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Abstract: This paper presents an on-device semi-supervised human activity detection system that can
learn and predict human activity patterns in real time. The clinical objective is to monitor and detect
the unhealthy sedentary lifestyle of a user. The proposed semi-supervised learning (SSL) framework
uses sparsely labelled user activity events acquired from Inertial Measurement Unit sensors installed
as wearable devices. The proposed cluster-based learning model in this approach is trained with
data from the same target user, thus preserving data privacy while providing personalized activity
detection services. Two different cluster labelling strategies, namely, population-based and distance-
based strategies, are employed to achieve the desired classification performance. The proposed system
is shown to be highly accurate and computationally efficient for different algorithmic parameters,
which is relevant in the context of limited computing resources on typical wearable devices. Extensive
experimentation and simulation study have been conducted on multi-user human activity data from
the public domain in order to analyze the trade-off between classification accuracy and computation
complexity of the proposed learning paradigm with different algorithmic hyper-parameters. With
4.17 h of training time for 8000 activity episodes, the proposed SSL approach consumes at most 20 KB
of CPU memory space, while providing a maximum accuracy of 90% and 100% classification rates.

Keywords: semi-supervised learning; privacy preserving; personalized machine learning; human
activity detection; wearable devices; on-device learning; health monitoring

1. Introduction

An increasingly sedentary lifestyle in modern societies has compounded many health
problems such as diabetes, obesity, and high blood pressure. The high-resolution moni-
toring of daily activities and providing personalized feedback are found to be effective in
reducing sedentary lifestyle. There are many commercially available wearable products
such as the Apple Watch [1] and Fitbit watch [2] that can monitor and classify human activ-
ities using supervised machine learning methodologies. Such learning typically requires
model training using pre-labelled data collected from many users. Once centrally trained,
the model is loaded in those wearable devices before consumers can use them.

While this approach of model training works, the design cycle can be improved in
the following two fronts. First, the activity data for supervised learning model training
can potentially raise privacy concerns. This is because the activity data from a large popu-
lation needs to be recorded for training. Inadvertent access to such personal fitness- and
health-oriented data can be abused by insurance companies and organizations during
job placement and hiring. Second, the model used in commercially available wearable is
trained using data collected from a generalized population. This contrasts with model train-
ing in a subject-specific manner, which is known to provide better classification accuracies
for activity monitoring applications.

This paper sets out to address these two design issues by employing a self-supervised
activity classification approach in which activity data are recorded from the same subject
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for whom a classification model is trained iteratively. By not relying on data from others, it
addresses the privacy concerns, and by training a semi-supervised model with the same
person’s activity data, thus making it personalized. In the proposed approach, the entire
learning process happens on-device, thus eliminating the needs for (i) transferring data over
network links and (ii) storing and processing it on an out-of-device system. These further
add to privacy preservation. The tradeoff is that the mechanism needs to be computationally
and storage-wise light enough to be able to run on low-power embedded devices.

The on-device semi-supervised learning (SSL) [3] approach is specifically designed
for learning with sparsely labelled datapoints. This light-weight mechanism is fully im-
plemented in embedded wearable devices. The targeted application scenario is as follows:
When a user starts using such a device, the semi-supervised learning algorithm in it starts
“training itself” with the activity data collected from the device-integrated inertial measure-
ment sensors (IMU) such as accelerometers. Based on pre-stored templates, if the algorithm
can classify a current activity, it labels these data. As the device is used, this mechanism is
used to label a small subset of all collected activity data. The self-supervised training and
classification are performed simultaneously in an iterative manner. As the device is worn
by the user for longer durations, the objective is to improve the classification performance
over time. Special care is taken to reduce the computational and storage complexity of
the iterative mechanism to keep it suitable for low-power wearable embedded devices.
Furthermore, since training and data collection both happen on the same device, the target
application setting ensures full privacy by not allowing the user data to ever leave the
device. Personalization is achieved since the algorithm that classifies a user’s activities and
is trained mainly using the data from the same user.

The main contributions of the paper are as follows First, it introduces a privacy-
preserving and personalized semi-supervised learning mechanism that can perform human
activity classification with accuracies that are comparable to neural network-based super-
vised learning. It also explores how this can be achieved with fewer labelled data and
with low computational resources represented by computational and memory complexities.
Second, two SSL variants, namely, population-based, and distance-based, are explored and
evaluated for the application considered in the paper. Finally, all the above mechanisms are
experimentally analyzed and evaluated from the standpoints of classifiability, classification
accuracy, and computational/storage complexity. Accuracy figures are compared with
those from benchmark supervised learning models.

2. Related Work

Human activity detection (HAD) in commercially available devices such as smart-
phones and smart watches is often performed with embedded sensors such as accelerome-
ters and gyroscopes [4]. Different combinations of sensing modalities and their positions on
the human body have been explored in the literature [5–8]. On the machine learning front,
different forms of HAD systems have been realized using a variety of classifiers based on
supervised learning [7,9]. The above works explore different elements of HAD systems like
intraclass variability and interclass similarity. The challenges of disparity in relevant and
irrelevant data have also been discussed.

To deal with person-specific activity types, which are often affected by individual
physical attributes [10,11] and such, personalized human activity detection has been ex-
plored in [12–21]. While ref. [12] deals with it using biometry, refs. [13–21] deal with it at the
classifier level. The works in [13,16] train supervised learning models using personalized
data from the target user. Both of these works involve the transfer of the data collected from
the target user to be transferred to an external server for supervised training. This method
affects user privacy since the data are shared to an external device. Some relevant works
in [17–19] consider transfer learning in a way of domain adaptation methods. Transfer
learning has the convenience where explicit training data are not required from the target
user device but has the disadvantage of the increased likelihood of selecting incorrect
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class data for training, thus degrading the overall classification performance. Refs. [20,21]
present similar works which consider personalized learning models for classification tasks.

On-device learning is an effective solution for applications related to personalized
applications. A relevant work in [22] uses similar pre-trained supervised learning models
for on-device hydration-tracking. This hydration-tracking system also preserves the privacy
of the target user data, but the usage of the supervised learning model requires a huge
amount of training data. At times enough labelled data may not be available from the target
user to train a supervised learning model. In this way, either privacy or personalization or
both for a classifier model may be sacrificed, which becomes a point of major concern for
these kinds of applications which require both privacy and personalization.

Semi-supervised learning (SSL) [3] is a possible solution for on-device learning in
which classifiers can be trained on the device from a specific target user’s data, thus
preserving the personalization feature of the model as discussed in [23]. SSL is also useful
in this context because unlike in fully supervised learning, learning with SSL does not
rely on the availability of extensive labelled data. It was shown in [24] that SSL models
can potentially learn with sparsely labelled datapoints. This mechanism has proven to be
effective for on-device applications involving limited computational power. A relevant
work in [25] uses an SSL method based on the combination of deep learning and transfer
learning. The usage of a deep learning model involves training using data from different
users other than the target user. This affects the personalization feature of our premise
in this paper. The work in [26] develops a human activity detection system using a bi-
view semi-supervised learning to detect semantic human activities like having dinner,
shopping, etc. This method also uses a windowed datapoint extraction technique and
clustering mechanism as the basis of the classifier model, but not on the same device
where the sensors are present. This method also involves a two-layered framework for the
classification task, which becomes computationally expensive and is thus not very suitable
for on-device self-training and classification.

The above works in the literature provide many definitive ideas for classifying human
activities with or without using personalized classifiers. While semi-supervised learning
has been proposed as an effective tool to train personalized classifiers of HAD, none of these
works considers the feasibility of training on devices with computational constraints. Also,
the aspect of computational complexity is absent in those approaches. The work in this
paper addresses both these issue by developing a low-computation self-training mechanism
using a semi-supervised learning algorithm. Both classification accuracy and computational
complexity are considered as evaluation parameters. The different hyper-parameters and
system parameters are analyzed based on their relevance for implementation on wearable
devices with computational constraints.

3. System and Data Model

This section outlines the adopted system and data model used by the proposed semi-
supervised algorithms. Figure 1 depicts the entire system where the wearable device on
the wrist of the user reads the human motion using embedded IMU sensors. The different
classes of human activities are classified using the semi-supervised learning model self-
trained using the motion data from the same user on the same wearable device.

3.1. Sensing Modality and Dataset

Activity classification is performed on data collected from a wearable embedded
device containing Inertial Measurement Unit (IMU) sensors, storage, and a micro-controller.
The IMU sensors capture user movements in terms of the acceleration of the wearable unit
along three orthogonal axes. We have used a public-domain human activity dataset (i.e.,
Wireless Sensor Data Mining Lab-WISDM lab dataset from the University of California,
Irvine [27]) generated from such a wearable unit. The dataset contains accelerometer
time-series data collected from a smartwatch as 36 subjects perform six activities.
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Figure 1. A wearable on-device human activity detection system.

3.2. Segmentation and Feature Extraction

As the first processing step, the raw accelerometer data are pre-processed as follows:
First, l2 norm [28] is applied to standardize the data across all axes in order to ensure
that the data are bounded within the range of −1 to +1. Subsequently, a window-based
approach is used for segmenting data into 2 s long episodes. For each episode, two features
are defined for each of the accelerometer axes. The first feature is the coefficient of variation,
which reflects the acceleration variability across 40 samples spanning the 2 s long episode.
The second feature is the number of mean crossing points within an episode. Physically,
this one indicates the frequency of movements of the subject from its mean position. There
may be a possibility of an exception occurring when there is no significant movement
across the mean position in either of the three orthogonal directions. In order to handle
this, ‘0’ has been set as the feature value for these special cases. Based on their physical
implications, these two features are selected for their discriminatory abilities towards
activity classification. Windowing and feature extraction from the raw time-series data
helps in reducing the impact of noises in the raw data on the model. Windowing the
time series into a fixed number of samples prevents the accumulation of errors which may
happen in a continuous time series when the raw samples are provided to the model as
inputs. Extracting features from consecutive time series’ samples means representing the
set of samples by some feature values, which considers only the magnitude of significant
movement by the subject in a particular direction during the 0.5 s episode duration. These
feature values are fed to the learning model, which in turn helps in avoiding errors (if any)
and any kind of model bias.

3.3. Class Definition

Sedentary lifestyle has been attributed [29] as a main contributor to widespread obesity
in modern urban societies in recent years. Monitoring and detecting sedentary lifestyles
have been projected by the health research community as a useful tool to mitigate obesity
and its many health effects. This has led researchers in recent years to actively investigate
technology for classifying sedentary and non-sedentary activities [30,31]. Motivated by
these works and the research trend, this paper sets out to deal with the problem of detecting
sedentary activities but in a more personalized and computationally efficient manner. User
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activities are categorized into three distinct classes, namely, sedentary, moderately active,
and active. The sedentary class encompasses stationary activities such as standing and
sitting. Moderately active activities involve ambulatory motion, primarily represented
by walking. Finally, the active class pertains to more vigorous physical activities, such as
jogging. The correlation among all the features over the entire activity dataset is depicted
in Figure 2.

Figure 2. Feature distribution of the three classes.

3.4. Processing Pipeline

Figure 3 depicts the entire processing dataflow for the proposed semi-supervised
learning mechanism. It starts with acceleration sensing, with a sampling rate of 20 Hz.
The resulting time series is then segmented into 2 s long episodes. The data in each
window are subsequently normalized before extracting features as described above. The
dimensions of the extracted features are then reduced for managing the computational
complexity of processing. Such dimensionality reductions are achieved by choosing the top
three principal components after applying principal component analysis (PCA) [32]. The
proposed iterative semi-supervised learning (ISSL) is then applied in the presence of a small
pool of pre-labelled data. Details of the ISSL process including adaptive data clustering
and dynamic cluster-labelling are presented in the next section. This processing pipeline
enables continuous improvement in activity prediction accuracy over time, thus providing
a real-time mechanism to classify human activity with two-second temporal granularity.
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Figure 3. Pre-processing and classification pipeline.

4. Semi-Supervised Learning with Sparsely Labelled Datapoints

Figure 4 depicts the iterative semi-supervised learning framework which forms the
basis of the classification model for human activities. The pre-processed accelerometer
data arrives in the form of episodes of 2 s worth of data. The episodes are represented
by the extracted features followed by a dimensionality reduction step. Reducing the
dimensionality helps to reduce the computational load of the learning system, as described
in Section 3. Each unlabelled incoming episode is added to a data pool (Spool). A very
small percentage (α) of incoming episodes which have extreme feature values beyond a
threshold are pre-labelled with a designated activity class and added to a pre-labelled data
pool (LSpool). These are considered pre-labelled because they can be easily identified to be
the parent of a class based on their extreme feature values matching to the corresponding
class. These pre-labelled episodes are used in the SSL training phase for the cluster labelling
step. The SSL training and activity prediction is performed on the unlabelled data pool
(Spool). The training is performed after every Ne incoming episode. In the training step,
first, all the existing episodes in the Spool are grouped into Nc number of clusters based on
their feature similarity in the clustering step. This clustering is performed by some popular
clustering methods like k-means [33] or the Gaussian mixture model (GMM) [34]. There
is the possibility of an exception when the number of datapoints in Spool (count) is less
than the number of clusters (Nc). In those cases, there might be a run-time error during the
clustering process. In order to handle this, a condition is placed where SSL training will
only happen when the ‘count’ is greater than or equal to Nc. The Nc clusters are labelled
using the pre-labelled episodes (LSpool), using any of the two cluster labelling methods:
population-based labelling and distance-based labelling.



Sensors 2024, 24, 4444 7 of 20

Figure 4. Iterative semi-supervised learning framework.

In the population-based labelling, the cluster is labelled on the basis of the highest
number of pre-labelled episodes present in that cluster. For example, if cluster i has M1 pre-
labelled episodes from class A and M2 pre-labelled episodes from class B, and if M1 > M2,
then cluster i gets labelled as class A. If cluster i does not have the highest number of
pre-labelled episodes class of pre-labelled episodes or does not have a pre-labelled episode
at all, it remains unlabeled. Thus, all the episodes in that cluster remain unclassified. This
cluster labelling mechanism is shown in Algorithm 1.

Algorithm 1: Population-based cluster labelling

1. Input: LSpool , Cluster representatives (CR) of Nc clusters.
2. Output: Labels of Nc clusters.
3. For i = 1 to Nc
4. Calculate the number of pre-labelled samples in i-th cluster M1, M2,. . ., Mk, for k classes in
i-th cluster.
5. If max (M) exists://max (M) is the unique class with the maximum number of pre-labelled episodes
6. Label cluster i with label of max(M)
7. Else:
8. Cluster i remains unlabeled.
9. End If-Else
10. End For

In distance-based labelling, the cluster is labelled based on label of the closest pre-
labelled episode. For example, if cluster i has the minimum distance from the j-th pre-
labelled episode which belongs to class A, then i is labelled class A. No clusters remain
unlabeled in this variant of cluster labelling, until there are pre-labelled datapoints in
the pre-labelled data pool (LSpool). The clusters will remain unlabeled when there are no
pre-labelled datapoints. This cluster labelling mechanism is shown in Algorithm 2.
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Algorithm 2: Distance-based cluster labelling.

1. Input: LSpool , Cluster representatives (CR) of Nc clusters.
2. Output: Labels of Nc clusters.
3. For i = 1 to Nc
4. Initialize the distance of cluster representative- i ( CRi) from pre-labelled samples as D;
5. For j = 1 to LSpool // LSpool consists of the pre-labelled datapoints
6. Calculate distance of pre-labelled sample j from the CRi as Dj
7. End For
8. D(i)← min(Dj);//pre-labelled episode number with the minimum distance from ‘i’-th CR.
9. Label cluster ‘i’ with the label of ‘j’-th pre-labelled episode
10. End For

After the clusters are labelled using any one of the above two cluster labelling algo-
rithms, the labelled clusters act as the trained classifier model. When a newly arrived and
unseen episode comes in between training iterations, the episode is classified based on the
most recently trained model, which are the labelled clusters. The new episode obtains the
class label of the nearest cluster in the feature space. A few representative cluster models
trained with incoming movement data from a user are shown in Figure 5. It can be seen
how the model with 20 clusters expands and the classification accuracy improves with more
incoming episodes. The quantitative performance of the classifier is formally presented in
the next section.

Figure 5. Example cluster model evolution with incoming episodes self-trained using iterative
semi-supervised learning paradigm.

Personalization and Privacy: The 2 seconds’ episodes represented by the extracted
features are classified by the semi-supervised model embedded in a wearable device. The
model is iteratively trained as more labelled episodes, which are very infrequent, come in.
It also classifies unlabeled episodes in between those infrequent training episodes. Since
both training and classification happen for the same user, the semi-supervised model acts
in a very personalized manner. Since in this process no data need to be transferred outside
the embedded wearable device, which performs both model training and classification,
privacy of the user’s movement data is automatically preserved. This makes the approach
personalized and privacy preserving at the same time.
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5. Experiments and Results

An open-source human activity dataset (i.e., Wireless Sensor Data Mining Lab-WISDM
lab dataset from the University of California, Irvine [27]) has been used for training and
validation of the iterative semi-supervised learning model. Three broad classes of activities
viz. sedentary, moderately active and active have been used from testing the proposed model
as discussed in Section 3. The time-series data have been pre-processed and windowed
into two-minute episodes. Six features, as described in Section 3, are extracted from each
episode. Moreover, 8262 episodes (2754 from each class of activities) are used for the model
evaluation experiments of the proposed iterative semi-supervised learning framework
explained in Section 4.

The SSL model is trained using three principal components (i.e., using (PCA) [32])
extracted from the six features discussed earlier. Experiments involving different clustering
algorithms, the hyper-parameter number of clusters (Nc), and system parameter α (i.e., %
of pre-labelled datapoints) have been performed to evaluate the accuracy and complexity
of the proposed SSL model. The accuracy metrics are true positive (TP), false positive (FP),
overall accuracy (Acc), and the classification rate, which is defined as the percent of classified
datapoints among the actual number of datapoints. The computational complexity of the
model is represented by the computational time and the CPU memory usage for each learning
cycle. The accuracy and complexity are analyzed based on the performance of the SSL
algorithm in order to train 8262 episodes (datapoints) for 100 runs. All the results involving
the SSL algorithm are means of the results collected from 100 independent runs.

5.1. Pre-Trained Supervised Learning Model as a Benchmark

A pre-trained supervised model evaluated with a 10-fold cross-validation using the
same dataset has been used as a benchmark for the proposed semi-supervised learning
framework. The six extracted features mentioned in Section 3 have been directly used as the
input to the NN model. The NN model is trained using the hyper-parameters mentioned
in Table 1.

Table 1. Hyper-parameters for pre-trained neural network (supervised learning) model.

# of input features 6

# of hidden layers 1 (128 neurons)

Activation function tanh (hidden layers), soft-max (output layer)

Optimizer Adam

Loss function Categorical cross entropy

The mean performance (as mentioned in Table 2) of each accuracy parameter for all
10-fold cross-validation tests is used as a performance benchmark for the classification
accuracy of the proposed model. It is observed that the NN model has mean true positives
of 98.47%, 97.41%, and 98.19% for the three classes (i.e., sedentary, moderately active, and
active), respectively. The mean overall accuracy is 98.03%.

5.2. Impacts of Feature Dimensionality Reduction on SSL

The primary motivation of the proposed self-training algorithm is its suitability for
the wearable system and its privacy-preserved personalized applications. Ideally, the
semi-supervised learning-based self-training model needs to be computationally light due
to the resource-constrained nature of the embedded wearable devices. To that end, PCA
has been used to reduce the number of features from six to three. Figures 6 and 7 depict the
differences in accuracy parameters (TP, FP, Acc, and λ) for training the SSL model with and
without using PCA, using the population-based and distance-based SSL algorithms, respec-
tively. The results are presented for the two presented algorithm viz. population-based and
distance-based. Moreover, 20 clusters formed by the k-means clustering algorithm are used
for these experiments.
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Table 2. 10-fold validation results for a pre-trained neural network model.

Folds

Class 1: Sedentary Class 2: Moderately Active Class 3: Active Overall
Accuracy

(%)
True Positive

(%)
False Positive

(%)
True Positive

(%)
False Positive

(%)
True Positive

(%)
False Positive

(%)

1 98.582422 0.7047926 97.174001 1.4925373 98.433106 0.7076425 98.06321453

2 98.207171 0.4873096 97.245849 1.3693113 99.022801 0.9037959 98.15736382

3 98.589847 0.7468712 96.593186 1.2952844 98.779992 0.9845288 97.98278644

4 98.907767 0.8259468 97.41205 1.4910336 98.073063 0.4853387 98.13071544

5 98.245614 0.5616851 98.436247 2.3472278 97.06945 0.2224469 97.91554599

6 98.371336 0.7831325 97.6 1.7828201 97.983871 0.4640839 97.98278644

7 98.479392 0.7899534 97.406807 1.6304348 98.217902 0.5234548 98.03657881

8 98.954984 1.2328213 96.847211 1.8540911 97.291835 0.362757 97.70037655

9 98.266828 0.5852674 97.243616 1.5496076 98.633441 0.7881973 98.0500269

10 98.103309 0.524405 98.217902 1.7112945 98.392929 0.4042854 98.23830016

Mean 98.470867 0.7242185 97.417687 1.6523643 98.189839 0.5846531 98.02576951

Figure 6. (a–h) Impacts of PCA on accuracy parameters for population-based SSL; (a–c): true positive
for the three classes; (d–f) false positive for the three classes; (g) overall accuracy; (h) classification rate.
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Figure 7. (a–h) Impacts of PCA on accuracy parameters for distance-based SSL; (a–c) true positive for
the three classes; (d–f) false positive for the three classes; (g) overall accuracy; (h) classification rate.

For both SSL algorithms, true positives (TP) and false positives (FP) for all the three
classes are almost same for both the scenarios with and without using PCA. The overall
accuracy (Acc) and the classification rate (λ) are also the same for both algorithms. The only
observable difference is in the stability in TP, FP, and Acc performance with more incoming
episodes. The performances with PCA have less oscillatory behavior after convergence
compared to the case not using PCA. This makes it evident that a feature space with less
dimensions makes the cluster models more definite in less time.

Figures 8 and 9 present the impacts of dimensionality reduction from the six original
features to three principal components. It can be observed that more dimensions (features)
of a data sample results in higher computational complexity. Thus, for both, the types
of SSL algorithms, both computational time, and CPU memory usage go up when PCA
is not used. Thus, the experiments analyzing the different hyper-parameters and system
parameter of the SSL model are carried out using the three principal components obtained
by using PCA on the original six features.
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Figure 8. Impact of PCA on complexity for population-based SSL; (a) computational time; (b) CPU
memory usage.

Figure 9. Impact of PCA on complexity for distance-based SSL; (a) computational time; (b) CPU
memory usage.

5.3. Impacts of Pre-Labelled Data Volume on SSL Performance

Figure 10 depicts the TP, FP, overall accuracy, and classification rate for SSL operating
with different amounts of pre-labelled data, which is represented as α (in percentage). These
experiments are performed with 20 clusters formed by the k-means clustering method in
the SSL model. It can be observed that all the accuracy parameters converge faster and reach
better performance values with increasing values of α. For the population-based SSL, lower
α (i.e., 0.05%, 0.1%, 0.5%, and 1%) values are unable to achieve a 100% classification rate.
The reasons are as follows: First, many clusters may the lack predominance of prelabelled
datapoints from a particular class. Second, a cluster may not have any pre-labelled episodes
altogether. All the datapoints in those clusters remain unlabeled and thus unclassified.
Figure 10f shows that using the distance-based SSL, all the clusters and their datapoints
are always labelled since this variant of SSL does not depend on the presence of any pre-
labelled datapoints in a cluster. Rather, a cluster is labelled according to the label of the
nearest pre-labelled datapoint in the distance-based SSL. The labelling in this mechanism is
not impacted by whether the nearest pre-labelled datapoint is present inside or outside the
cluster. Also, it can be observed that convergence is achieved faster in the distance-based
SSL than in the population-based SSL.

Figure 11a,b depicts the total semi-supervised learning computational complexity for
both variants of SSL. Complexity is represented by the total computational time in seconds
and CPU memory usage in Bytes. It can be observed that the computational time and
CPU memory usage are not dependent on the amount of pre-labelled datapoints for the
population-based SSL since the number of pre-labelled datapoints vary in different clusters
for different runs of the learning algorithm. On the other hand, it can be observed that
more computational time is required for the distance-based SSL to learn 8262 episodes
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since the greater the number of pre-labelled datapoints, the greater the number of distance
calculations required.

Figure 10. Post-convergence accuracy parameters’ results for (a–c) population-based SSL and
(d–f) distance-based SSL, with varying α.

Figure 11. Total learning time and CPU memory usage for all the episodes using (a) population-based
SSL and (b) distance-based SSL, with varying α.

5.4. Impacts of the Number of Clusters (Nc) on SSL Performance

The classification in the proposed model occurs based on the clusters that actually
contain datapoints based on their similarities. The number of clusters in the learning model
is an important hyper-parameter which can determine the precision of classification as well
as the computational complexity to train the cluster model. Figure 12 depicts the accuracy
parameters after learning convergence. These results represent the accuracy parameters for
both population-based and distance-based SSL algorithms with varying number of clusters
in the model. These above results are obtained from experiments performed by setting the
system parameter α to 10% and k-means as the clustering algorithm.

It can be observed that true positive (TP) values improve and false positive (FP)
values decrease with higher Nc for all three classes and for both the variants of SSL. As a
result, the overall accuracy improves with a higher number of clusters (Nc). The overall
accuracy performance does not improve much beyond 10 clusters for both population-
based and distance-based SSL. Also, population-based SSL has marginally better accuracy
(90%) compared to the distance-based SSL (88%). Both the variants of SSL reach a 100%
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classification rate, but distance-based SSL reaches this faster as all the clusters are labelled
from the first cycle of learning as opposed to the population-based SSL.

Figure 12. Post-convergence accuracy parameters’ results for (a–c) population-based SSL and
(d–f) distance-based SSL, with varying Nc.

In the Figure 13a,b, it can be observed that both variants of SSL become computation-
ally expensive with a higher number of clusters. Total CPU memory usage required to
train all the episodes of activities is the same for both population-based and distance-based
SSL for each value of Nc. The total computational time required for iterative learning
is marginally higher for the distance-based SSL compared to the population-based SSL.
This is mainly because population-based SSL only counts the pre-labelled episodes in a
cluster which is computationally less expensive than calculating the distance from each
pre-labelled datapoint from a cluster center.

Figure 13. Total learning time and CPU memory usage for all the episodes using (a) population-based
SSL and (b) distance-based SSL, with varying Nc.

5.5. Impacts of Different Clustering Algorithms

Among the popular clustering methods, k-means (KM) and the Gaussian mixture
model (GMM) are the best methods for the current approach. GMM has three useful
variants based on the relevant covariance types: spherical (GMM_s), full (GMM_f), and
diagonal (GMM_d). Based on the accuracy and complexity performances using the different
clustering methods mentioned above, the best clustering method suited for the ideal SSL
performance is analyzed.
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Figure 14a,b,d,e depict the TPs and FPs for all the three classes of activities along
with the overall accuracy and classification rate for different clustering methods. The
experiments are performed to provide 20 clusters ( Nc = 20) using the different clustering
methods, with α = 10%. It turns out that GMM_f has the highest TPs and the least FPs for
all the three classes. Subsequently, GMM_f has the best overall accuracy (Acc) for both the
population-based and the distance-based SSL variants as shown in Figure 14c,f. This is
because the full covariance type has each component with their own general covariance
matrix, which makes the grouping of datapoints belonging to the same class of activities
more precise. Population-based SSL has marginally better overall accuracy compared to
distance-based SSL.

Figure 14. Post-convergence accuracy parameters’ results for (a–c) population-based SSL and
(d–f) distance-based SSL for different clustering methods.

Figure 15a,b show that GMM_f is computationally expensive with a very high total
computational time and CPU memory usage for learning the entire dataset (8262 episodes).
GMM_s has the second best overall accuracy after GMM_f with less computational time.
But, the CPU memory usage is still very high. K-means requires much less memory usage
compared to the GMM clustering types. Thus, when SSL is implemented on the wearable
device with limited CPU memory, k-means should be preferred over GMM.

Figure 15. Total learning time and CPU memory usage for 8262 episodes using (a) population-based
SSL and (b) distance-based SSL for different clustering methods.
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6. Discussion

This paper presents a fully on-device approach for human activity detection using
a semi-supervised learning paradigm. The proposed SSL mechanisms self-trains in a
fully personalized and privacy-preserving manner. The performance of the mechanism is
compared with that of a pre-trained supervised learning model (NN) which forms a com-
parison benchmark. The post-convergence performance numbers for the benchmark and
the different variants of the proposed SSL algorithm with the best algorithmic parameters
(post-convergence) are summarized in Table 3. Since the NN model was pre-trained outside
the wearable device, the computational time and CPU memory usage are not considered
for the summarization purpose. Advantages of using an unsupervised dimensionality
reduction technique prior to the SSL algorithm are also discussed in Section 5.2.

The proposed SSL model is analyzed and validated based on different learning hyper-
parameters and system parameters. The results suggest that 5% or higher pre-labelled
activity datapoints add precision to the model, therefore improving its classification perfor-
mance. It has been also observed that using 20 clusters in the model with GMM full-type
clustering yields an overall accuracy of 90%, with a 100% classification rate after learning
convergence. However, since GMM_full is a computationally expensive method, a k-means
clustering method is also explored for resource-limited scenarios. With 4.17 h of training
time for 8000 activity episodes the k-means clustering-based SSL approach consumes at
most 20 KB of CPU memory space while providing a maximum accuracy of 90% with a
100% classification rate. It is true that the SSL model cannot reach an accuracy (98%) as high
as the pre-trained supervised model (NN) where the entire training dataset is pre-labelled.
However, the accuracy of the SSL model (90%) with only 10% of pre-labelled datapoints
is still comparable and within a practically acceptable range. These results indicate the
feasibility of the proposed SSL paradigm for practical human activity detection using a
personalized and privacy-preserving health monitoring system.

The proposed semi-supervised learning framework has the following limitations.
It can be observed in Figures 8 and 9 that the computational time and CPU memory
usage keep increasing monotonically as the learning progresses with the accumulation
of incoming episodes (datapoints) in the data pool. As the size of the data pool keeps
increasing, more computational resources (time and CPU memory) are required. Thus, a
necessary upgrade of the proposed framework is required such that the learning process
should stop after the classification model has converged. Following the interest of the
sedentary research community [29–31], this paper deals with three major relevant classes,
namely, sedentary, moderately active, and active. The presented SSL framework can be scaled
up to handle more activities beyond the sedentary-targeted clinical applications.
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Table 3. Summary of post-convergence accuracy results and total computational complexity numbers for the pre-trained NN model (benchmark) and the different
variants of semi-supervised learning model.

Learning Mechanism
Class 1: Sedentary Class 2: Moderately Active Class 3: Active Overall

Accuracy
(%)

Classification
Rate
(%)

Total Computational
Time to Train 8262

Episodes (s)

Total CPU Memory
Usage to Train 8262

Episodes (Bytes)
True Positive

(%)
False Positive

(%)
True Positive

(%)
False Positive

(%)
True Positive

(%)
False Positive

(%)

Neural Network
(Benchmark) 98.47 0.72 97.41 1.65 98.18 0.58 98.03 100 N/A N/A

Population-based SSL
(K-means, NC = 20, α = 10%) 94.19 1.33 81.21 6.81 92.17 8.03 89.18 99.17 14,308.92 7455.104

Distance-based SSL
(K-means, NC = 20, α = 10%) 95.32 2.58 76.36 5.9 92.8 9.27 88.16 100 15,293.88 7559.6

Population-based SSL
(GMM_d, NC = 20, α = 10%) 95.1 1.6 78.25 4.82 95.1 9.34 89.48 99.99 13,454.91 22,122.97

Distance-based SSL
(GMM_d, NC = 20, α = 10%) 95.57 2.09 76.09 5.28 93.69 9.94 88.45 100 14,281.27 22,273.25

Population-based SSL
(GMM_f, NC = 20, α = 10%) 97.04 1.53 82.4 5.58 91.72 7.3 90.38 99.99 15,003.91 22,930.06

Distance-based SSL
(GMM_f, NC = 20, α = 10%) 96.93 1.55 75.7 3.86 95.14 10.69 89.255 100 16,059.36 23,080.42

Population-based SSL
(GMM_s, NC = 20, α = 10%) 94.45 1.34 82.13 6.68 92.15 7.6 89.57 99.99 13,060.78858 22,117.19

Distance-based SSL
(GMM_s, NC = 20, α = 10%) 95.16 1.79 77.6 5.96 92.622 9.55 88.46 100 14,382.66124 22,267.82
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7. Conclusions

This paper presents an on-device semi-supervised human activity detection system
that can learn and predict human activity patterns in real time. The proposed semi-
supervised learning (SSL) framework uses sparsely labelled user activity events acquired
from Inertial Measurement Unit (IMU) sensors installed as wearable devices. The objective
is to learn classification in real-time. The proposed cluster-based learning model in this
approach is trained with data from the same target user, thus preserving data privacy
while providing personalized activity detection. Two different cluster labelling strate-
gies, namely, population-based and distance-based, are employed to achieve the desired
classification performance.

A comparative study of the proposed strategy has been presented in terms of classifia-
bility and classification accuracies. Different accuracy parameters for each of the classes
of human activities (true positive and false positive) as well as the overall accuracy of
classifying all the classes of activities have been considered to evaluate the learning model
formed by the proposed SSL framework. The proposed system is shown to be compu-
tationally efficient, which is relevant in the context of limited computing resources on
typical wearable devices. The trade-off between classification accuracy and computation
complexity is analyzed for different algorithmic hyper-parameters (number of clusters) and
other system parameters (% of pre-labelled datapoints). Different clustering algorithms like
k-means and the Gaussian mixture model (GMM) have also been experimented with as part
of the framework evaluation. Computational time and CPU memory usage have been used
as parameters to measure the time and space complexity of the proposed learning model
for the different algorithmic parameters mentioned above. Extensive experimentation and
simulation studies have been conducted on multi-user human activity data from the public
domain to validate the proposed learning paradigm. It has been observed that the proposed
semi-supervised online learning framework can achieve a maximum classification accuracy
of around 90% with 10% pre-labelled as opposed to the pre-trained supervised learning
model which achieves 98% classification accuracy with 100% pre-labelled datapoints.

Author Contributions: Conceptualization, A.R., H.D., A.K.B. and S.B.; methodology, A.R.; software,
A.R.; validation, H.D., A.K.B. and S.B.; formal analysis, A.R.; investigation, A.R.; resources, A.R. and
S.B.; data curation, A.R.; writing—original draft preparation, A.R.; writing—review and editing, H.D.,
A.K.B. and S.B.; visualization, A.R.; supervision, S.B.; project administration, S.B.; funding acquisition,
S.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: An open-source human activity dataset (i.e., Wireless Sensor Data
Mining Lab-WISDM lab dataset from the University of California, Irvine) has been used for the
experiments of this research. The WISDM dataset can be found at https://archive.ics.uci.edu/
dataset/507/wisdm+smartphone+and+smartwatch+activity+and+biometrics+dataset (accessed on 4
September 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lui, G.Y.; Loughnane, D.; Polley, C.; Jayarathna, T.; Breen, P.P. The Apple Watch for Monitoring Mental Health–Related

Physiological Symptoms: Literature Review. JMIR Ment. Health 2022, 9, e37354. [CrossRef] [PubMed]
2. Bunn, J.A.; Navalta, J.W.; Fountaine, C.J.; Reece, J.D. Current State of Commercial Wearable Technology in Physical Activity

Monitoring 2015–2017. Int. J. Exerc. Sci. 2018, 11, 503–515. [PubMed]
3. Hady, M.F.A.; Schwenker, F. Semi-supervised Learning. In Handbook on Neural Information Processing; Bianchini, M., Maggini, M.,

Jain, L.C., Eds.; Intelligent Systems Reference Library; Springer: Berlin/Heidelberg, Germany, 2013; pp. 215–239. [CrossRef]
4. Rasekh, A.; Chen, C.-A.; Lu, Y. Human Activity Recognition using Smartphone. arXiv 2014, arXiv:1401.8212. [CrossRef]

https://archive.ics.uci.edu/dataset/507/wisdm+smartphone+and+smartwatch+activity+and+biometrics+dataset
https://archive.ics.uci.edu/dataset/507/wisdm+smartphone+and+smartwatch+activity+and+biometrics+dataset
https://doi.org/10.2196/37354
https://www.ncbi.nlm.nih.gov/pubmed/36069848
https://www.ncbi.nlm.nih.gov/pubmed/29541338
https://doi.org/10.1007/978-3-642-36657-4_7
https://doi.org/10.48550/arXiv.1401.8212


Sensors 2024, 24, 4444 19 of 20

5. Atallah, L.; Lo, B.; King, R.; Yang, G.-Z. Sensor Positioning for Activity Recognition Using Wearable Accelerometers. IEEE Trans.
Biomed. Circuits Syst. 2011, 5, 320–329. [CrossRef] [PubMed]

6. Bulling, A.; Blanke, U.; Schiele, B. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv.
2014, 46, 1–33. [CrossRef]

7. Wang, Y.; Cang, S.; Yu, H. A survey on wearable sensor modality centred human activity recognition in health care. Expert Syst.
Appl. 2019, 137, 167–190. [CrossRef]

8. Twomey, N.; Diethe, T.; Fafoutis, X.; Elsts, A.; McConville, R.; Flach, P.; Craddock, I. A Comprehensive Study of Activity
Recognition Using Accelerometers. Informatics 2018, 5, 27. [CrossRef]

9. Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and
wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [CrossRef]

10. Del Rosario, M.B.; Wang, K.; Wang, J.; Liu, Y.; Brodie, M.; Delbaere, K.; Lovell, N.H.; Lord, S.R.; Redmond, S.J. A comparison of
activity classification in younger and older cohorts using a smartphone. Physiol. Meas. 2014, 35, 2269–2286. [CrossRef] [PubMed]

11. Albert, M.V.; Toledo, S.; Shapiro, M.; Kording, K. Using Mobile Phones for Activity Recognition in Parkinson’s Patients. Front.
Neurol. 2012, 3, 158. [CrossRef] [PubMed]

12. Weiss, G.M.; Yoneda, K.; Hayajneh, T. Smartphone and Smartwatch-Based Biometrics Using Activities of Daily Living. IEEE
Access 2019, 7, 133190–133202. [CrossRef]

13. Weiss, G.M.; Lockhart, J.W. The Impact of Personalization on Smartphone-Based Activity Recognition. In Proceedings of the
Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012.

14. Ferrari, A.; Micucci, D.; Mobilio, M.; Napoletano, P. On the Personalization of Classification Models for Human Activity
Recognition. IEEE Access 2020, 8, 32066–32079. [CrossRef]

15. Weiss, G.M.; Timko, J.L.; Gallagher, C.M.; Yoneda, K.; Schreiber, A.J. Smartwatch-based activity recognition: A machine learning
approach. In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las
Vegas, NV, USA, 24–27 February 2016; pp. 426–429. [CrossRef]

16. Berchtold, M.; Budde, M.; Gordon, D.; Schmidtke, H.R.; Beigl, M. ActiServ: Activity Recognition Service for mobile phones. In
Proceedings of the International Symposium on Wearable Computers (ISWC) 2010, Seoul, Republic of Korea, 10–13 October 2010;
pp. 1–8. [CrossRef]

17. Siirtola, P.; Koskimäki, H.; Röning, J. From User-Independent to Personal Human Activity Recognition Models Using Smartphone
Sensors. Available online: https://oulurepo.oulu.fi/handle/10024/22078 (accessed on 9 May 2024).

18. Roggen, D.; Förster, K.; Calatroni, A.; Tröster, G. The adARC pattern analysis architecture for adaptive human activity recognition
systems. J. Ambient. Intell. Humaniz. Comput. 2013, 4, 169–186. [CrossRef]

19. Cook, D.; Feuz, K.D.; Krishnan, N.C. Transfer learning for activity recognition: A survey. Knowl. Inf. Syst. 2013, 36, 537–556.
[CrossRef]

20. Horiguchi, S.; Amano, S.; Ogawa, M.; Aizawa, K. Personalized Classifier for Food Image Recognition. IEEE Trans. Multimed. 2018,
20, 2836–2848. [CrossRef]

21. Cho, Y.; Lee, A.; Park, J.; Ko, B.; Kim, N. Enhancement of gesture recognition for contactless interface using a personalized
classifier in the operating room. Comput. Methods Programs Biomed. 2018, 161, 39–44. [CrossRef]

22. Roy, A.; Dutta, H.; Griffith, H.; Biswas, S. An On-Device Learning System for Estimating Liquid Consumption from Consumer-
Grade Water Bottles and Its Evaluation. Sensors 2022, 22, 2514. [CrossRef] [PubMed]

23. Singh, G.; Chowdhary, M.; Kumar, A.; Bahl, R. A Personalized Classifier for Human Motion Activities With Semi-Supervised
Learning. IEEE Trans. Consum. Electron. 2020, 66, 346–355. [CrossRef]

24. Roy, A.; Dutta, H.; Bhuyan, A.K.; Biswas, S.K. Semi-Supervised Learning Using Sparsely Labelled Sip Events for Online
Hydration Tracking Systems. In Proceedings of the 2023 International Conference on Machine Learning and Applications
(ICMLA), Jacksonville, FL, USA, 15–17 December 2023; pp. 1799–1804. [CrossRef]

25. Oh, S.; Ashiquzzaman, A.; Lee, D.; Kim, Y.; Kim, J. Study on Human Activity Recognition Using Semi-Supervised Active Transfer
Learning. Sensors 2021, 21, 2760. [CrossRef] [PubMed]

26. Lv, M.; Chen, L.; Chen, T.; Chen, G. Bi-View Semi-Supervised Learning Based Semantic Human Activity Recognition Using
Accelerometers. IEEE Trans. Mob. Comput. 2018, 17, 1991–2001. [CrossRef]

27. Weiss, G. WISDM Smartphone and Smartwatch Activity and Biometrics Dataset. 2019. Available online: https://archive.ics.
uci.edu/dataset/507/wisdm+smartphone+and+smartwatch+activity+and+biometrics+dataset (accessed on 4 September 2023).
[CrossRef]

28. Yang, M.; Meng, Z.; King, I. FeatureNorm: L2 Feature Normalization for Dynamic Graph Embedding. In Proceedings of the 2020
IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; pp. 731–740. [CrossRef]

29. Martínez-González, M.; Martínez, J.A.; Hu, F.; Gibney, M.; Kearney, J. Physical inactivity, sedentary lifestyle and obesity in the
European Union. Int. J. Obes. 1999, 23, 1192–1201. [CrossRef]
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