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Abstract: This paper proposes a solution to the problem of mobile robot navigation and trajectory
interpolation in dynamic environments with large scenes. The solution combines a semantic laser
SLAM system that utilizes deep learning and a trajectory interpolation algorithm. The paper first
introduces some open-source laser SLAM algorithms and then elaborates in detail on the general
framework of the SLAM system used in this paper. Second, the concept of voxels is introduced
into the occupation probability map to enhance the ability of local voxel maps to represent dynamic
objects. Then, in this paper, we propose a PointNet++ point cloud semantic segmentation network
combined with deep learning algorithms to extract deep features of dynamic point clouds in large
scenes and output semantic information of points on static objects. A descriptor of the global
environment is generated based on its semantic information. Closed-loop completion of global
map optimization is performed to reduce cumulative error. Finally, T-trajectory interpolation is
utilized to ensure the motion performance of the robot and improve the smooth stability of the robot
trajectory. The experimental results indicate that the combination of the semantic laser SLAM system
with deep learning and the trajectory interpolation algorithm proposed in this paper yields better
graph-building and loop-closure effects in large scenes at SIASUN large scene campus. The use of
T-trajectory interpolation ensures vibration-free and stable transitions between target points.

Keywords: SLAM; semantic laser; point cloud; occupation probability

1. Introduction

The significance of simultaneous localization and mapping (SLAM) technology and
trajectory interpolation for mobile robots and autonomous driving has been increasing
due to the continuous development of artificial intelligence technology [1–6]. SLAM
algorithms and trajectory interpolation have been successfully applied in various fields,
including campus inspection, logistics and distribution, and unmanned driving. When
dealing with large-scale outdoor environments such as factories, laser point clouds are
less affected by weather and light and can perceive a 360-degree range. However, it is
essential to note that their operation speed is faster. However, laser point clouds typically
only contain the geometric information of the environment. In dynamic environments,
they may generate residual shadows on the map, which can decrease the accuracy of laser
mapping [7,8]. Loopback detection in laser SLAM relies on traditional features such as
position and intensity. However, this method could be better as it needs to consider the
semantic information of the surrounding environment, which is crucial for human beings
to recognize whether a place has been reached [9,10].

To address the issues, this paper explores a semantic laser SLAM system that incor-
porates deep learning and a trajectory interpolation algorithm. Compared to existing
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methods, the SLAM system presented in this paper incorporates the concept of voxels
into the occupation probability map, thereby improving the ability of local voxel maps to
represent dynamic objects. This paper combines the deep learning semantic laser SLAM
system with trajectory interpolation algorithm research to solve the system problem in
which the sensors cannot directly obtain the semantic information of the point cloud and
recognize the points on the dynamic objects. The related algorithms of the deep learning
point cloud semantic segmentation are also incorporated. The article utilizes a PointNet++
network for point cloud semantic segmentation. This network can recognize points on
dynamic objects and extract deep features of a scene’s dynamic point cloud to output se-
mantic information of points on static objects. A global environment descriptor containing
semantic information is generated to identify loops and add loop constraints to the factor
graph for optimization. By adding semantic information, dynamic points in the map can be
filtered out to improve the map-building quality. Map building and trajectory interpolation
experiments were conducted on the SIASUN Campus. The experimental results were
compared with satellite maps to demonstrate the algorithm’s ability to build maps and
localize in large scenes. The robot’s planning curves show that T-trajectory optimization
effectively ensures vibration-free and stable transitions between target points. The experi-
ments demonstrate the feasibility of the proposed algorithm. The time-consuming analysis
of the SLAM system shows that it can perform real-time computation, meeting the real-time
localization requirements of mobile robots.

The main contributions of this paper are as follows:

(a) This study proposes a mobile robot navigation method based on semantic information,
combining a semantic laser SLAM system based on deep learning and a trajectory
interpolation algorithm to solve the navigation challenges in dynamic environments
and large scenes.

(b) This study introduces the concept of voxels into occupancy probability maps to better
represent dynamic objects. The PointNet++ network is used for point cloud semantic
segmentation to identify dynamic object points and extract semantic information.

(c) This study uses semantic information to generate a global environment descriptor for
loop detection and map optimization, improving the quality of map construction.

(d) This study proposes a T-trajectory interpolation algorithm to ensure the smooth
transition of robot motion and avoid vibration.

(e) This study was experimentally verified in the SIASUN campus environment. The
SLAM system can achieve real-time calculation and meet the positioning needs of
mobile robots.

2. Mobile Robotic Systems Overview
2.1. Mobile Robot Navigation Technology Program

As depicted in Figure 1, several open-source laser SLAM algorithm frameworks are
available [11,12].

1. Featured-Based Registration:

LOAM (Lidar Odometry and Mapping in real-time):
Front-end odometry: Scan to scan—feature point-based alignment L-M nonlinear

optimization.
Back-end optimization: Scan to map—map optimization.
LEGO-LOAM (Lightweight and Ground-Optimized Lidar and Mapping):
Front-end odometry: Point cloud segmentation, scan to scan—two-stage L-M nonlin-

ear optimization for feature point-based alignment.
Back-end optimization: Scan to map–map optimization, graph optimization, and

loopback detection.
LIO-SAM:
Front-end odometer: Front-end odometer fused with IMU.
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Back-end optimization: Graph optimization with added GPS factor and loopback
detection.
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Figure 1. Laser SLAM system. 

1. Featured-Based Registration: 
LOAM (Lidar Odometry and Mapping in real-time): 
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LIO-SAM: 
Front-end odometer: Front-end odometer fused with IMU. 
Back-end optimization: Graph optimization with added GPS factor and loopback de-

tection. 
2. Direct Registration: 

Featured-Based Registration: 
This approach to image registration relies on the minimization of some distance or 

dissimilarity metric between the target image and the input/moving image. Common dis-
tance measures employed include the Sum of Squared Differences (SSD), Sum of Absolute 
Differences (SAD), and Normalized Cross-Correlation (NCC). These distance metrics 
quantify the similarity between the two images by evaluating the pixel-wise intensity dif-
ferences. By optimizing these distance measures, the optimal geometric transformation 
(e.g., translation, rotation, scaling) between the two images can be estimated. Distance-
based registration methods are computationally efficient but tend to be sensitive to noise, 
intensity inhomogeneities, and partial occlusions in the images. 

Local Distribution-Based Registration: 
This class of image-registration methods based on probability distributions focuses 

on aligning the underlying probability distributions of the two images, rather than simply 
comparing pixel-level intensity differences. Common distribution similarity measures 

Figure 1. Laser SLAM system.

2. Direct Registration:

Featured-Based Registration:
This approach to image registration relies on the minimization of some distance or

dissimilarity metric between the target image and the input/moving image. Common
distance measures employed include the Sum of Squared Differences (SSD), Sum of Abso-
lute Differences (SAD), and Normalized Cross-Correlation (NCC). These distance metrics
quantify the similarity between the two images by evaluating the pixel-wise intensity differ-
ences. By optimizing these distance measures, the optimal geometric transformation (e.g.,
translation, rotation, scaling) between the two images can be estimated. Distance-based
registration methods are computationally efficient but tend to be sensitive to noise, intensity
inhomogeneities, and partial occlusions in the images.

Local Distribution-Based Registration:
This class of image-registration methods based on probability distributions focuses

on aligning the underlying probability distributions of the two images, rather than simply
comparing pixel-level intensity differences. Common distribution similarity measures
employed include Mutual Information (MI) and Normalized Mutual Information (NMI).
These measures quantify the statistical correlation between the intensity values in the
two images, capturing the similarity of their joint probability distribution and marginal
probability distributions.

Compared to distance-based registration methods, distribution-based approaches are
generally more robust to imaging artifacts such as noise, intensity inhomogeneities, and
partial occlusions. This is because they focus on the underlying statistical properties of the
image features, rather than just pixel-wise intensity differences.

However, distribution-based registration methods are typically more computationally
complex, requiring sophisticated probability density estimation and optimization proce-
dures. In some applications, their convergence may be slower. Therefore, in practice,
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hybrid strategies combining both distance-based and distribution-based methods are often
employed to achieve optimal registration performance.

2.2. General Framework of the SLAM System

SLAM algorithms are essential for enhancing the autonomy and intelligence of mobile
robots. Recent research has identified two types of laser SLAM systems: feature-based
alignment and direct alignment based on point cloud alignment methods. This paper
proposes a framework for the SLAM system, as shown in Figure 2, which receives inputs
from 3D LIDAR and outputs 6 DOF attitude estimates. The system is divided into three
modules: front-end odometry, back-end nonlinear optimization, and loopback detection.
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The front-end odometers infer rough radar motion from adjacent frames of radar data
and provide initial values for the back end. Front-end alignment methods include ICP
matching, NDT matching, PL-P matching, and CSM matching. ICP matching utilizes point
cloud data to construct local geometric features, NDT matching constructs multidimen-
sional variables based on normal distributions, PL-P matching approximates the actual
surfaces using a segmented linear method, and CSM matching obtains the initial values
through correlation scanning and least squares problems. The nonlinear optimization
methods include gradient descent, the Gaussian Newton method, and the L-M method,
where the L-M method introduces the trust region based on the Gaussian Newton method.

Loopback detection, also known as closed-loop detection, enables robots to recognize
previously visited locations and achieve closed-loop capabilities for mapping. There are
various methods for loopback detection, including feature matching, odometer position-
based, and deep learning methods. Additionally, radar data can be matched using Scan-to-
Scan, Scan-to-Map, and Map-to-Map methods.

Back-end optimization aims to improve the accuracy of estimating the robot’s previous
bit positions and waypoints in the presence of noise by reducing estimation errors in motion
states and waypoints. The process of state prediction and measurement updating involves
modeling the robot’s motion and applying Kalman filtering. Additionally, graph-based
optimization methods are used to represent the robot’s poses as variables to be optimized
and construct a graph of the error terms through the relationships between the poses. These
methods effectively improve the accuracy of robot localization and map construction in
complex environments.

3. Map Organization and Update Strategy
3.1. Laser Odometry—Nonlinear Optimization Algorithm

Navigation systems use odometry data to estimate changes in robot position over time.
In SLAM problems, both the front-end position optimization problem and the back-end
graph optimization problem are modeled as nonlinear least squares problems. Therefore,
nonlinear optimization algorithms are crucial for SLAM systems. A general nonlinear least
squares problem can be defined with a minimization objective function.
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min
x

F(x) = min
x

1
2
∥ f (x) ∥2 (1)

where x ∈ Rn, f (x) is a nonlinear function.

3.2. Voxel-Based Local Map Construction and Updating

Compared to the 2D case, building and utilizing a 3D raster map for point cloud
alignment requires significantly more computational effort, leading to an increased burden
on the system and reduced real-time performance. We utilize NDT maps to address the
issue of aligning 3D point clouds. These maps employ the distribution of points within a
voxel to represent the entire voxel. The NDT algorithm divides the voxel into relatively
large sections, treating the points within each voxel as sampling points of a single Gaussian
distribution. The mean and covariance of the distribution of points within the voxel are
then fitted. Additionally, rasters are utilized in the NDT algorithm to divide the map.

The paper introduces a voxel-based map representation for alignment, where local
maps are voxelized, and occupancy probability is incorporated to enhance the representa-
tion of dynamic objects. The environment is modeled using 1 m3 square voxels to match
the outdoor scene. Figure 3 illustrates the voxel mapping process. When aligning with the
local map for the current frame, it is typically necessary to find the nearest neighbor of the
point or voxel raster to establish the alignment relationship. Utilizing the hash algorithm
for local voxels can expedite the voxel-finding process and simplify voxel addition and
deletion operations, resulting in lower algorithmic complexity.
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Figure 3. Schematic of voxel mapping.

In the figure, m and c represent the mean and covariance, respectively, n represents
the number of measurement points, and pk represents one of the measurement points.

When a new sampling point enters the voxel, the distribution of the voxel is corrected
using an iterative update strategy. The traditional method of iterative updating each
time is computationally expensive compared to this scheme, which significantly reduces
computation. This correction scheme for map voxel information is a primary research focus
for maps. The original mean and covariance will not reflect the current new distribution
within the voxel when a new point enters the voxel. Incremental corrections can be made to
the existing mean and covariance through an iterative approach rather than re-calculating
them for all points. The data structure of the voxels in this system includes the mean,
covariance, and occupancy probability as core parameters.

4. Combining Deep Learning for a Semantic Laser SLAM System

This paper enhances the network structure of previous research. First, a multi-layer
feature extraction module is used to achieve deep learning-based segmentation of dynamic
object point clouds. Additionally, the output layer of the network is modified and retrained
to output the semantic categories of static object points. Second, the neural network’s
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semantic results create a global environment descriptor based on semantic information.
Geometric and semantic similarity matching is used to identify loopback candidates,
and then map-to-map matching is employed to customize the loopbacks precisely. This
prevents the addition of erroneous constraints to the factor graph. Finally, in the outdoor
environment with dynamic objects, we construct a pure 3D laser semantic SLAM algorithm
to filter dynamic points based on semantic information and create a static semantic map
of the point cloud. We generate a global environment descriptor containing semantic
information and detect loopbacks using the loopback detection method, which is then
optimized using the factor graph.

4.1. Segmentation Feature Extraction Based on Ground Constraints

Point cloud semantic segmentation is crucial in 3D applications, as it provides high-
precision localization information for SLAM systems to construct accurate maps. Ad-
ditionally, it offers reference targets for buildings and man-made features in building
information models.

A neural network framework-based scheme for semantic segmentation of 3D point
clouds can determine the object categories in the point cloud data and provide a more
comprehensive description of the environmental scene. This paper applies the PointNet++
point cloud semantic segmentation network to outdoor large scene point clouds with an
uneven density and a large data volume. PointNet++ processes a set of points sampled
in the metric space by building a multilayer neural network and extracts the features of
the sampled points through multiple simplified PointNet [13]. As illustrated in Figure 4,
PointNet++ comprises multiple Set Abstraction (SA) layers. For each SA layer, the input
vector is either the original point cloud or the local features extracted from the previous
SA layer. The features of each layer are extracted using PointNet and then combined by a
combination layer in the next SA layer to extract deeper features.
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The Set Abstraction Layer comprises three main components: the Sampling Layer, the
Grouping Layer, and the PointNet Layer. The Sampling Layer selects a set of points from
the input point set to serve as the center of the local neighborhood. The Grouping Layer
constructs the local point set, which defines the local region of the centers. The PointNet
Layer uses a mini PointNet to encode the local point set and obtain the feature vectors.

4.2. Closed-Loop Detection and Position Optimization Flow

Closed-loop detection is a crucial component of the laser SLAM system. It ensures map
consistency and eliminates accumulated errors during point cloud alignment, particularly
when building maps for large scenes. The closed-loop detection strategy of the laser SLAM
system can be divided into two algorithms: descriptor-based closed-loop detection and
positional nearest neighbor-based closed-loop detection. The descriptor-based detection
algorithm compresses high-dimensional point cloud data by extracting features from the
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point cloud. By comparing the low-dimensional descriptor data of two frames of the point
cloud, it can be quickly determined whether they may have been sampled from the same
scene. The closed-loop nearest-neighbor detection algorithm compares the error values
between the descriptors of the laser point cloud of the current frame and the descriptors of
the point cloud of the historical laser keyframes. The worst and most minor historical point
cloud descriptors are then selected to obtain the most probable closed-loop point of the
current position.

The process of closed-loop detection, also known as scene recognition, involves gener-
ating a global environment descriptor that contains semantic information, which is then
used for scene description and search. Once the closed loop is successfully detected, the
bit positions in the global keyframes are optimized through graph optimization. The
closed-loop detection thread can perform this step separately to complete the global map
optimization and reduce cumulative errors. The system extracts the local sub-map from
the new global map and uses it to recreate the voxel map, completing the update operation
of the old local map.

5. T-Trajectory Interpolation Strategy

The SLAM system enables the robot to accurately localize and build a map in unknown
environments. Additionally, the trajectory interpolation feature generates smooth paths,
ensuring the smooth motion of the robot. In the manipulation space, paths and poses are
planned and interpolated separately. The resulting per-cycle positions are solved by inverse
kinematics based on the model to obtain the corresponding joint angles for motion control.
T-trajectory interpolation is designed to ensure that the robot exhibits smooth, accurate,
and efficient motions when executing T-tracks. T-trajectory interpolation is the process of
generating and optimizing T-trajectories in a robot, CNC machine, or other automation
system. It involves inserting additional points into the path of the robot to ensure smooth,
accurate, and efficient motion.

The objective of T-trajectory interpolation is to enable the robot to display desirable
motion characteristics while executing T-trajectories using suitable mathematical algorithms
and control strategies.

Acceleration:

A(t) =


A 0 ⩽ t < t1
0 t1 ⩽ t < t2
−A t2 ⩽ t < t3

(2)

Speed:

V(t) =


Aτ1 0 ≤ t < t1
AT1 t1 ≤ t < t2
AT1 − Aτ3 t2 ≤ t < t3

(3)

Distance:

S(t) =


Ss +

1
2 Aτ2

1 0 ≤ t < t1
S01 + AT1τ2 t1 ≤ t < t2
S02 + AT1τ3 − 1

2 Aτ2
3 t2 ≤ t < t3

(4)

In Equations (2)–(4), A represents the acceleration of T-trajectory interpolation, t1~t3
represent the time nodes of the three-segment planning respectively, and τ1~τ3 represent
the time elapsed in the three segments. Ss represents the distance traveled at the beginning
of interpolation, S01 represents the cumulative distance traveled in the first segment of
interpolation, and S02 represents the cumulative distance traveled in the second segment of
interpolation.

T-trajectory interpolation is a technique that helps to prevent robot instability when
switching paths. Its key features include:

1. Smooth transitions: Ensuring that the transitions of the robot between connecting
target points are smooth to avoid erratic motion.
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2. Trajectory Optimization: Interpolation algorithms can be used to generate T-trajectories
that optimize the trajectory for a given motion condition, ensuring the shortest path,
minimum acceleration/deceleration, and minimum mechanical stress.

3. Velocity Planning: The interpolation algorithm must consider the velocity changes in
each part of the T-trajectory to maintain system stability by avoiding excessive speed
or slowness.

The acceleration A is determined by the drive of the chassis motor and the friction
between the tire and the ground. The maximum speed of the T-trajectory interpolation is
determined by the vehicle’s movement capability and cannot exceed the vehicle’s maximum
speed. The time of each segment of T-trajectory interpolation is determined by the running
speed and walking distance.

6. Experimental Results and Analysis

A common use case involves a vast industrial complex located in SIASUN, comprising
of fixed structures (static features), parked vehicles (semi-static features), pedestrians, and
moving vehicles (dynamic features) in a typical dynamic environment. Figure 5 showcases
an outdoor experimental vehicle system that verified the proposed navigation architecture
in this paper on the SIASUN Smart Park campus. The experiment was based on the outdoor
security inspection robot developed by SIASUN. The robot is a four-wheeled ground mobile
vehicle with an Ackerman structure and is equipped with sensors such as LIDAR, camera,
GPS, and IMU.
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The study used a 3D LiDAR as a data source and an RTK-GPS system, which was
constructed using GPS combined with a self-built base station, to provide trajectory truth
data for the experiment. Table 1 displays the specifications of the equipped LiDAR model,
the Sprint 16-line LiDAR RS-LiDAR-16.

Table 1. RS-LiDAR-16 parameter specifications.

Parameter Specification

Horizontal field of view 360◦

Vertical field of view 30◦

Horizontal angular resolution 0.1◦/0.2◦/0.4◦

Frame rate 5 Hz/10 Hz/20 Hz
Ranging capability 150 m
Accuracy (typical) ±2 cm
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6.1. Trajectory Interpolation Test

First, the curves of the mobile robot for trajectory interpolation are collected and
tested to verify the key features such as smooth transition, trajectory optimization, and
velocity planning.

The aim of T-trajectory interpolation is to achieve optimal motion characteristics
by utilizing appropriate mathematical algorithms and control strategies when execut-
ing T-trajectories. This improves the accuracy and efficiency of the automation system.
Figure 6a–c demonstrate that T-trajectory interpolation results in a vibration-free and stable
transition between target points, preventing robot instability during path switching. Tra-
jectory optimization shapes the trajectory to meet specific motion conditions, considering
factors such as the shortest path, minimum acceleration/deceleration, and minimum me-
chanical stress. Velocity planning ensures appropriate velocity variations in different parts
of the T-shaped trajectory to avoid excessively fast or slow movements, thereby improving
system stability.
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6.2. Semantic Maps and Closed-Loop Detection Experiments

The robot motion control system used in the experiment was independently developed
by SIASUN. The weights obtained by training the pointNet++ network with the KITTI
dataset were imported into the vehicle-mounted NVIDIA 3090 PC. In the experiment
at SIASUN Park, the point cloud generated by the vehicle-mounted 3D laser was input
into the model, and the dynamic objects in the map were filtered out according to the
classification results to construct the map.

The experiments on graph building were conducted using the ALOAM algorithm, and
our algorithm on the KITTI dataset sequence 05. The resulting trajectories were compared
to the true values, and the results are presented in Figure 7a,b.
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Figure 7. (a) Original semantic map without dynamic point filtering. (b) Static semantic map after
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Figure 7a displays the original semantic map without dynamic point filtering. It is
evident that the blue section represents the residual shadow left by dynamic objects, which
negatively impacts the quality of the map. By contrast, Figure 7b shows the map generated
after dynamic object filtering during construction. The blue dynamic points have been
filtered out, resulting in a reduction in the number of dynamic points in the map and an
improvement in its quality. The conventional SLAM laser algorithm that uses feature point
cloud building is unable to process dynamic points, which leads to residual shadows in the
generated map.

The point cloud to be processed is projected onto the voxel, the green dynamic voxel
in the figure is found according to the occupancy probability, then the dynamic voxel is
dilated, and finally the point cloud to be processed is projected onto the dynamic voxel,
and all points belonging to the dynamic voxel are removed.

As shown in Figure 8, from the horizontal comparison between our algorithm and
the A-LOAM algorithm, it can be seen that the algorithm effectively removes the dynamic
points belonging to vehicles and pedestrians.
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Figure 9 shows the final global path of the robot, which has the same start and end
points, indicating that the algorithm can effectively detect closed loops. Experimental tests
on the SIASUN C1 building dataset demonstrate that the system can accurately identify
closed-loop constraints and perform graph optimization. The SIASUN C1 Building Dataset
is a point cloud dataset captured using a three-dimensional LiDAR sensor by scanning the
main building within the SIASUN Industrial Campus. The data were acquired by circling
the perimeter of the primary building structure.
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The experiments demonstrate that the combination of a semantic laser SLAM system
with deep learning and a trajectory interpolation algorithm can effectively utilize semantic
information to identify loopbacks and perform global graph optimization, resulting in
reduced cumulative errors and smoother robot trajectories.

6.3. Large-Scale Mapping Experiment for a Corporate Campus

The SIASUN outdoor mobile robot platform was used to extensively survey the
periphery of the SIASUN campus. The effectiveness of whole-map building in a large scene
was analyzed in this experiment. The first and last trajectories were connected to complete
the experiment. An outdoor security inspection robot was used to patrol the periphery
of the SIASUN campus, as depicted in Figure 10a. The route covered a total distance of
approximately 1.8 km, forming a long-distance loop. The environment consisted of typical
outdoor features such as trees, buildings, and open roads. The robot’s specific route is
depicted by the red curve in Figure 10b. The global map, built by the robot, is shown in
yellow-green, while the relative position of the trajectory calculated by the algorithm and
the built map is shown in red.

Figure 10a,b show that the point cloud map aligns accurately with the satellite map,
including the building edges, road edges, and tree shadows. The color change in the
point cloud map reflects the height difference and confirms the color block change in
the grayscale map. The results indicate that the proposed SLAM system achieves high
positioning accuracy while maintaining good mapping efficiency. In Figure 10c, the brown
trace depicts the motion trajectory traversed by the robot during the data collection process.
Additionally, the distance values at various points along the path are also illustrated. An
analysis of the provided results reveals that the trajectory data generated by the algorithm
in this work exhibit a high degree of spatial alignment with the reference satellite map data.
Notably, the computed trajectory does not exhibit any abrupt or discontinuous changes
in the path. This indicates that the employed T-trajectory interpolation approach has
successfully maintained the stability and continuity of the motion profile throughout the
evaluated operation.
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7. Conclusions

This paper presents a complete solution for SLAM systems by combining a semantic
laser SLAM system with deep learning and a trajectory interpolation algorithm. The work
includes the following points:

(1) This paper proposes a general framework for a SLAM system based on open-source
laser SLAM algorithms.

(2) The NDT algorithm addresses the issue of aligning 3D point cloud alignments. It
employs the feature point method for feature extraction and scan-to-map alignment
of the point cloud to obtain the robot position with high accuracy. This enhances the
ability of local voxel maps to represent dynamic objects.

(3) The semantic categories of the points are labeled as the point cloud and are dynam-
ically segmented using PointNet++. A global environment descriptor is generated
based on the semantic information, and loopbacks are detected using a loopback
detection method. The loopbacks are then optimized using a factor graph.

(4) The SLAM navigation algorithm employs T-trajectory interpolation for global and
local planning to ensure the performance of the robot motion, resulting in a smooth
and stable trajectory.
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Experiments demonstrate that the semantic laser SLAM system can accurately recog-
nize semantic information of points on both moving and static objects, meeting the basic
requirements of the SLAM system in terms of operational speed. Combining the deep
learning semantic laser SLAM system with the trajectory interpolation algorithm reduces
cumulative errors and provides a solid foundation for generating high-precision maps. The
deep learning algorithm was tested on public datasets and compared with other SLAM
algorithms. The results demonstrate that this algorithm satisfies the requirements of SLAM
algorithms and is practical and feasible in outdoor scenes with dynamic objects.

Author Contributions: Conceptualization, C.-D.W.; Methodology, R.-H.S. and B.Z.; Software, R.-H.S.,
X.Z., L.Z. and B.Z.; Writing—original draft, X.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Science and Technology Innovation 2030-“New Generation
Artificial Intelligence” Major Project (2020AAA0108903).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: SIASUN Robot & Automation Co., Ltd. was not involved in the study design,
collection, analysis, interpretation of data, the writing of this article or the decision to submit it for
publication. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Xie, H.; Chen, W.; Fan, Y.; Wang, J. Visual-inertial SLAM in featureless environments on lunar surface. Acta Aeronaut. Astronaut.

Sin. 2021, 42, 524169.
2. Xing, Z.; Zhu, X.; Dong, D. DE-SLAM: SLAM for highly dynamic environment. J. Field Robot. 2022, 39, 528–542. [CrossRef]
3. Chen, W.; Wang, Y.; Chen, H.; Liu, Y. eil-slam: Depth-enhanced edge-based infrared-lidar slam. J. Field Robot. 2022, 39, 117–130.

[CrossRef]
4. Zhang, Y.; Song, J.; Ding, Y.; Liu, J. Heterogeneous collaborative SLAM based on fisheye and RGBD cameras. Acta Aeronaut.

Astronaut. Sin. 2023, 44, 244.
5. Li, R.; Qi, Y.; Xie, H.; Han, X. Tightly coupled LiDAR SLAM method for unknown environment. Infrared Laser Eng. 2023, 52, 135.
6. Jiang, L.; Liu, L.; Zhou, A.; Han, L.; Li, P. Improved ORB-SLAM algorithm based on motion prediction. J. Zhejiang Univ. 2023, 57, 170.
7. Zhang, L.; Wei, L.; Shen, P.; Wei, W.; Zhu, G.; Song, J. Semantic SLAM based on object detection and improved octomap. IEEE

Access 2018, 6, 75545–75559. [CrossRef]
8. Chen, X.; Milioto, A.; Palazzolo, E.; Giguere, P.; Behley, J.; Stachniss, C. Suma++: Efficient lidar-based semantic slam. In

Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 4530–4537.

9. Chen, W.; Shang, G.; Ji, A.; Zhou, C.; Wang, X.; Xu, C.; Li, Z.; Hu, K. An overview on visual slam: From tradition to semantic.
Remote Sens. 2022, 14, 3010. [CrossRef]

10. Ran, T.; Yuan, L.; Zhang, J.; Tang, D.; He, L. RS-SLAM: A robust semantic SLAM in dynamic environments based on RGB-D
sensor. IEEE Sens. J. 2021, 21, 20657–20664. [CrossRef]

11. Tian, Y.; Chang, Y.; Arias, F.H.; Nieto-Granda, C.; How, J.P.; Carlone, L. Kimera-multi: Robust, distributed, dense metric-semantic
slam for multi-robot systems. IEEE Trans. Robot. 2022, 38, 2022–2038. [CrossRef]

12. Liu, X.; Nardari, G.V.; Cladera, F.; Tao, Y.; Zhou, A.; Donnelly, T.; Qu, C.; Chen, S.W.; Romero, R.A.F.; Taylor, C.J.; et al. Large-scale
autonomous flight with real-time semantic slam under dense forest canopy. IEEE Robot. Autom. Lett. 2022, 7, 5512–5519.
[CrossRef]

13. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the 31st International Conference on Neural Information Processing Systems (NIPS’17), New York, NY, USA, 4–9 December
2017; pp. 5105–5114.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/rob.22062
https://doi.org/10.1002/rob.22040
https://doi.org/10.1109/ACCESS.2018.2873617
https://doi.org/10.3390/rs14133010
https://doi.org/10.1109/JSEN.2021.3099511
https://doi.org/10.1109/TRO.2021.3137751
https://doi.org/10.1109/LRA.2022.3154047

	Introduction 
	Mobile Robotic Systems Overview 
	Mobile Robot Navigation Technology Program 
	General Framework of the SLAM System 

	Map Organization and Update Strategy 
	Laser Odometry—Nonlinear Optimization Algorithm 
	Voxel-Based Local Map Construction and Updating 

	Combining Deep Learning for a Semantic Laser SLAM System 
	Segmentation Feature Extraction Based on Ground Constraints 
	Closed-Loop Detection and Position Optimization Flow 

	T-Trajectory Interpolation Strategy 
	Experimental Results and Analysis 
	Trajectory Interpolation Test 
	Semantic Maps and Closed-Loop Detection Experiments 
	Large-Scale Mapping Experiment for a Corporate Campus 

	Conclusions 
	References

