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Abstract: Machine learning (ML) methods are widely used in particulate matter prediction modelling,
especially through use of air quality sensor data. Despite their advantages, these methods’ black-box
nature obscures the understanding of how a prediction has been made. Major issues with these
types of models include the data quality and computational intensity. In this study, we employed
feature selection methods using recursive feature elimination and global sensitivity analysis for a
random-forest (RF)-based land-use regression model developed for the city of Berlin, Germany. Land-
use-based predictors, including local climate zones, leaf area index, daily traffic volume, population
density, building types, building heights, and street types were used to create a baseline RF model.
Five additional models, three using recursive feature elimination method and two using a Sobol-
based global sensitivity analysis (GSA), were implemented, and their performance was compared
against that of the baseline RF model. The predictors that had a large effect on the prediction
as determined using both the methods are discussed. Through feature elimination, the number
of predictors were reduced from 220 in the baseline model to eight in the parsimonious models
without sacrificing model performance. The model metrics were compared, which showed that the
parsimonious_GSA-based model performs better than does the baseline model and reduces the mean
absolute error (MAE) from 8.69 µg/m³ to 3.6 µg/m³ and the root mean squared error (RMSE) from
9.86 µg/m³ to 4.23 µg/m³ when applying the trained model to reference station data. The better
performance of the GSA_parsimonious model is made possible by the curtailment of the uncertainties
propagated through the model via the reduction of multicollinear and redundant predictors. The
parsimonious model validated against reference stations was able to predict the PM2.5 concentrations
with an MAE of less than 5 µg/m³ for 10 out of 12 locations. The GSA_parsimonious performed
best in all model metrics and improved the R2 from 3% in the baseline model to 17%. However,
the predictions exhibited a degree of uncertainty, making it unreliable for regional scale modelling.
The GSA_parsimonious model can nevertheless be adapted to local scales to highlight the land-use
parameters that are indicative of PM2.5 concentrations in Berlin. Overall, population density, leaf area
index, and traffic volume are the major predictors of PM2.5, while building type and local climate
zones are the less significant predictors. Feature selection based on sensitivity analysis has a large
impact on the model performance. Optimising models through sensitivity analysis can enhance the
interpretability of the model dynamics and potentially reduce computational costs and time when
modelling is performed for larger areas.

Keywords: particulate matter; sensitivity analysis; random forest; regression modelling; land use

1. Introduction

Around 10% of the people living in Berlin, Germany, reside in areas with a very low
or low development index [1], which is directly associated with a higher risk of exposure
to particulate matter (PM) and other air pollutants [2]. Located at the mid-latitude ranges
in the Northern European plateau, Berlin is the largest German city and the most popu-
lous city in the European Union [3]; thus, the local population is subject to significantly
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increasing health risks due to poor air quality. Berlin’s climate is dominated by a modified
maritime air mass originating from the Atlantic from a southwest to northwest wind di-
rection [4]. Regularly occurring weather episodes with air flow from the east are typically
associated with lower wind speed and overall elevated levels of PM concentrations [5]. In
the last decade, the annual mean concentration of PM2.5 in Germany has reduced from
approximately 20 µg/m³ to approximately 7 µg/m³. However, the World Health Organi-
sation’s recommended limit value of 5 µg/m³ (annual mean) is exceeded in 99.5% of the
stations in Germany [6]. Globally, within urban areas, the sources of PM2.5 are a mix of local
sources such as traffic, cooking, construction activities, power generation [7], formation of
secondary particles [8], and long-range transport of dust [9]. PM concentrations in Berlin
are attributed to both long-range transport and local sources [10,11]. In general, the largest
contribution to the PM2.5 concentration in Berlin is from locally produced sources such as
traffic-related emissions, households, and industry, followed by long-range transportation
of PM from other German cities and transboundary sources [11]. Knowledge of the micro-
scale variability of PM, and thus the quantification of the exposure risk, could significantly
reduce health risks and increase the quality of life and well-being of citizens [12,13]. This
can be achieved through city-planning approaches that are informed by the knowledge of
the relationship between urban structures and PM concentration [14,15]. In this study, we
aimed to develop a prediction model for PM2.5 that can be used at the local and regional
scales. We combined the advantages of machine learning (ML) and sensitivity analysis to
develop a parsimonious random-forest-based land-use regression model.

Modelling of air pollution is carried out through land-use-based models [15–17],
Bayesian network probability models [18], multi-objective scheduling models [19], satellite-
based models using aerosol optical depth [20,21], meteorology-based models with regres-
sion and ML [22,23], and urban-scale models [24,25]. Land-use-based regression models
(LURMs) are commonly used to understand how urban design, land use, and socioe-
conomic factors [15–17,26] interact with air pollution. LURMs are especially useful in
locations where air pollution data are unavailable [27]. The spatial distributions can be
derived by correlating air pollution with land-used-based predictors [28,29], local sources
of emissions [28,29], and meteorology [30]. The review articles by Azmi et al. (2023) [16],
Hoek et al. (2008) [15], and Ryan et al. (2007) [17] provide a comprehensive overview of
LURM studies for air pollution parameters such as volatile organic compounds, nitrogen
oxides, ozone, and PM. The coefficient of determination (R²) is used in most of the studies to
compare the models and evaluate the model performance. Mean error and cross-validation
techniques are also used as model evaluation metrics in studies that have employed ML
methods to develop LURMs [31–33].

The applicability of LURMs beyond the extent of the official measurement networks
has been the focus of many studies. For example, the study by Merbitz et al. (2012) [29]
aimed to create a statistical model for PM10 and PM2.5 using a small number of predic-
tors, including the traffic-emissions-based concentration profile (relative concentration
to the source as a function of distance) and land-use classification simplified to two cat-
egories—building density (all building classes grouped together) and green area (urban
green and forest). They did not discriminate between residential and commercial buildings.
Although all three predictors correlated with PM, it was concluded that the results were
better for PM10 than for PM2.5, as PM10 is more directly influenced by local sources than is
PM2.5. The model tended to largely underestimate concentrations in open areas, temporary
traffic hotspots, and street canyons. Hoogh et al. (2016) [34] developed a LURM for PM2.5
and nitrogen dioxide data incorporating satellite and chemical transport modelling data.
They used data from the European AIRBASE network and the European Study of Cohorts
for Air Pollution Effects measurement sites air quality database as ground-based data sets.
They used 80% of the monitoring sites to train and 20% to test and validate and achieved
an R² of 0.6. However the AIRBASE data set is now depreciated. The study by Ge et al.
(2023) [32] used the two ML models, least absolute selection and a shrinkage-operator
(LASSO)-enhanced random forest (RF) model called LASSO-RERF to extrapolate PM2.5
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data from the regulatory monitoring network and low-cost sensor network to sparsely
monitored areas. Using this method, Ge et al. (2023) [32] could improve the R² from
0.49 to 0.65, and the RMSE from 3.56 µg/m³ to 2.96 µg/m³. Kumar et al. (2020) [35] also
combined two ML models, extra-trees regression and Ada-Boost to develop a LURM using
meteorological variables to estimate PM2.5 concentrations in Delhi, India.

Due to microscale variations in PM concentrations, it is a challenge to develop LURMs
that are transferable to other areas [15]. For example, the LURM developed for 20 European
cities by Eeftens et al. (2012) [31] could not be generalised for all cities and had to be locally
optimised for each study area. The simplicity of air quality sensors (AQSs) and advantages
due to their portability and longer battery life, helps in capturing the microscale variation
in PM concentrations in more detail [36]. These kinds of studies are not feasible with the
use of conventional stationary measurements using reference-grade devices due to the
higher costs involved to procure and safeguard the devices [37]. The usage of sensors to
measure air quality has spread rapidly in the last decade due to the advances in micro-
sensor technology, modern production facilities, and reduced development costs [38,39].
In contrast to reference-standard devices, AQSs are simple in design, lightweight, and
easier to deploy in large numbers [40,41]. AQSs are also used in mixed networks in
combination with satellite images and/or monitoring stations [42,43]. AQSs perform well
under laboratory and stationary conditions but have a low temporal resolution of 30 to
60 min [44,45]. AQSs on mobile platforms need to operate with a higher temporal resolution
in order to compensate for the vehicle speed and capture as many data points as possible.
This leads to mobile AQSs needing to have higher uncertainties due to road conditions,
vibrations, and wind [46]. Nevertheless, with the good measurement practises as outlined
in [39], AQSs offer the capability to generate high volumes of data at reasonably low cost.
A LURM based on data collected from mobile sampling could potentially offer a highly
cost-effective approach to modelling and mapping air pollution concentration levels in
spatially continuous ways [47].

ML methods are widely used in PM prediction models using air quality data from
officially run stations [48], AQSs [30,49], satellite images [21], meteorological data such as
temperature and precipitation [50], and urban structures [30]. Several ML methods can
be used for prediction of PM depending on the availability, type (images or text), quality,
and quantity of data. Furthermore, the type of study, use of a time-series or cross-sectional
design, and the relationship between PM and the variables used to predict it play an
important role in determining the ML model to be used [51]. Since each ML model has its
own strengths and weaknesses, many studies such as those by Murugan et al. (2021) [52],
Maaloul et al. (2022) [53], Yazdi et al. (2020) [54], Analitis et al. (2020) [55], Du et al.
(2023) [56], and Tian et al. (2021) [57] have used multiple models to compare and contrast
the ML models against each other in order to find the model that fits best to the particular
study case. The majority of these studies have concluded that random forest (RF) performs
best. Tian et al. (2021) [57] concluded that tree-based models (RF and gradient boosting),
and neural network models (back propagation neural network and Elman neural network)
produce similar estimations but that RF has the best estimation accuracy. Support-vector
machine and generalized additive models were also examined but were found to result in
worse performance. Similar results were found in studies by Mandal et al. (2020) [58] and
Chen et al. (2019) [59]. XGBoost has a good predictive accuracy [60] and can perform better
than RF models [61,62]. However, these studies used stationary measurements for training
and testing their model.

RF is a nonlinear estimator which fits an ensemble of decision trees on subsets of
the data and calculates a mean over all decision trees [63]. By creating multiple subsets,
RF improves the predictive accuracy, particularly for nonlinear data [64]. Compared
to decision trees, RF is better suited to handling high-dimensional data and preventing
overfitting [65]. The RF algorithm is less sensitive to outliers and noisy data as compared
to gradient boosting models (GBMs), such as XGBoost and LightGBM, which require the
careful tuning of hyper-parameters [66,67]. The RF estimator function in the scikit-learn [68]



Sensors 2024, 24, 4193 4 of 25

package introduces randomness into the model through bootstrapping and splitting each
node during the construction of a tree. The quality of a split is based on criterion such as
mean squared error (MSE), mean absolute error (MAE), and Poisson deviance. The overall
variance of the model is therefore reduced by the randomness introduced to the model and
by combining individual trees [68].

Despite its advantages, RF estimator is a black-box model. The split criterion of the
RF estimator helps in determining the most important predictors or features for the model
but does not reduce the number of predictors used. This can affect the quality of the
model especially if there are uncertainties in the predictor data, as these uncertainties will
be propagated through the model [69]. The second problem with such a model is the
multicollinearity of the predictors. Although multicollinearity does not affect the predictive
capacity of an RF model, it is a problem when the features need to interpreted. The features
determined as important by the model do not necessarily reflect reality, thereby limiting its
value for generating interpretations and decisions. The study by Berrocal et al. (2020) [70]
compared statistical and ML methods for creating national daily maps for ambient PM2.5
concentration in the continental United States and concluded that the numerical methods
(such as kriging and statistical downscaling) outperform ML methods, including RF, since
they explicitly account for spatial dependence while ML methods do not. The third problem
is the computational time and costs of the model: the more predictors used, the more time
needed for the model to run through. This especially is exacerbated when the model needs
to be run for larger regions.

By removing the inputs that have negligible influence on the output, the model can be
simplified and made parsimonious [71]. Recursive feature elimination (RFE) and recursive
feature elimination with cross-validation (RFECV) are two types of feature selection meth-
ods that are commonly used for reducing the number of predictors for ML models. RFE
works by eliminating features by training the model multiple times and then recursively
removing the features of low importance until the desired number of features remain [72].
The desired number of features is chosen manually before the model is trained. RFECV, on
the other hand, performs RFE in a cross-validation loop to produce the optimal number
of features [73]. Despite their effectiveness, these methods do not provide information on
the interactions between the predictors. Sensitivity analysis can be an important tool here
to understand the dynamic behaviour of the model [74]. Saltelli et al. (2008) [69] define
sensitivity analysis as the study of how uncertainty in the output of a model (predicted
values) can be apportioned to different sources of uncertainty in the model inputs (pre-
dictors). Sensitivity analysis is performed either locally, where the sensitivity of an input
parameter is analysed at one at a time [75] or globally, wherein the interactions of an input
parameter by itself and with the other input parameters are analysed. Several studies have
used sensitivity analysis to enhance their models [76–78]. The studies by Todorov et al.
(2023) [76] and Wang et al. (2023) [78] are particularly interesting, as they used Sobol-based
sensitivity analysis to improve their air quality prediction models. The regional model
developed by Todorov et al. (2023) [76] has a resolution of 10 km × 10 km but does not
account for PM. Wang et al. (2023) [78] employ global sensitivity analysis (GSA) to an ML
model, combining a convolutional neural network and so-called long short-term-memory
models to study pollution trends before and during the COVID-19 outbreak.

In this paper, we address predictor selection methods in the context of RF-based LURM
for maximum PM2.5 (PM2.5) prediction in Berlin, Germany. This was achieved by applying
RFE, RFECV, and GSA using the Sobol method [69] to a baseline RF model to create a
parsimonious RF model with fewer inputs, with validation being conducted via hold-out
validation (HOV) [79]. The parsimonious RF model can also be applied to select locations
spread across Berlin that correspond to where the regulatory measurement stations run by
the Senate Department for Urban Mobility, Transport, Climate Action and the Environment,
Berliner Luftgütemessnetz (BLUME), are located [80]. The predicted concentration using
the parsimonious RF model was compared against the BLUME station data, which allowed
us to examine the possibility of exclusively using AQS data for the LURM. The features of
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the parsimonious models and their influence on PM2.5 concentration in Berlin are discussed
since the World Health Organisation’s recommended daily mean concentration of 15 µg/m³
(with a maximum of three to four exceedances per year) for PM2.5 [81] is exceeded in all of
the BLUME stations.

2. Methodology
2.1. Data Acquisition and Preparation

For the model development, three types of data sets were needed, namely, PM data,
land-use data for model development, and PM data for validating the developed model.
The acquisition and preparation of each of the three data sets is described in the following
sections. Figure 1 shows the methodology for this study.

Figure 1. Flowchart showing the methodology of the study.

PM Training Data Acquisition: Three different suburbs in the city of Berlin,
Germany—Berlin-Hermsdorf (Hmd), Berlin-Charlottenburg in the vicinity of Ernst Reuter
Platz (ERP), and Berlin-Adlershof (Adl) were chosen to collect data for the study (see
Figure 2). Berlin-Hermsdorf is located in the northwestern edge of the city bordering
Brandenburg. It is characterised by residential areas with a mix of old farm houses, villas
and new residential buildings, green areas, and bodies of water. The streets—Hermsdorfer
Damm and Heinsestrasse are characterised by higher traffic volumes due to the former’s
proximity to the highway A9 and the latter acting as the commercial hub of Hermsdorf [82].
Berlin-Charlottenburg is located in the centre of the city. It is constituted by a mix of
residential areas, tall buildings, high commercial activity, wide streets, and large park areas.
ERP is a major traffic junction where five major streets—Hardenbergstrasse, Strasse des
17. Juni, Marchstrasse, Otto-Suhr-Allee, and Bismarckstrasse—converge. The Kurfuers-
tendamm area in Berlin-Charlottenburg is a commercial hub with a large traffic volume
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and residential area with high population density [83]. Berlin-Adlershof is a suburban area
located in the southeastern part of the city. Adlershof consists mostly of large residential
areas. The street Rudower Chaussee and the vicinity around it consist mainly of research
institutes and university and office buildings. The main federal road, Adlergestell (B96),
and highway A113 are prone to high traffic volumes [84].

Figure 2. Mobile measurement transects in Berlin-Germany at Hermsdorf, Charlottenburg-Ernst-
Reuter-Platz, and Adlershof. The triangular points mark the locations of the official Berlin air quality
measurement stations.

Bicycle routes covering a distance of approximately 18 km in Hmd, 21 km in ERP, and
27 km in Adl were designed with 11 out of 14 local climate zones (LCZs) that are present in
Berlin being taken into account [85]: compact high rise, compact mid-rise, open high rise,
open mid-rise, open low rise, large low rise, sparsely built, heavy industry, dense trees,
scattered trees, low plants, and water. Three LCZs—sparsely built, bare rock or paved, and
bare soil or sand—were not covered within the measurement routes. The measurements
in the LCZs of dense trees and water took place at the border of the areas and not in the
midst of them. The bicycle routes and their location in Berlin are shown in Figure 2. The
details of the bicycle rounds are summarized in Table 1. The measurements were carried
out from 15 June 2018, to 15 October 2018, as a part of an intense observation measurement
campaign in the Urban Climate Under Change [UC]2 project [86]. The measurements at
Hmd continued over the winter between 2018 and 2019 until 1 March 2019. A total of
7 rounds in ERP, 15 rounds in Hmd, and 16 rounds in Adl were carried out. However only
the measurements taken during summer months—June to October—were considered for
this study, limiting the measurements in Hmd to 2 rounds. By limiting the measurements to
summer, variations in pollutant levels that would generally occur due to seasonal variations
were removed. Additionally, the measurement rounds that were incomplete due to missing
PM2.5 or GPS data, change in weather conditions (sudden rain), or device malfunction were
removed from the analysis.
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Table 1. Summary of bicycle rounds carried out for the study in Berlin-Hermsdorf, Berlin-Adlershof,
and Berlin-Charlottenburg-Ernst-Reuter-Platz. For locations see Figure 1.

Location Measurement Period Approximate Route
Length (km)

Total Number of
Measurement Rounds

Number of Rounds
Considered for

Analysis

Berlin-Hermsdorf Summer/Winter
2018/2019 18 15 2

Berlin-Charlottenburg Summer 2018 21 7 5
Berlin-Adlershof Summer 2018 27 16 16

PM data were collected using an optical particle counter, OPC-N2, from Alphasense,
Ltd, Essex, United Kingdom Ltd. [87]. Temperature and relative humidity (RH) were
measured using two SHT35 sensors from Sensirion Ltd, Staefa, Switzerland [88]. The
sensors, along with the data acquisition system, were built into a metal housing as described
in [46]. The sensor ensemble was mounted inside the front basket of a bicycle. The
measurements were carried out with a maximum bicycle speed of 15 km/h, with a logging
interval for measurement of 2 s. The sensor ensemble was calibrated in the laboratory
and in the field [46] using an aerosol spectrometer from Grimm Aerosol Technik Ltd,
Ainring, Germany . [89]. The temperature and RH measured are used to account for
the meteorological influences on the PM concentration measured. RH is used to correct
for hygroscopic growth of PM via Koehler’s theory , as shown in Equations (1) and (2).
Equation (1) calculates the correction factor C using Koehler’s factor (κ) and particle density
(ρ). The correction factor is used to recalculate the PM concentrations, with RH being taken
into account [90,91].

C = 1 + [

κ
ρ

−1 + 1
RH

] (1)

PMcorrected =
PMuncorrected

C
(2)

The measured data of each round are individually handled during pre-processing.
First, outliers, here defined as all data in the top and bottom 5th percentile, are removed,
and a temporal median of 30 s is calculated. Then, the bottom 5th percentile of the data
is assumed to be the background concentration and subtracted from every measurement,
and thus only the local concentration of PM is considered for further analysis [92,93].
Additionally, this step eliminates some of the ageing or sensor-drift-induced bias in the
data between rounds, with a linear drift being assumed.

The PM2.5 data are time and GPS tagged. With the GPS information, an idealised route
is created via calculation of the mean of all rounds in a given measurement area. The PM2.5
data are then interpolated to the ideal path with all points within a radius of 25 m being
considered. The interpolated point contains the information on the maximum, minimum,
mean, and standard deviation of PM2.5 concentration within a 25 m buffer zone.

Land-Use Regression Modelling Predictor Data: The regression model uses spatial
predictors for predicting PM concentration. The following predictors are used for the anal-
ysis in buffers of 25, 50, 75, 100, 150, 200, 250, 500, 750, and 1000 m radii: local climate zone
(LCZ) [85], land-use class (LUC) [94], daily traffic volume (DTV) [95], population density
in hectares (PD_ha) [96], OKSTRA (Objektkatalog fuer das Strassen- und Verkehrswesen)
street type classification (street_StEP) [97–99], RBS (Regionales Bezugssystem) street type
classification (street_RBS) [99,100], building height (BH) [101], building type (BT) [101],
and leaf area index (LAI) [101].

For each of the predictors, the maximum (max), minimum (min), and mean value for
each buffer are calculated. For categorical predictors such as LCZ, LUC, and BT, the most
frequently occurring value (cat_max) and the least frequently occurring value (cat_min) are
calculated. This is because we use regular grid-point data for categorical variables. In the
subsequent analysis, the predictors are named according to the combination of their abbre-
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viation, the statistical means, and buffer size as abbreviation of predictor name_statistic
used_buffer-size.

BLUME Station Data: The validation of a trained ML model is usually carried out
with a subset of the data set used, which is also known as hold-out-method validation
(HOV) [79]. However, since this study used AQS data, we checked the possibility of the
model to transfer and generalise to the official measurement stations run by the Berlin
Senate Department for Urban Mobility, Transport, Climate Action and the Environment,
Berliner Luftgütemessnetz (BLUME) [80]. Twelve locations in Berlin that correspond
to the official measurement station were chosen for validation. The BLUME stations
that collect PM2.5 data are classified into three categories: urban background (Wedding,
Neukoelln, Mitte), suburban (Grunewald, Buch, Friedrichshagen), and traffic (Messwagen-
Leipziger-Strasse, Schildhornstrasse, Mariendorfer Damm, Silbersteinstrasse, Frankfurter
Allee, Karl-Marx-Strasse). The LURM predictors within the 10 buffers are assigned to all
12 locations (BLUME_LURM). Similar to the AQS data, the local concentration of PM2.5
for each station is calculated by assuming and subtracting the lower 5th percentile as the
background concentration. The local maximum is determined by calculating the median
over the maximum concentrations of the days when the bicycle measurements took place
(BLUME_val).

2.2. Model Development
2.2.1. Model Estimator

RF regression is an ensemble technique that makes use of multiple decision trees in
determining the final output. Each decision tree is constructed by recursively splitting
the training data into subsets based on the values of the model attributes until a criterion
is met [63]. RF then performs a bootstrap aggregation, wherein the predictions of all
the decision trees are combined in such a way that the overall variance of the model
decreases [102,103].

The models were applied using the scikit-learn package [68]. Each variable in the cate-
gorical data was numerically coded by assigning a numerical value each to the categorical
variable. The points in which any of the predictors had missing data were removed before
the analysis. The predictors were not scaled via standardization or normalization, as the RF
algorithm is insensitive to it [104]. The data set is split randomly into 70% (584 observations)
and 30% (251 observations). The models are trained with the 70% split of the data and
tested with the 30% split of the data. The data are split between testing and training in
such a way that the distribution is maintained and data from either extremes are included.
Figure 3 shows the data distribution for the whole data set (left), the training data (centre),
and the testing data (right). The chosen 70% for training covers the entire range covered by
the whole data set. The testing data covers all data from 1 µg/m³ to 100 µg/m³).

Figure 3. Histogram and density distribution of the PM2.5 data used in the study. Left: Distribution
of the whole data set. Centre: Distribution of the training data that constitute 70% of the entire data.
Right: Distribution of the test data that constitute 30% of the whole data set.
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2.2.2. Feature Selection

The aim of this study was to develop a parsimonious LURM that is comparable or
better to a baseline model consisting of all predictors. Model predictor selection is critical
to developing such a parsimonious model. Two methods were used and compared in
this study: recursive feature elimination with and without cross-validation and sensitivity
analysis using the Sobol method. Both methods work by reducing the variance of the model.

Recursive feature elimination: Recursive feature elimination (RFE) is a feature se-
lection method in which the predictors that do not reduce the “impurity” or the chosen
criterion such as mean squared error or absolute error of the model are removed. This is
done by the iterative training of the model with the chosen estimator—RF in our case—until
the desired number of predictors are chosen [68]. RFE can be carried out in two ways: one
where the number of predictors are given before training or using cross-validation (RFECV)
where the data are divided into multiple subsets consisting of training and testing data sets
and where the optimal predictors are derived as a mean of all the models.

In RFE, the model is trained using the test data as a whole. First the model is trained
with all the features. The features are then ranked, from 1 to the total number of predictors,
based on how much influence they have on the model’s prediction. The least important
feature is then eliminated, and the model is trained again until the desired number of
features is reached.

RFECV, on the other hand, uses a cross-validation technique wherein the test data are
split into k subsets. The model is therefore trained on one subset and tested on another
subset, thereby training the model k − 1 times. By using cross-validation, the model utilises
the data efficiently, and resultant model is more reliable [68]. To account for uncertainty,
Monte Carlo method [105] is applied, wherein the model is trained 1000 times with a
random state parameter of the estimator set from 0 to 1000 (Monte Carlo runs). The features
with a mean importance rank of less than 2 are chosen as the important predictors, and the
model is retrained and validated.

The three models, RFE, RFECV_baseline (all predictors), and RFECV_parsimonious
(RFECV filtered predictors), are assessed and validated. Neither the RFE nor RFECV
method provides information on higher-order effects.

Global sensitivity analysis: Global sensitivity analysis (GSA) is the process of appor-
tioning the uncertainty of the output to the uncertainty of all the input factors of interest,
thereby quantifying the importance of model inputs [76,106–108]. This thus allows for the
identification of a parameter or a set of parameters that have the largest influence on the
model output. For this study, a variance-based sensitivity analysis, also known as the Sobol
method [69,109,110], was used to quantify the effect of each of the inputs to the model
output variance. We refer to studies such as those by Sauter et al. (2011) [107], Todorov
et al. (2023) [76], and Zhang et al. (2015) [77] who describe the principle behind the Sobol
method in detail. The Sensitivity Analysis Library (SALib) [111] is used for the analysis.

In order to carry out the GSA, a parameter data set is created using the maximum and
minimum value of each predictor. A large enough data set should be created in order to
get the best results. The number of simulation runs (N) is determined using the desired
coefficient of variation (CV) of 0.1 and a confidence interval width (w) of 0.01, assuming a
normal distribution of data from Table 2 of Byrne et al. (2013) [112]. Since the Sensitivity
Analysis Library [111] recommends the number of simulations to ideally be a power of 2,
N is rounded to the next 2n number, 2048. The number of data points (S) is then calculated
using the number of predictors (D), as shown in Equation (3).

S = N × (D + 2), (3)

In this paper, we assume a uniform distribution for the model inputs. This is because
we do not know the exact distribution that may exist in real time for the model inputs.
By assuming a uniform distribution, we can generate a data set which has information
covering the entire input space. When Equation (3) is applied, a data set (Sobol data)
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containing 442,368 data points is generated. The Sobol data set is used to predict the PM2.5
concentration, and the results are then analysed.

Analysis of the inputs using the Sobol method offers insights into the interaction
within and between the inputs to predict an output. Sobol analysis provides the sensitivity
of individual inputs on the output as a first-order sensitivity (FOS) index and the sensitivity
of an input due to its interaction with all of the other inputs as the total-order sensitivity
(TOS) index. Both indices range between 0 and 1, with 0 denoting no effect and 1 indicating
high effect on the model output variance. FOS equal to TOS indicates that the input does
not interact with other inputs, whereas a large difference between FOS and TOS indicates
higher-order effects (the input has a strong interaction with the other input parameters). A
value of FOS or TOS equal to zero indicates that the input has no impact on the prediction
of the model. Sensitivity analysis only identifies the impact of input variability on the
model output but not its cause [69].

Categorical variables are not directly supported in the SAlib library. Therefore, the
indices of categorical variables were rounded to the closest integer as used in the general
probabilistic framework [113]. One thousand RF models that were fit for the baseline model
were applied to the Sobol data to predict PM2.5 concentrations. Each of the 1000 runs were
analysed to produce FOS and TOS. The mean of the FOS and TOS over 1000 model runs
was then calculated.

Through GSA, two models were developed, one with predictors with an FOS index
greater than 0.01 (GSA_parsimonious) and a second one with the predictors from the
GSA_parsimonious and street types (GSA_streets). The RF models were retrained with
both GSA models 1000 times each and then validated.

2.3. Model Validation and Assessment
2.3.1. Validation

Model validation is an essential part of model development for assessing the general
performance and stability of the model. All six models—baseline, RFE, RFECV_baseline,
RFECV_parsimonious, GSA_parsimonious, and GSA_streets—were compared to one an-
other to identify the best method for this type of LURM study.

Hold-out Validation: Hold-out validation (HOV) is the simplest type of validation
of ML models. The data set is divided into a two sets: one for testing and the second for
training. The test data set is used to validate the model [79]. The features of the test data
set are used to predict PM2.5 and are compared against the observed PM2.5 concentration.
HOV validation may be problematic if the test data set are not representative of the training
data set. However, in this work, the range of test data set was similar to that of the training
data. Additionally, by means of Monte Carlo runs, the uncertainty of the model could be
accounted for.

BLUME Validation: The training of the RF models uses AQS data. Since AQS data
involve a degree of uncertainty regarding quality, we used data from the official air quality
stations run by the city of Berlin for the model validation data (BLUME_val).

BLUME_LURM data were applied to each location, and the six RF models were used
to predict the PM2.5 concentration. The predicted concentration was compared to the
BLUME_val data for assessing and validating the models.

2.3.2. Model Assessment

The assessment of predictive models is a crucial aspect to evaluating the model
performance and understanding its strengths and weaknesses. Different regression metrics
such as coefficient of determination (R2), mean squared error (MSE), root mean squared
error (RMSE), scatter index or normalised root mean squared error (NRMSE) [114], and
mean absolute error (MAE) were used in this study to evaluate the models. The specific
meaning of each of the metrics are detailed in Garreta et al. (2017) [115].

RMSE, MSE, and MAE evaluate the model by examining the absolute errors between
the predicted and true or observed values. MSE provides insight into outliers by squaring
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the difference between true and predicted values. RMSE provides the square root of the
MSE, which is easier to interpret as it has the same unit as the predicted variable. RMSE
places emphasis on the larger errors. Therefore, it is an important parameter to assess
a model that is biased in the upper extremes. This is because there are legally set limit
values above which there are penalties due to increased health risk. MAE provides a
straightforward understanding of a model’s prediction errors. It calculates the average
absolute error magnitude of the model by calculating the mean absolute difference between
the true and predicted values [115]. NRMSE calculates the variance between the different
models as a function of RMSE and the range of observations [114]. Lower NRMSE, RMSE,
MSE, and MAE values indicate less residual variance for a model, thus suggesting a better
model, with a value of zero being the best model.

3. Results
3.1. Feature Selection

The RFECV method is used to ascertain those features that are important to develop
the model. Monte Carlo runs are carried out, and the features with a mean importance
rank of less than two are chosen as the important predictors. Figure 4 shows the coefficient
of determination of the model when the model is trained with the particular predictor as
its important feature. The point represents the mean R2 of 1000 model runs, and the error
bars show the spread of the model.

Figure 4. The mean test accuracy of predictors selected using RFE with cross-validation. The Y-axis
shows the mean test accuracy, and the X-axis shows the selected predictors: leaf area index (LAI),
local climate zone (LCZ), population density per hectare (PD_ha), and daily traffic volume (DTV).
Categorical data are indicated by “cat” after the name of the predictor. The number at the end of the
predictor indicates the buffer size in meter and whether the mean, minimum (min), or maximum
(max) of the predictor within the buffer is considered.

To select features using GSA, the Sobol method is used. The mean over 1000 runs is
calculated, and all inputs with an FOS of greater than 0.01 (see Figure 5) are considered
significant for the model. The higher-order effects are indicated by the difference between
FOS and TOS. Population density shows a larger influence on the model output followed
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by LAI and DTV. The error bar (black line) indicates the spread of the sensitivity indices of
the predictor over 1000 model runs. The LURM features selected using RFECV as shown in
Figure 4 are also selected by GSA (Figure 5).

Figure 5. Variance decomposition of the random forest model through attribution of the input to the
model output variance using the Sobol method. The X-axis shows the sensitivity indices and both the
total order sensitivity of the predictors (blue) and the first-order sensitivity (orange) of the predictors.
The Y-axis shows the predictors used: leaf area index (LAI), local climate zone (LCZ), population
density per hectare (PD_ha), daily traffic volume (DTV), and building type. Categorical data are
indicated by “cat” after the name of the predictor. The number at the end of the predictor indicates
the buffer size in meter and whether the minimum (min) or maximum (max) of the predictor within
the buffer is considered.

3.2. Model Validation

Six RF models, baseline (M1), GSA_parsimonious (M2), GSA_streets (M3), RFE (M4),
RFECV_baseline (M5), and RFECV_parsimonious (M6), were trained and validated using
HOV (Figure 6) and BLUME data (Figure 7). Each of the Q-Q plots in Figures 6 and 7 shows
a 45° line in red which indicates the ideal distribution line (1:1) and metrics of the evaluated
model. The model metrics show the overall performance of the models.

Figure 6 shows that all six models similarly follow the 1:1 line. The concentrations
below 5 µg/m³ appear to be overestimated for the GSA_parsimonious (Figure 6 (M2)) and
GSA_streets (Figure 6 (M3)) models, while those below 7 µg/m³ appear to be overestimated
for the baseline (Figure 6 (M1)), RFE (Figure 6 (M4)), RFECV_baseline (Figure 6 (M5)),
and RFECV_parsimonious (Figure 6 (M6)) models. For concentrations between 25 µg/m³
and 30 µg/m³, the baseline (Figure 6 (M1)), RFE (Figure 6 (M4)), and RFECV_baseline
(Figure 6 (M6)) models, which contain all the predictors, appear to follow the 1:1 line
better as compared to the parsimonious models. For concentrations above 30 µg/m³, all
the models appear to underestimate the concentration. The model metrics MAE R2 and
NRMSE show similar results for all the six models, with a slightly better performance being
observed for the GSA_parsimonious (Figure 6 (M2)).

Figure 7 shows the data distributions of the BLUME station data and model pre-
dictions at the respective BLUME location for all the models. All the models show a
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bias towards higher values and a low R2. The parsimonious models GSA_parsimonious
(Figure 7 (M2)), GSA_streets (Figure 7 (M3)), and RFECV_parsimonious (Figure 7 (M6))
have distributions that are closer to the 1:1 line. As opposed to HOV, in BLUME_validation,
the GSA_parsimonious model performs best in all the metrics, with an RMSE, MAE,
NRMSE, and R2 of 4.24 µg/m³, 3.61 µg/m³, 0.39 and 0.17, respectively, as compared to
9.86 µg/m³, 8.69 µg/m³, 0.9, and 0.03 in the baseline model, respectively (Figure 7 (M1)).

Figure 8 shows the residual plot of the observed BLUME PM2.5 concentration and
the predicted concentration of the six models: baseline (M1), GSA_parsimonious (M2),
GSA_streets models (M3), RFE (M4), RFECV_baseline (M5), and RFECV_parsimonious
(M6). All of the models generally appear to overestimate the PM2.5 concentration except at
two stations, Mitte and Schildhornstrasse, where the concentrations are underestimated.
The GSA_parsimonious (M2) is able to predict concentrations with an MAE of less than
10 µg/m³ for all the 12 stations and with less than 5 µg/m³ at 8 out of 12 locations.

Table 2 shows the root mean square error of each model at the respective BLUME sta-
tion. At the suburban stations Grunewald, Buch, and Friedrichshagen, the baseline model
has an RMSE of 16 µg/m³, 11 µg/m³, and 8 µg/m³, respectively. The RFECV_parsimonious
model performs significantly better than does the baseline model, with an RMSE of 7 µg/m³,
3 µg/m³, and 1 µg/m³, respectively. The GSA_parsimonious and GSA_streets models per-
form second best, with an RMSE of 9 µg/m³, 5 µg/m³, and 2 µg/m³ respectively.

At the urban background stations, all the models perform similarly, with a mean
RMSE of 3 µg/m³ to 5 µg/m³ at Wedding and 2 µg/m³ to 4 µg/m³ at Mitte. Station
Neukoelln, on the other hand, has a mean RMSE between 6 µg/m³ and 15 µg/m³, with the
GSA_parsimonious model performing the best and the baseline model the worst.

The GSA_parsimonious model shows the best performance for traffic stations at
Mariendorfer Damm, Silbersteinstrasse, Frankfurter Allee, and Karl-Marx-Strasse, demon-
strating significant improvements over the baseline model. On the other hand, for traffic
station Schildhornstrasse, all the models show a similar performance, with a mean RMSE
between 1 µg/m³ and 4 µg/m³.

Figure 6. Q-Q plot showing the data distributions and model metrics of six random forest models
assessed using hold-out validation. The red line shows the best-fit line and the blue circles show the
data points. The top left corner of the Q-Q plots show the MSE, MAE, RMSE, NRMSE, and R2 metrics
for the baseline (M1), GSA_parsimonious (M2), GSA_streets models (M3), RFE (M4), RFECV_baseline
(M5), and RFECV_parsimonious models (M6) respectively.
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Figure 7. Q-Q plot showing the data distributions and model metrics of six random forest models
assessed using BLUME station data for validation. The red line shows the best-fit line and the blue
circles show the data points. The top left corner of the Q-Q plots show the metrics MSE, MAE, RMSE,
NRMSE and R2 for the models baseline (M1), GSA_parsimonious (M2), GSA_streets models (M3),
RFE (M4), RFECV_baseline (M5) and RFECV_parsimonious models, (M6) respectively.

Table 2. Root mean squared error (RMSE) of the predicted PM2.5 concentration at each Berlin air
quality station. The predictions were carried out using six models, baseline (M1), GSA_parsimonious
(M2), GSA_streets (M3), RFE (M4), RFECV_baseline (M5), and RFECV_parsimonious (M6).

Station Type and Location RMSE_M1
µg/m³

RMSE_M2
µg/m³

RMSE_M3
µg/m³

RMSE_M4
µg/m³

RMSE_M5
µg/m³

RMSE_M6
µg/m³

Urban background
Wedding 3.55 4.48 5.05 3.96 3.34 3.08

Neukoelln 14.97 5.85 7.52 10.88 12.78 10.32
Mitte 2.46 3.36 2.21 3.79 2.56 2.53

Suburban
Grunewald 15.52 8.74 9.13 14.49 11.11 6.72

Buch 11.39 4.63 5.01 10.69 7.73 2.66
Friedrichshagen 8.39 1.92 2.27 8.28 5.97 0.89

Traffic
Messwagen-Leipziger-Strasse 7.29 5.38 7.3 2.55 6.1 3.58

Schildhornstrasse 1.57 1.97 1.45 3.64 2.58 3.17
Mariendorfer-Damm 12.96 4.02 5.63 11.05 12.38 10.33

Silbersteinstrasse 10.33 1.10 2.25 6.79 8.85 7.19
Frankfurter Allee 9.87 1.69 3.17 7.50 9.32 8.18
Karl-Marx-Strasse 9.0 2.82 4.43 6.83 8.43 7.20
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Figure 8. Box plot showing the absolute error at each BLUME station for each of the six models:
baseline (M1), GSA_parsimonious (M2), GSA_streets models (M3), RFE (M4), RFECV_baseline (M5),
and RFECV_parsimonious (M6). Each plot includes the absolute errors of all the 1000 predicted
PM2.5 concentrations on the Y-axis and the model used on the X-axis.

At the traffic station Messwagen-Leipziger-Strasse, the RFE model (RMSE = 3 µg/m³)
performs significantly better than does the baseline model (RMSE = 7 µg/m³). However, the
station at Messwagen-Leipziger-Strasse is a mobile station and was therefore not considered.
This is the only station where the RFE model performs better compared to the other models.

Including the street predictors improves the predicted PM2.5 concentration by
approximately 1 µg/m³ at the stations Schildhornstrasse and Mitte.

4. Discussion
4.1. Feature Selection

Figures 4 and 5 show the results of the feature selection process under the RFECV and
Sobol methods, respectively. As the features selected using RFECV overlap those chosen
by Sobol, the features are discussed together.

The PM2.5 concentration depends on local and regional factors (see Figure 5). Four out
of the seven inputs selected by RFECV and eight selected by GSA shown in Figure 4 and
Figure 5, respectively, are related to population density and daily traffic volume. This is in
line with the generally accepted sources of PM2.5 concentrations according to the German
Environment Agency, wherein approximately 60% of the emissions result from combustion
processes, with the largest shares coming from households, small consumer operations
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such as restaurants, and from road traffic [116,117]. Similar results were found in the study
of population density and PM by Borck et al. (2021) [117], who reported that an increase
in population density had a direct effect on the increase in PM. The study by Casallas
et al. (2024) [118] highlights that the elevated PM levels can be attributed to vehicles and
industries, similar to the results found in our study.

LAI is the second most important predictor in both RFECV and GSA model. Since
the model pertains to summer months, LAI plays a crucial role. A study on five different
urban sites in the United Kingdom by Beckett et al. (2000) [119] indicated that trees of
various sizes and ages play a significant role in particulate matter reduction by capturing
significant quantities in its foliage. However, the rate of PM uptake can vary between
species. A similar study by Nowak et al. (2013) [120] in the United states of America in ten
different cities also showed that trees remove fine particles in the air, thereby reducing the
urban PM2.5 concentration.

LCZs and land-use types are determined by infrastructure planning. It is therefore im-
portant to design cities in a way that can effectively reduce the concentration of PM2.5 [121].
Building type refers to the age (pre-war, post-war, and current) and usage (residential
or office) of the building. Although it is unclear whether the age of buildings or their
usage determines the effect on PM2.5 concentrations, the building type parameter still has a
significant influence on the output of the model.

The GSA also shows that the predictors LAI, LCZ, PD, DTV, and BT have higher-order
effects, i.e., a difference between FOS and TOS. This may be because these predictors not
only have a direct effect on the predicted PM2.5 concentration but can also interact with
each other and indirectly affect the predicted PM2.5. For example, the type of LCZ has a
direct effect on the predicted PM2.5 concentrations. However, a change in LCZ, for instance,
due to infrastructural developments, can alter PD, DTV, and as BT. Similarly, a change in
PD can affect the traffic volume, which in turn affects the LCZ. One such scenario could be
when new sealed surfaces (roads) are constructed in barren or green areas to accommodate
increased traffic flow. BT, depending on the presence of a residential or commercial type,
can affect the local PD, which in turn can affect DTV.

The higher-order effects show the predictors that have the most influence on the model
outcome. Domain knowledge is, however, necessary to understand and interpret these
effects. This is due to the fact that the sensitivity analysis lacks any information pertaining
to the causal directions and cannot differentiate causes from effects. For example, PD and
DTV are directly proportional to PM2.5 concentration. However, an increase in LAI leads
to a decrease in PM2.5. Similarly, LCZ is an effect of urban and infrastructure planning
and not a cause of it. Therefore, the importance of LCZ as a predictor lies in analysing the
underlying infrastructural and land-use plans.

4.2. Model Validation

Figures 6 and 7 show the results of the six RF models—baseline (M1), GSA_parsi mo-
nious (M2), GSA_streets (M3), RFE (M4), RFECV_baseline (M5), and RFECV_parsimonious
(M6)— trained and validated using HOV and BLUME data, respectively.

All six models validated with the HOV data (Figure 6) follow the 1:1 line of the
Q-Q plot, showing that the predicted data follow the distribution of the observed data
and are comparable. The general bias for concentrations above 30 µg/m³ shows that the
model cannot be used for modelling extreme cases, as the model would underestimate
concentrations in such cases. The model, however, can be used to obtain a general PM2.5
spatial distribution, as the annual mean concentration in Berlin is less than 20 µg/m³. The
parsimonious models using GSA and RFECV capture situations with around 100 µg/m³,
which only rarely occur if the concentration is measured right next to combustion processes
such as vehicles or traffic or smoking. The R² between 0.76 and 0.81 in models M2–M5 as
compared to the baseline (M1) (Figure 6) shows that the feature selection process does not
reduce the predictive power of the model. The RFE model has the best MAE of 5.20 µg/m³
as compared to the other models. A lower MAE indicates a better model since the absolute
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errors are low. However, since MAE calculates errors linearly, the errors due to outliers are
not pronounced. A lower RMSE of a model shows that the model has a lower variance of
the residuals. This indicates that the GSA_parsimonious model is able to predict without
strong outliers and is therefore better suited for the data set used. RMSE is a deciding
factor here since PM2.5 has threshold values that when exceeded, can have health risks
and legal consequences. Exaggerating such extremes limits the usability of such a model
for applications that include information to the general public. The GSA models perform
best with a lower MSE/RMSE as compared to the other models. All six models have a
low NRMSE of 0.07 to 0.08, indicating that the models perform consistently and robustly
to outliers.

Figure 7 shows that the models trained using the AQS data do not generalise well
to the BLUME station data. The lower R² in BLUME_val as compared to HOV_val across
all models indicates that the model has poor performance when transferred to BLUME
locations and that the model does not explain the variance when compared to stationary
measurements. The higher NRMSE of 0.38 and low R2 of 0.17 of the validation against
BLUME station data show that the model is affected by micro-scale structures and there-
fore cannot be generalised at the regional scale. The sparsity of BLUME stations and the
non-availability of AQS measurements at the locations of BLUME stations makes it difficult
to make a direct comparison. However, the distribution and R² of the GSA_parsimonious
model predictions are better than those of the baseline model, thus indicating that the fea-
ture selection using the Sobol method helps to reduce the total uncertainties and improves
the explained variance of the model.

Figure 8 shows a direct case-to-case comparison that provides insight into where the
model excels and where it falls short. Below, we compare the results of the GSA_parsimonious
model (M2) at each BLUME station.

The predicted PM2.5 concentration at suburban station Buch is overestimated by
5 µg/m³. This is perhaps is due to its location at the northern border of the State of Berlin.
Due to its location and the model input parameters being confined to the area of the State
of Berlin, the land-use parameters within the buffer zone but outside the State of Berlin
are not considered in the model. The predicted concentration at the suburban station
Grunewald has the highest mean error at 9 µg/m³. The overestimation could be attributed
to the station’s location amidst a large green area and away from urbanised areas, which is
unlike other suburban stations which are located closer to urbanised areas (see Figure 2).
Moreover, the station is located in a dense green area, whereas the training data for the
overall model is limited in information about PM2.5 concentration in green areas.

The predicted PM2.5 concentration at the urban background station Mitte is also un-
derestimated. There have been road works and construction since 2016 in the vicinity of the
station Mitte [122,123]. The RF model, however, does not consider road and construction
works as a parameter that might explain why the model underestimates the PM2.5 concen-
tration at this location. The predicted PM2.5 concentration at the urban background station
Neukoelln is overestimated by 6 µg/m³. The urban background station at Neukoelln is
located in a residential area characterised by medium traffic volume. DTV and PD_ha both
being significant predictors of the M2 model would explain the overestimation. Neukoelln,
along with the stations at Silbersteinstrasse, Karl-Marx-Strasse, and Frankfurter Allee, has
some of the highest exceedances of limit values in Germany [124].

The traffic station Mariendorfer Damm is characterized as an area with densely built
residential area with a high traffic volume. As with the station at Neukoelln, DTV and
PD_ha are both significant predictors of the M2 model, and thus the predicted concentration
is overestimated. The traffic station Messwagen-Leipziger-Strasse is a temporary station
set up in a measurement car park on the road Leipziger Strasse. The station supposedly
did not stay at the same location and was moved around [125] to locations along the street
with the highest concentrations. It is therefore difficult to pinpoint the exact location of the
station along the street, thereby potentially causing the misrepresentation of the predicted
PM2.5 concentration.
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The station Schildhornstrasse is a traffic station located near a roadside parking area on
the highly trafficked street Schildhornstrasse in the neighbourhood of Steglitz. The PM2.5
concentration at station Schildhornstrasse is underestimated by the model. The vicinity of
Schildhornstrasse is classified as “residential use” in the land-use classification. However, it
is also less than 1000 m away from the highways A100 and A103 and from the controversial
motorway bridge at Breitenbachplatz, which diverts traffic from the motorway into Schild-
hornstrasse. The street type classification is disregarded as a significant parameter for the
RF model after the sensitivity analysis, as the input parameters are selected based on the
mean sensitivity of 1000 model runs. This may result in the contribution of the parameter
being overlooked for such a specific case. However, including the street type predictors to
the parsimonious model does not have a major effect on the predicted concentration, as
seen in Figure 8.

The case-by-case analysis of the predicted PM2.5 shows that the GSA_parsimonious
model may be able to explain the model metrics at a local scale. However, with a low R²
of 0.17, it cannot be used for regional-scale modelling. Other studies have found similar
results wherein the LURMs were non-transferable to other areas [29,31,126]. However, the
better performance of the GSA_parsimonious model as compared to the baseline model
(R² = 0.03) shows that the Sobol GSA helps to improve the model metrics better than the
feature elimination or importance techniques offered by the RF algorithms. This goes to
show that the higher-order effects of predictors for a LURM play a significant role in the
model performance. The ability of GSA to improve models is consistent with studies by
Todorov et al. (2023) [76] and Wang et al. (2023) [78].

Overall, the GSA_parsimonious model performs best (Figure 7 M2). This could
be because the GSA_parsimonious model has fewer inputs which could reduce the un-
certainty propagated through the model. By removing inputs which do not contribute
significantly to the model, issues such as unstable coefficients and data overfitting that
arise due to multi-collinearity are reduced. Moreover, considering that there are eight pre-
dictors in the GSA_parsimonious model as compared to 220 in the baseline model, we can
largely reduce the computational time and costs by using the GSA_parsimonious model.
RFECV_parsimonious model uses the same features as those of the GSA_parsimonious
model, except for DTV_min_750 and building_type_cat_max_1000. The better performance
of the GSA_parsimonious model could be due to the larger data set, with 442,368 data
points used to perform feature selection as compared to 835 in the RFE and RFECV methods.

5. Conclusions

AQSs provide a unique opportunity to collect large quantities of data and capture
microscale variations in PM2.5 concentrations. Several studies have used AQS data in com-
bination with satellite images and monitoring stations to develop predictive models [42]. In
our work, we assessed the potential of using AQS data to develop a LURM incorporating
different feature selection methods for a random forest model. The baseline model consist-
ing of all the predictors is subject to feature selection methods RFE, RFECV, and Sobol GSA.
RFE and RFECV optimise the model by removing features with the least influence on the
model output. While Sobol-GSA, RFE, and RFECV perform variance-based decomposition
to highlight the most important features for model prediction, the higher-order effects that
can be quantified with Sobol GSA provides an insight into the model dynamics. The devel-
oped models were validated using AQS data (hold out validation) and reference station
data (BLUME validation). HOV validation showed that the baseline, GSA_parsimonious,
GSA_streets, RFE, RFECV_, and RFECV_parsimonious models have similar performances,
with the GSA_parsimonious model performing slightly better. BLUME validation showed
that the GSA_parsimonious model performs best across all metrics (RMSE = 4.23 µg/m³,
MSE = 17.93, NRMSE = 0.38, MAE = 3.6 µg/m³, and R2 = 0.17) as compared to the base-
line model, which had significantly poorer metrics (RMSE = 9.86 µg/m³, MSE = 97.16,
NRMSE = 0.9, MAE = 8.69 µg/m³, and R2 = 0.03).
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The data used for this study included less data from green and blue spaces. Although
LCZ in this study included green spaces under the categories of dense trees, scattered
trees, low plants , and water, the measurements were carried out in the border of the LCZ
and do not represent the LCZ. The GSA_parsimonious model is able to predict PM2.5
concentration with an MAE of 9 µg/m³ in the suburban station Grunewald and with an
MAE of less than or equal to 5 µg/m³ in stations Buch and Friedrichshagen. The GSA
analysis does not show any impacts of street type classification on the output of the model.
Although including the street information reduces the RMSE in two stations, Mitte and
Messwagen Leipzigerstrasse, it increases the RMSE in other stations, thereby not providing
any significant addition to the GSA process.

The trained GSA model performs well on unseen data from the test sample that uses
AQS data, with an MAE of 5.24 µg/m, R² of 0.81, RMSE of 9.9 µg/m², and NRMSE of
0.07. However, the model does not transfer and generalise to data from the reference
stations. Therefore, the model can only be used for local analysis and needs to be adapted
for regional-scale using data that can capture regional conditions. Other studies have also
found problems with transferability using LURM models in general due to differences in
training data, data availability, and complex urban structures [29,31].

AQSs can be a good source of training data for predictive models if the sensors
are calibrated and if the data are correctly processed. However, the inherent problems
with the technology associated with AQSs and the added uncertainty due to a mobile
platform makes it a suboptimal choice for regional modelling. Nevertheless, the sensitivity
analysis is able to improve the model from an R² of 0.03 in the baseline model to 0.17 in
the GSA_parsimonious model, while reducing the number of predictors significantly. The
same effect is not as pronounced with the use of RFE and RFECV techniques. This is a
proof of concept that using GSA is a highly useful technique for predictor screening when
using AQSs.

RF is one of the commonly used ML methods used in regression analysis for air quality.
However, with the increasing popularity of ML techniques, other methods such as neural
networks [127], coupled deep learning models [78], and stacked ensemble methods [47]
show further promising capabilities for predictive modelling.

Feature elimination methods enable the creation of an easier, faster, and parsimonious
model, which can reduce the computational intensity and the uncertainty propagated
through the model. Although RF has the ability to handle noisy data and has feature
importance and elimination techniques available in its algorithm, the GSA Sobol method
outperforms these in its feature selection techniques.Potentially, such an analysis can
be used to model large study areas with reduced computational intensity and without
compromising the predictive capacity.

The higher-order effects show that population density and traffic volume have the
largest impact on the outcome of the model. This is in line with other studies suggesting
that the combustion processes from households and traffic contribute the most to PM2.5
concentrations. These are followed by the leaf area index, local climate zones, and building
type come in next, which emphasises the importance of efficient city-planning measures
that take PM2.5 into consideration, as PM2.5 has been reported to have an adverse impact
on the cardiovascular and pulmonary health of the population [128–130].

The higher-order effects of the sensitivity analysis of our study are valid for local
scales and can provide key information for urban planners. With fewer factors to consider,
urban planners can make informed decisions to optimise land-use planning. However,
sensitivity analysis lacks insight into causal direction and therefore domain knowledge
needs to be applied to the higher-order effects. Combining the information of the predictors
with the highest sensitivity and domain knowledge on the interactions of these predictors
can enhance this study through the inclusion of a causal analysis. This analysis could be
performed using packages such as DoWhy [131,132] and provide information that can be
used for risk management by means of scenario analysis by policy makers, urban planners,
and health officials.
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