
Their findings indicated that the ActivPAL accelerometer, when positioned on the thigh,
consistently exhibited a high level of accuracy, accounting for 97.3 ± 11.1% of manually
tallied steps; in contrast to the ActiGraph GT9X, which, when worn at the waist, exhibited
a considerably wider range of measurement variance (51.4 ± 35.7%) in relation to the
criterion measure. Additionally, the study highlighted that the ActivPAL accelerometer
provided a reasonable degree of accuracy in measuring gait speed, with values ranging
from 86.8 ± 14.0% to 95.1 ± 9.2% [38]. This study’s findings are consistent with the body of
literature supporting the accuracy of the ActivPAL accelerometer. In a study by An et al.
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titled “Accuracy of Inclinometer Functions of the ActivPAL and ActiGraph GT3X+: A
Focus on Physical Activity”, the ActivPAL device was shown to exhibit high accuracy for
measuring stepping and it proved to be significantly accurate in detecting various forms
of PA, including sitting, standing, and stepping [27]. In the current study, the ActivPAL
device served as the criterion measure, reinforcing the study’s robust validity.

Comparative analyses involving smartwatches, namely the Apple Watch and Galaxy
Watch, exhibit a notable degree of concordance with the criterion measure, accompanied
by low MAPE values. Specifically, step-count data originating from the Apple Watch
demonstrate a statistically significant equivalence with the criterion measure and an MAPE
below 10%, signifying a high level of accuracy, which is consistent with prior investigations
suggesting that the Apple Watch boasts superior accuracy compared to the established
criteria [40,41]. Notably, MAPE values below the 10% threshold, as recorded by the Apple
Watch, are indicative of a robust level of accuracy [42]. Furthermore, the Apple Watch
exhibits a statistically significant correlation with the criterion measure (p < 0.01). While
the Apple Watch demonstrates the most favorable overall performance, it is noteworthy
that the Galaxy Watch yields commendable results within this study. The Galaxy Watch
displays a statistically significant correlation with the criterion measure (p < 0.01). It records
an MAPE value of 10.5%, a figure closely approaching the 10% threshold, indicative of a
high degree of accuracy [42]. It is worth mentioning that only the Galaxy Watch exhibited
no significant difference compared to the criterion measure.

Ultimately, the smartphone applications also showed a pronounced correlation with
the ActivPAL device. Existing research indicates that, regardless of the smartphone’s posi-
tion, whether it is in a bag or a pants pocket, high accuracy and generally low variability are
demonstrated. Additionally, all accelerometer apps tend to systematically underestimate
steps during free-living walking activities [43]. However, in this study they yielded notably
lower accuracy in measuring the number of steps. Specifically, the MAPE of the smart-
phone applications showed the highest value at 29.6%, deviating considerably from the
comparable range within the equivalence zone. In comparison to the smartwatches this dis-
crepancy was substantial. Previous research corroborates these findings, as exemplified by
Presset et al. [44], who reported diminished step-count accuracy of smartphone appli-
cations when smartphones were positioned in the most comfortable locations, such as
within a “jacket”. Notably, for the Runtastic Pedometer smartphone application, the ‘jacket’
placement ranked as the least accurate among the three positions assessed (i.e., arm, belt,
and jacket) [44]. This suggests that smartphones, which must be carried in clothing or
bags, could show significant discrepancies in accuracy compared to smartwatches, which
are attached to the body. Compared to the previous study, which was conducted under
controlled conditions, such as treadmill settings, the current study proceeded within un-
constrained free-living conditions, which evidently underscored the diminished accuracy
inherent in smartphone applications for step-count quantification.

This is one of the first studies to compare the Apple and Galaxy Watches in free-living
conditions. Notably, these smartwatches are globally recognized and extensively utilized
for fitness and health tracking due to their acknowledged precision and widespread user
acceptance. Furthermore, the current research differs significantly from previous studies,
which predominantly compared smartwatches to wrist-worn accelerometers, such as the
ActiGraph GT9X and Fitbit, as the criterion measures [2,45]. Instead of these devices,
we employed the ActivPAL accelerometer, known for its minimal margin of error in
measuring PA. Lastly, our study was conducted in the context of uncontrolled daily life,
which was a distinguishing feature. While numerous studies have revealed the accuracy
of smartwatches in step counting within controlled environments like laboratories and
treadmills, the literature is less populated with studies addressing step counting during
daily activities. Given the ubiquity of smartwatch usage in individuals’ everyday lives,
our findings assume heightened relevance and applicability. They stand poised to offer
valuable insights for self-monitoring of PA and health through smartwatch technology,
potentially highlighting meaningful implications for health-conscious individuals seeking
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to leverage these devices for wellness management. The authors acknowledge several
limitations of this study. Firstly, the small sample sizes employed in the research must be
recognized. Data collection in an uncontrolled environment resulted in the exclusion of
numerous data points, particularly affecting the sample size for the Galaxy Watch, which
was less than 30. Despite conducting a normality test, the constrained sample size inevitably
restricted the study’s generalizability. The small sample size unavoidably constrained the
study. Future research should aim to gather larger and more representative samples to
yield more comprehensive outcomes and measure a broader spectrum of physical activities,
including factors such as sleep patterns and sedentary behaviors, to enhance the study’s
overall robustness and applicability.

5. Conclusions

In conclusion, we examined the accuracy of step-counting functionality across the
Apple Watch 6, Galaxy Watch 4, and smartphone applications. The results unequivocally
establish the Apple Watch 6 as the most accurate among the devices, a distinction supported
by statistically significant findings. Furthermore, the Galaxy Watch 4 also demonstrated a
level of step-counting accuracy akin to that of the Apple Watch 6. Conversely, smartphone
applications lagged in terms of accuracy. Consequently, both the Apple Watch 6 and
Galaxy Watch 4 are expected to provide data with sufficient accuracy to allow users to
plan, measure, and enhance their PA in everyday life. On the other hand, data provided by
smartphone applications demonstrated lower validity and reliability for contributing to
PA. These findings underscore the value and validity of smartwatches as effective tools for
routine self-monitoring of daily steps and the management of PA.
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