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Abstract: LoRa systems are emerging as a promising technology for wireless sensor networks due to
their exceptional range and low power consumption. The successful deployment of LoRa networks
relies on accurate propagation models to facilitate effective network planning. Therefore, this review
explores the landscape of propagation models supporting LoRa networks. Specifically, we examine
empirical propagation models commonly employed in communication systems, assessing their
applicability across various environments such as outdoor, indoor, and within vegetation. Our
investigation underscores the prevalence of logarithmic decay in most empirical models. In addition,
we survey the relationship between model parameters and environmental factors, clearing their
nuanced interplay. Analyzing published measurement results, we extract the log-distance model
parameters to decipher environmental influences comprehensively. Drawing insights from published
measurement results for LoRa, we compare them with the model’s outcomes, highlighting successes
and limitations. We additionally explore the application of multi-slope models to LoRa measurements
to evaluate its effectiveness in enhancing the accuracy of path loss prediction. Finally, we propose
new lines for future research in propagation modelling to improve empirical models.

Keywords: LoRa; propagation models; path loss prediction; outdoor environments; indoor environ-
ments; RSSI; SNR; ESP; measurements; environmental parameters

1. Introduction

LoRa technology has stood out in the domain of wireless sensor networks (WSNs) due
to its long-range capabilities [1]. This technology enables low-power, low-cost, and reliable
data transmission, offering a versatile and responsive framework for diverse applications
ranging from agriculture and environmental monitoring to smart cities and industrial au-
tomation [2-8]. Deploying a sensor network in real-world environments requires accurate
estimations of the received signal. Consequently, modelling the environmental impact on
LoRa communications becomes paramount [9].

Propagation models usually provide two types of parameters: large-scale path loss
and small-scale fading statistics [10,11]. Large-scale fading represents the average path loss
and shadowing over large distances. The signal fluctuation is affected primarily by the
presence of hills, forests, and buildings between the transmitter and the receiver. Small-
scale fading refers to the dramatic changes in the received signal because of small changes
in position. A stochastic process typically characterizes the statistical description of the
amplitude distribution of the received signal. Some statistical models for small-scale fading
are the Rayleigh distribution, the Rican distribution, the log-normal fading model, or the
Nakagami model [10].
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In the literature, authors classify propagation models in various ways. Iskander
et al. [12] classify the path loss models as empirical, site-specific, and theoretical. Empirical
models rely on intensive measurements. While simple, they often exhibit low accuracy
when employed in environments other than data collection locations. Site-specific models
are derived from a detailed understanding of the environment. These models provide
high-accuracy predictions but demand extensive databases containing environmental
parameters. Theoretical models use the theory of idealized electromagnetic propagation.
Sarkar et al. [10] classified the models as empirical or statistical and deterministic or site-
specific. Theoretical models fall outside the scope of model classification. Phillips et al.
presented a survey classifying propagation models in seven categories [13]. The first group
is theoretical or foundational models. These models are purely analytical and derived from
the theory of idealized electromagnetic propagation. The second group is basic models
whose input parameters are the distance, the carrier frequency, and the transmitter and
the receiver heights. Various propagation models applied to communication systems fall
into this category. The third type is terrain models. These models are similar to the basic
models but also attempt to compute diffraction losses due to the presence of obstacles. The
fourth category, classified as supplementary models, comprises those unable to function
independently. In this case, researchers adjust existing models, such as employing different
frequency coverage, addressing obstructions, or incorporating directivity considerations.
The fifth group considers stochastic fading models that add a random variable to account
for additional fading. The sixth category is many-ray models, commonly known as ray-
tracing models. The final group is active measurement models. In the application to
unfamiliar environments, these models rely on measurements to enhance their accuracy.
For comparison, the work presented in [14] includes a table with the typical propagation
model classifications. Several classifications only consider two categories, with some further
subdivided into different groups. As we may observe, there is no unanimity among authors
in the propagation model classification.

The survey outlined in this study will examine three types of environments: outdoor,
indoor, and within vegetation. This categorization is motivated by the necessity to align
with prevalent propagation models employed in communication systems for path loss
characterization. Examples of models that address other types of propagation media, such
as indoor—-outdoor propagation [15] or underground propagation [16], are beyond the
scope of the objectives of this study.

Researchers are proposing several conventional propagation models to estimate the
received signal in LoRa systems. For outdoor environments, numerous studies employed the
log-distance model to predict path loss through the curve fitting of measurements [2,3,17-30]
or for model evaluation [31-36]. All works of the first group use active measurements on the
proposed model. Although most proposed log-distance models are single-slope, some authors
show that a dual-slope log-distance model can improve the model’s accuracy [23,27,34]. For
instance, Abdelfadeel et al. [23] proposed a two-component model, one for distances below
400 m and another for distances from 400 m and 1 km. The Okumura-Hata model has
also been considered in various works for predicting path loss [7,37-43] or model evalu-
ation [31-36,44-52]. COST 231-Hata is utilized in [32,34,36,46,48,50], the COST-Walfisch—
Ikegami model is used in [33,46,48,51], the 3GPP model is used in [31-33,48,53], and the
SUI model is used in [33,35,48,50]. We also found the use of the Lee model [54], the Ir-
regular Terrain With Obstructions Model (ITWOM) [42,55], the ITU-R P 526 model [39],
the ITU-R P 1812 model [56,57], the Irregular Terrain Model (ITM) [47,58,59], the Ericsson
model [33,35,48], the Egli model [5,56], the ECC33 model [49], and the UFPA model [6].
Some works also include variations of the well-known models. For example, Gonzalez-
Palacio et al. [60] proposed enhancing the log-distance model by including terms related to
the environmental parameters. Furthermore, Santana et al. [61] developed a model centred
on the log-distance, adjusting the path loss exponent based on measured data.
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Regarding deterministic models for outdoor propagation environments, very few
works have focused on estimating path loss. Froiz-Miguez et al. [62] employed a 3D ray
model for planning purposes. The simulation results show the received signal estimation
for an area of 100 x 200 m?. Do et al. [63] predicted the received signal using the Oscillator
Finite-Difference Time-Domain (O-FDTD) method. The authors state that this model may
become unsustainable for LoRa maps much larger than 600 x 600 m?. Machine learning
also provided tools to assist the studies of received signal prediction in LoRa [45,64—-68].

For indoor environments, the propagation models commonly employed in LoRa studies
include the log-distance [69-73], the ITUR P1238 [69,70,74], the Montley—Keanan [32,69,70,73],
and the COST 231 Multi-Wall [32,69-71,73]. Studies on propagation have also proposed
models of ray tracing model [69,73], the 3GPP indoor [32], the Indoor Dominant Path
(IDP) [75], and linear decaying [76]. The works presented in [77,78] introduce machine
learning techniques on LoRa indoor propagation studies.

There are several conventional models designed specifically for environments within
vegetation. Typically, researchers formulated these models to predict excess attenuation
caused by vegetation. LoRa propagation studies within vegetation considered the Weiss-
berger model [79-81], the ITU-R P.833 model [8,79-82], the FITU-R model [8,79-82], the
COST 235 model [8,79-82], and the LITU model [8,81,82]. Some authors employed these
models by contrasting them with measurements taken within vegetation to choose the best
one. Another approach involved comparing the models after optimizing their parameters
to align with the measured data.

The suitability of applying the Okumura—-Hata model in environments within vege-
tation is presented in studies [83,84]. Ferreira et al. [85] adjusted the log-distance model
with measurements acquired on a university campus to obtain a propagation model in
forested environments for LoRa. Wu et al. [86] proposed formulas for the parameters of the
log-distance model, which incorporate constants associated with vegetation. Anzum [87]
presents a study that quantifies the excess attenuation introduced by palm oil trees for
propagation through the trunk, the canopy, and the treetop. The work presented in [88]
applies the COST231-multiwall model to a palm oil plantation, replacing the number of
walls with the number of trunks and canopies. Myagmardulam et al. [89] studied the
correlation between the received signal and the sky view factor in a forested area. The
works presented in [8,84,90] employ machine learning techniques to predict path loss in
the presence of vegetation.

Based on the current research, we may classify the propagation models for LoRA into
three categories: empirical models, determinist models, and active measurement models.
This study reveals that the majority of the proposed models are empirical. There are very
few works focused on deterministic models. This fact may stem from the need for extensive
databases containing environmental parameters, especially considering the wide range of
LoRa. Active measurement models include curve fitting of existing empirical models and
models based on machine learning techniques.

Rather than systematically searching a specific subfield or examining all published
articles that examine propagation models for LoRa, we intended to review the most relevant
pathways by examining well-known literature that operates as a reference for the field
and extrapolate conclusions based on these works. Therefore, this work aims to perform a
critical review to achieve the following objectives:

- Review the propagation models applied to LoRa systems;

- Review the empirical propagation models designed to support communication sys-
tem projects in outdoor, indoor, and vegetation environments, potentially beneficial
for LoRa;

- Characterize the parameters outlined for each empirical propagation model;

- Extract the relevant information from the measurements presented in published works
to understand propagation phenomena;
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- Analyze propagation results of LoRa systems;
- Assess the performance of the studied propagation models using LoRa measurements;
- Evaluate the potential of a multi-slope model for path loss prediction in LoRa systems.

This paper is structured into six sections. Section 1 provides an overview of commonly
employed propagation models in LoRa technology. Section 2 describes the empirical propa-
gation models, dissecting them based on their primary parameters. In Section 3, we explore
active measurement propagation models, exploring their potential as complementary or
alternative methods for propagation analysis. Section 4 shows a critical analysis of propaga-
tion measurements utilized in the reviewed literature. Section 5 presents a complementary
examination of propagation within LoRa systems. Finally, Section 6 explains the main
findings and concludes the article.

2. Empirical Propagation Models

Both theoretical and measurements indicate an average received signal decaying
logarithmically with distance plus a log-normal distribution about the mean value [91]. In
this way, the log-normal path loss model is given by, in dB [92]

PL(d) = PL(dy) + 10nlog,, <;) + X, 1)
0

where PL(d)) is the mean path loss given at a distance d in dB, # is the path loss exponent,
and X, is a zero mean Gaussian distributed random variable with standard deviation ¢
in dB.

Rappaport et al. [93] defend that n has a physical meaning when PL(dp) is the free
space path loss at the reference distance dy. In that case, (1) is defined as a Close-In (CI)
model [94]. However, many authors use this model to fit the measured data. In this
situation, PL(dp) can be different from that of free space. To distinguish both cases, some
authors propose the floating-intercept (FI) model, given by

PL(d) = & + 10Blog,o(d) + X» )

where « is the intercept in dB and f is the slope of the line with the distance in a logarithmic
scale. By equating the two expressions and setting f = 1, we obtain

a = PL(dp) — 10nlog,,(do) 3)

This result suggests that given « and f, we can obtain the reference distance, dy, where
both models are equivalent. The distance where the floating-intercept (FI) model crosses
the free-space condition is

A7\ 2 1/(B-2)
dy = [(/\) xlOl%] ,B>2 ()

with A indicating the wavelength.

We will employ the log-distance model as the foundational equation for defining
empirical propagation models. Emphasizing the parameters of these models is essential
to facilitate meaningful comparisons among them. By transforming each model into
the format outlined in Equation (2), we will extract expressions for « and f specific for
each empirical model. After identifying the main parameters related to the propagation
environment, « will take the following form:

06:PLFS(lm)+Ka+P1(f)+P2(hB,hT)+H~ (5)

where PLpg(1 m) is the free space path loss at a distance of one meter in dB, K, is a constant
defined in each propagation model for the & parameter in dB, and P; (f) is the attenuation
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relative to frequency, obtained by subtracting 20log;,(f) in dB. The other terms are losses
related to the parameters given in each function, with hp representing the height of the base
station antenna and /it indicating the height of the terminal device antenna. The parameter
B will take the following form:

B =Kg+ F(f) + E(hp hr) + - - (6)

The distances will be in meters and the frequency in MHz.
Let us describe the procedure for the Okumura-Hata model [95,96]. For urban envi-
ronments, the model is given by

PLyypan = 69.55 + 26.16l0g,,(f) — 13.82l0g,,(hp) + [44.9 — 6.55log,,(hp)]|log,y(d) — a(hr) (7)

with f in MHz, d in km, hp and h7 in m, and a(ht) is given for medium-small cities by

a(hr) = [1.1logy(f) — 0.7]hr — [1.56log,o(f) — 0.8] 8)

After converting the distance to meters and manipulating (7) to identify the individual
components, we obtain

PLypan = 6955 +26.16l0g1(f) — 13.82l0g; () + [44.9 — 6.55l0g; () 10810 i )
4 fx10°
~ [1.110g,(f) — 0.7)hr + 1.56l0gq(f) — 0.8+ PLys(1m) — 20logyo (52555 ) (o)
= PLps(1m) —38.39 4 7.72log,,(f) + 5.83log,,(hg) — [1.1log,o(f) — 0.7]hr
+10[4.49 — 0.655l0g, (1) ]log,,(d)
This form allows us to identify each term in Equations (5) and (6).
2.1. Outdoor Environments
We identified empirical propagation models for outdoor environments and converted
the expressions into a log-distance form. Table 1 shows the results for two simple basic
models. The Egli model was developed from measurements conducted in New York and
New Jersey [97,98]. As we may observe from the third column of Table 1, the component
« only varies with the antenna heights. For this model, § is constant. The Lee model
was formulated based on a series of measurements conducted in the USA, specifically
at a frequency of 900 MHz [99,100]. The third column of Table 1 shows the results. Gp
and Gr are the antenna gains in dB, and m is a frequency adjustment factor, 2 < m < 3.
Ly is the path loss at 1 km, and 7 is the slope of the path loss curve in dB/decade. We
incorporated the antenna gains into the parameter Ky, as it is common practice to exclude
the transmitted power and antenna gains from the loss computation. Table 2 provides
values for the parameters Ly and 7.
Table 1. Parameters for the Egli and Lee models.
Model Component Value (dB) Component v, e (dB)
of u of B
Ky —16.14 Kg 4
Egli model Pi(f) - Fi(f)
PZ(hB/hT) —ZOIng(hB) — 1010g10(hT), hT <10m FZ(hB/hT) -
Ky Lo 4 72.80 — 10mlog;,(900) — Gg + Gr — 3, hr > 3 Kg %
Ly + 68.03 — 10mlog;,(900) — Gg + Gt — 3y, hr < 3
Lee Model Pi(f) (10m — 20)logy,(f) Fi(f) -
Py (hg, h —20log;,(hp) — 20logyo(hr), hr >3 E(hg, h -
2(hp i) {—2010g10(h3) —10log,(ht), hr <3 2(hs )
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Table 2. Reference parameters for the Lee model.

Environment Lo (dB) 0%
Open (rural area) 89 43.5
Suburban 102 38.5
Urban—Philadelphia 110 36.8
Urban—Newark 104 43.1
Urban—Tokyo 124 30.5

Table 3 presents the outcomes of the Okumura—Hata model [99,100], designed for
large urban, medium-small urban, suburban, and rural environments. The distance range
remains applicable within 1 km to 20 km, with base station antenna heights ranging from
30 m to 200 m and terminal antenna heights from 1 m to 20 m. Frequency coverage extends
from 200 MHz to 1500 MHz. Because propagation model evaluation will be specific for
frequency bands of LoRa, P (hp, hT) incorporates products with frequency and antenna
height terms. From column three of Table 3, K, decreases from urban to rural areas. For
medium-small cities, suburban areas, and rural areas, the « component varies solely by
frequency, remaining constant across antenna heights. The p parameter remains invariant
across all environments.

Table 3. Parameters for the Okumura—Hata model.

Environment Component Value (dB) Component Value (dB)
of u of B
K, —36.29 Kg 4.49
Urban: large cities h(f) 5,831 (h6')1610§ ;Oéf) (h )}2 ) )
Py(hp, h 0210810\1B) = 9-£170810HT) | Fy(hp, h —0.655log,, (h
2 (hg, hr) 2.14l0g, (i7) 2(hp, ht) 0gqo(h)
K, —38.39 Kg 4.49
Urban:
: o Py(f) 7.72logy0(f) Fi(f) -
medium-small cities Py (hg, ) 5.83l0g,, (1) — [1.1logy (f) — 0.7]hy Es(hp, hr) —0.655log; o (115)
K, —47.98 Kg 4.49
Suburban/rural Pi(f) 13.5110g(f) — 2[logyo(f)] 2 R (f) ;
Pz(hB, hT) 5.8310g10(h3) — [1110g10(f) — 07} l’lT FZ(hB/hT) —0.65510g10(h3)
K, —79.33 Kg 4.49
Rural Py(f) 26.05110g,,(f) — 4.78[log,o(f)]* Fi(f) -
PZ(hB/ hT) 58310g10(h3) — [1110g10(f) — 07} hT FQ(hB,hT) *0.65510g10(h3)

The widespread popularity of the Okumura-Hata model has led to the development
of numerous extensions and corrections aimed at refining its accuracy and applicability.
An example is the Ericsson model [101]. Table 4 shows the parameters obtained for this
model. Parameters ag, a1, 4>, and a3 have the default values of 36.2, 30.2, —12, and 0.1,
respectively. The COST 231-Hata model is another extension of the Okumura—Hata model.
It aims to extend the frequency band to 2000 MHz [102] and has applications in urban and
suburban/rural environments. The Stanford University Interim (SUI) model follows the
form represented in Equation (1) [103]. The reference distance is dy = 100 m. This model
also extends the Okumura-Hata frequency range up to 2000 MHz. The model is valid
for antenna heights of the base station between 10 and 80 m and defines three types of
environments. The type A environment corresponds to the maximum path loss category,
characterized by hilly terrain with moderate-to-heavy tree densities. Flat terrains with
moderate to heavy tree densities or hilly terrains with light tree densities characterize type
B environments. Type C environments, representing the minimum path loss category, are
applied to flat terrain with light tree densities. Table 4 shows the results obtained for the
SUI model.
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Table 4. Parameters for Okumura—Hata extension models.

Model Component Value (dB) Component Value (dB)
Environment of of B
Ky ag — 30aq + 23.89 Kﬁ 0.1aq
Ericson model Pi(f) 24.49(10g10 (f) f) 4.78 Elog)10 ()] 2 E(f) -
Urban ap — 30a3)logy(hp) —
Py (hg, h Fy(hg, h 0.1a3l h
2. ) 3.2[logy, (h7)]? — 6.85log,, (I7) 2(hs.hir) aslogao (hs)
Ky —56.54 Kg 4.49
COST 231-Hata Pi(f) 13.910g,(f) , R(f) -
Urban 5.83log () — 3.2[logyo (k)] ™ —
Py (hp, h &10\1B 10T Fy(hp,h —0.655log, o (1
»(hp, ) 6.85l0g,0 (17) 2(hp, ht) 0.655logy(11p)
Ky —61.64 Kg 4.49
COST 231-Hata Pi(f) 15.46log; o (f) R (f) -
Suburban/Rural 5.83log(hg) —
Py(hg, hr) [mogw%}o) (—B()).7]hT Ey(hp, hr) —~0.655log,, (I1p)
Ky —68.56 K 4.6
SUI model t p
Type A Py (f) 610g10 (f) B (f) -
Py (hg, ht) 0.15hp — 22 — 10.8log, () Fy(hp, hr) 126 _(.0075hp
Ky —56.56 K 4.0
SUI model t p
Type B Pi(f) 6logy(f) Ei(f)
P, (hg, ht) 0.13hp — & 10.8logy o (hr) E>(hg, ht) 171 —-0. 0065h3
Ky —45.79 K 3.6
SUI model & p
Type C Py (f) 610g10 (f) B (f) -
P, (hg, ht) 0.1hg — 3% — 20log,, (h7) E>(hg, ht) 20 _ 0,005k
Ky 206.33 Kg 2.98
ECC-33 model Pi(f) 9.56 [logy( f)%2 - %4)510&0( ) R (f) -
Urban —66.16log;(hp) —
Dy (hg, h Ey(hg, h — Jip_
2(hp h) 42,57 +13710g; ( 1400 ) 10810 (1) 2(hs hr) 058[6 ~ logao () 10810 (3

The Electronic Communication Committee (ECC) developed the ECC 33 model that
predicts the path loss for frequencies greater than 3 GHz [104]. The model contains a

term of the form [loglo(d)]z. For this reason, the model does not conform to a linear
trend when plotted against distance on a logarithmic scale. Table 4 shows the log-distance
representation for this model. As we may observe, the f component associated with i
exhibits distance dependency. Considering the values of hp between 30 m and 200 m and
distances from 1 km to 20 km, we developed an approximation for the second term of

(2), giving

10Blogyo(d) =10 {2-98 +0.58[6 — log,,(d)]logy (200)}10&0(‘1)

10
= 82.1810g;, 5 ) + 10[2.98 — 0.910g, (0} ) [10g10() 10
The first term of this expression is added to « and the new approximated g is 2.98 —
0.91og;(hp/200). The maximum error for this approximation occurs for g = 30 m, giving
a mean absolute error of 0.41 dB.

The previous empirical models may have reduced accuracy as they only incorporate
frequency, antenna heights, and distance as input parameters. The next group of models
also includes parameters related to the environment. Specifically, the Edwards-Durkin
model calculates the total loss over irregular terrain by the expression max(PLgs, PLpg) +
Lp [98,105], where max is the maximum of its arguments, PLrg is the free-space path
loss model, PLpg is the plane-earth path loss model and Lp is the diffraction due to the
irregular terrain in dB. Table 5 shows the log-distance representation. The free-space
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model is applicable up to d = 47thght/A and the plane-earth model is valid above this
distance. We may use the knife-edge diffraction loss, the Eperstein—Peterson method [106],
or the Longley—Rice model [107] to compute PLp. The component P;(v) represents the

dependence of the diffraction parameter v.

Table 5. Parameters for models that consider environmental characteristics.

Model Component Value (dB) Component Value (dB)
of w of B
K, 27.56 Kﬁ 4
. Pi(f) —20logy,(f) F(f) -
Edwards—-Durkin model Py (hp, hr) ~20logyg (hs) - 20logy(r) Es(hg, hy) )
Ps(v) Lp F(v) -
Ke ~8.19 Kp 2
~ Pi(f) 10log;(f) Fi(f) -
Tkegami model 1 10
& Py(hp, hr, H) 20log,o(H — hr) Fy (g, 7, H) -
P3(W, ¢) —10log,, (W) + 10log;,[sin(¢)] B(W,¢) -
Ke 3.1 Kp 3.8
Pi(f) logyo(f) F(f) -
Walfisch-Bertoni model Pa(hp, b, h) 51 D2 71:105110(?3 7:1) D B (g, iz 1) )
= + — —
Py(D) 0810{ T+ ( T) ] 0819(D) E(D) )
+20log;, {atan (2 % ) ]
K 37.1 — 3k, Kp 3.8
Py(f) (10+ Ky )1ogyo(f) Ei(f) ;
COST Lpsp, + 20logyo(h — hr) Lo +
231-Walfisch-Tkegami ~ L2(hB/hT. ) (0.8(hg —h),hp < hand d > 500 Fa(hp, iy, h) 71.5(@),;15 <h
model 0, others 0, others
P3(W, (P) *1010g10(W) + Lori F3(W,¢) -
Py(D) —9log,,(D) F(D) -
K, _ K‘B 2 ,d< dBp
4 ,d>dpp
1 Pi(f) - R (f) -
3535 E‘Odf _min (0.044h1~72, 14.77), d < dgp min (0.0034172,1)
ura . Lo, (h)d
Py(hg, by, h)  —20l0gyo(dgp) — min(0.0441'72,14.77)  F, (hg, by, ) +0.0002 720 0 d <
+min (0.03h172,10)log,, (dpp)+ dpp
0.00210g10(h)d3p, d> dBp 0, d> dBP
K, —0.36 Kﬁ 4.34
Pl (f) - Fl (f) -
- 1507—37(£)2 logy (p)
3GPP model NLOS Rural ' g 81018
Pz(hB,hT,h) 2 FZ(hB/hT/ h) _0'3110g10(h3)
+7.5log;(h) — 3.2[log,(hr)]
—6.85log; (hT)
Ps(W) —7.1log, (W) F3(W) -

The Blomquist-Ladell model [108] addresses identical loss types as the Edwards-Durkin
model but employs a distinct methodology in combining them,

PL(d) = PLys +\/ (PLpe — PLgs)? + 13

(11)

where PLp; is a modified plane earth loss. The Allsebrook—Parsons model [109] is an
extension of the Blomquist-Laddell model that adds a loss due to buildings,
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PL(d) = PLfs + \/(PL;,E — PLps)2 + L3 +Lg+y (12)

where Lp is an additional loss due to buildings and -y is a UHF correction factor.

The second example described in Table 5 is the Ikegami model [110]. This model as-
sumes free space propagation, augmented by an additional term designed to accommodate
the signal behaviour within a street environment. H is building height, W is street width,
and ¢ is the angle of signal arrival relative to the street axis. The next propagation model
shown in Table 5 is the Walfisch—-Bertoni model [111]. / is the average building height,
and D is the distance between building centres. We ignored the term that accounts for
the curvature of the Earth. The COST 231-Walfisch-lkegami model [102] has a version
for a street canyon with Line-Of-Sight (LOS). A representation by Equation (2) considers
Ky = —7.84dB and B = 2.6 and is valid for distances above 20 m. For Non-Line-Of-Sight
(NLOS), the model is given by

PLFS + Lrts + Lmsd ’ Lrts + Lmsd >0
PL(d) = 13
@) { PLgs Lyts + Lygg < 0 13)
with
Lyts = —16.9 — 10log; (W) + 10log;(f) + 20logo(h — h1) + Loy (14)
d
Lyysq = Lpsy + ka + k410log,, (1000> + kfloglo(f) —9log;,(D) (15)

2.5+ 0.075(¢ —35) 35 < ¢ <55 (16)

—10 + 0.325¢ 0" < ¢ <35
Lori - 5 5
4.0 —0.114(¢ —55) 55 < ¢ <90

. —18[0g10(1 +hg—h) ,hg>h
Lbsh - { 0 /hB < h (17)
54 hg > h

k. = 54 —08(hy—h) hp<handd >500m (18)

54 —0.8(hg —h)sls hp <handd < 500m

18 ,hg > h

k=118 15(251) g < 19)
. —440.7 9% —1) , medium — sized cities and suburban 20)

f= —4+15 9fT5 -1 , metropolitan centers

Table 5 shows the log-distance representation of the COST 231-Walfisch-Ikegami
model for NLOS. L, is an additional term given by —0.08(hg — h)d/[500log,(d)], for
hg < h, and d < 500 m. This term generates a nonlinear trend when plotting path
loss against distance on a logarithmic scale, affecting path loss only when the base sta-
tion antenna is below building roofs. The model is applicable to the following ranges:
800 < f <2000 MHz,20 < d <5000m,4 < hg <50m,and 1 < hy <3 m.

The last model described in Table 5 is 3GPP [112]. It demonstrates validity in urban
and suburban environments, covering the frequency range from 2 GHz to 6 GHz. The
model applies to frequencies starting from 450 MHz and above when employed in rural
environments. Considering the frequencies of interest of LoRa, Table 5 presents the results
for rural environments. The parameter dpp is given by 2rthght f /300. The NLOS model
applies to both urban and suburban scenarios. The model is applicable for the following
ranges: 10 < d < 10,000m, 10 < hp < 150m, 1 < hy < 10m,5 < h < 50 m, and
5<W <50m.
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2.2. Indoor Environments

Indoor propagation modelling typically involves predicting the propagation character-
istics within a building. This environment experiences higher attenuation when compared
with outdoor propagation, primarily due to the presence of walls and other obstacles.
Most indoor models use a logarithmic decay of distance combined with losses induced by
obstacles. The first method presented in Table 6 is the Motley—Keenan model [113], where
nr is the number of floors in the propagation path, ar is the floor attenuation in dB, nyy is
the number of walls in the propagation path, and ayy is the wall attenuation in dB. The
attenuation with distance follows the free-space model, and the obstacles only affect the
« parameter. The COST 231 multi-wall model follows a similar procedure [102]. Table 6
shows the representation for this model, where L is a constant loss, ny; is the number
of walls of type 7, and b is an empirical factor. The log-distance model with a path loss
exponent different from free space is also employed for indoor environments [114]. Table 6
displays the representation of the Seidel-Rappaport model [92]. FAF is a function of the
number of floors and building type, and # is the path loss exponent for the same floor.

Table 6. Parameters for indoor models.

Model Component Value (dB) Component Value (dB)
of u of B
Motley-Keenan K, - Kﬁ 2
model [113] Py (ap, aw) NEAE + nywaw F(ap, ay) -
Seidel-Rappaport Ky (20 — 10n)log;(do) Kg n
model [92] P, (FAF) FAF F,(FAF) -
COST 231 Ky Lc Kg 2
;. np+2 1
multi-wall model Py (ap, apy) nF(ﬂiL— )IXI: £ Y nwiwi B (ap, aw) -
[102] =
Ke - Kp 2
IDP model I ]
[115,116] Py (ap, o) Lwi+ ¥ Lg; Fy(ap, aw) -
i=1 =1
K ki + Ga — 27.56 K ks
Tuan et al. B
model [117] Pi(f) (k; —20)logy,(f) F(f) -
Py(nw,ng, Py, Py) ny (kyP1+ksPa) + kenr E(nw,nr, P, Py) -
Barb 1 K ) Kp )
arbosa et al. b a2 —0.10912
model [118] Py(nF,a,b) M Fy(nf,a,b) 0. 09nF1—&5—10.853np *
bnp hzn% .
~ 2 ™™™
Degli-Esposti et al. Ky (20 —10n)log; o (o) Kg n
model [119] Py(7) - By (7) Vit d>1

logy,(d)

The Indoor Dominant Path (IDP) model [115,116] is also present in Table 6, where
Ly is the wall loss, and L is the interaction loss, which depends on the type of wall,
the operating frequency, and the angle made by the propagation path. Tuan et al. [117]
proposed a model with constants to account for some environment parameters. Table 6
shows the results of this model, where G, refers to the antenna gains, and P; and P, are
associated with the angle of incidence to a wall, in the form (P, P,) = (sin(f),1 — sin(0))

or (P, P) = (sinz(G), 1- sin(@)]Z). The coefficients of k; to k¢ are to be determined
based on measured data.
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Barbosa et al. [118] established a parameterization for the path loss exponent based on
the number of floors, yielding the results shown in Table 6. The parameters a and b are de-
termined through a curve-fitting process based on measurements. Degli-Esposti et al. [119]
proposed a model that includes a linear term as a function of distance, given by

d

PL(d) = PL(dp) + 10nlog;, <d> +d (21)
0

Other authors have also recommended employing a linear trend for indoor environ-

ments [102,120]. Table 6 shows the log-distance representation for this model. Due to

the slower increase in log;,(d) compared to d, the B component nearly exhibits linear

growth with distance.

2.3. Within Vegetation Environments

Vegetation can significantly increase signal attenuation in communication systems.
This observation has prompted the development of propagation models that incorpo-
rate environmental parameters. Several conventional empirical models calculate excess
attenuation above free space in the form [121]

L= AfBdC (dB) (22)

The parameters A, B, and C were determined by curve-fitting to measured data. Table 7
presents the well-known models of this type. We converted the frequency from GHz to
MHZz for the models specified in GHz.

Table 7. Excess attenuation models for environments within vegetation.

Model L (dB)
Modified Exponential Model [122] {0. fé(;?%égfzz%% » i < ;4400
ITU-R [123] 0.2/03406
COST 235 [124] {1322}8'8?:;5526 ,ou’tirl - fle_afleaf
PR (2 (o7 oot e

—6 4 .
Chen-Kuo model [126] {( (f x107°+0.2)d +5f x 10~* 4 3, vertical

2f x 1077 +0.2)d + 3f x 107° + 2, horizontal
LITU-R [127] 0.48 f0-434013

The models presented in Table 7 deviate from the conventional log-distance decay
pattern. Given our aim to establish a uniform model throughout this work, it was necessary
to carry out a study to examine the underlying principles that led to the formulation of
the previous models. Weissberger [42] conducted a comprehensive study investigating
the modelling of additional attenuation caused by propagation through vegetation. The
conventional method for determining received power, expressed as p, = p1gigre ™ /Iy,
assumes an exponential increase in loss with distance, where a represents the differential
attenuation due to foliage, and I,y denotes the loss in the absence of vegetation. The
path loss in dB is PLyy = Lyy — a1d, with a; = 10log;,(e)a. However, Weissberger noted
a discrepancy between this model and actual measurements, particularly for distances
exceeding 15 m within vegetation. To address this deviation, the author introduced the
Modified Exponential Loss (MED) model based on various sets of measurements.
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We compared the outcomes obtained by applying the log-distance model with those
derived from the model specified in Equation (22), using measurements presented in
Weissberger’s article. Both models were determined by curve-fitting of measurements
acquired for 910 MHz and 1.85 GHz, and each case involved computing the root mean
square error (RMSE). The difference between root mean square errors ranged from 0.1
to 0.5 dB. This error indicates that both models exhibit comparable levels of accuracy.
Al-Nuaimi and Hammoudeh [128] also proposed a model based on Equation (22) for the
frequency of 11.2 GHz. We employed curve-fitting on the measurements of that study to
determine the log-distance and MED models, and our findings led to the same conclusions.
Therefore, the log-distance model could replace the MED models to predict the path loss
within vegetation.

Goldman and Swenson proposed [129] the floating-intercept model in frequencies in
the VHF and low UHF bands. They determined the model parameters via curve fitting.
Fanimokun and Frolik [130] employed the close-in model for the frequency of 915 MHz,
and Joshi et al. [131] applied the floating-intercept model to 300 MHz and 1900 MHz.
All the presented models lack environmental parameters, which may lead to uncertain
accuracy when applied to a different environment. Phaiboon and Somkurnpanich [132]
do not include environments but developed models for different vegetation densities. The
vegetation parameters employed in the log-distance models were the number of trees per
square meter, leaf dimensions and the number of leaves per volume.

Table 8 shows models that include parameters from vegetation. The maximum attenu-
ation model [133] uses two vegetation parameters. A, is the maximum attenuation, and ¢
is the specific attenuation for a very short distance (dB/m).

The Azevedo-Santos trunk model is valid for environments where tree trunks dom-
inate the propagation path [134]. Tp is the tree density (trees/ m?), and D is the average
diameter of trunks in cm. The parameter d;, is set to 60 m if d < 60 or the maximum
distance of prediction if d > 60. The model is valid for distances up to 600 m and for path
loss values above those of free space. The log-distance representation of the Kurnaz-Helhel
model [135] is shown in Table 8, where k is the trunk height gain. This parameter is given
by k = hyer/hex, where h,.¢ represents the height of the tree part without leaves in a ref-
erence environment, and .y is the height of the tree part without leaves in the examined
environment. The Xiuming-Chunjiang model [136] was developed to estimate path loss in
an apple orchard operating at 2.4 GHz. Table 8 describes the results, where /i represents the
antenna heights. Guo et al. [137] applied this model to an apple orchard, introducing the
Leaf Area Index (LAI) parameter to determine the path loss exponent. The Azevedo—Santos
foliage model [138] was designed to address the foliage zone, considering vegetation pa-
rameters such as foliage density, FD (%), tree density, Tp (trees/m?), and the average
tree canopy diameter, D¢ (m). Botella-Campos et al. [139] proposed a model detailed
in Table 8, requiring parameters like path loss at a distance of one meter (PL(1 m)), the
number of trees in the propagation path (N;), and the average tree loss (L;). Xiao et al. [140]
introduced the BHF model, where L represents an optimized offset value for path loss in
dB, and { characterizes the coefficient for path loss caused by vegetation attenuation. The
Phaiboon-Phokharatkul model [82] incorporates log-distance decay with an additional tree
attenuation term. In Table 8, TAF denotes the tree attenuation factor.
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Table 8. Parameters for models within vegetation.

Model Component Value (dB) C°“:)1;‘;;“e“t Value (dB)
K - Kg 2
Maximum attenuation Pi(f) - F(f) -
model [133] _ &y
P(A,, A F (A, Ape Am
2( m C) m 2( m g) — 101(LJg10(d) ,d >1
Ky - Kg 2
Azevedo-Santos trunk Pi(f) 0.019f 047TpD E(f) 0.03f 042 (dm —40) o
model [134] 0.043(d,, — 40)*¥ TpD
P (Tp,D —0.026d,,TpD F(Tp, D _
»(Tp, D) mTD >(Tp, D) —0.45(dy, — 40) 015
K o 0 ,d<200 K 2 ,d <200
g Cp=Cr+ {737.55 d > 200 f 4 ,d>200
Kurnaz-Helhel model Pi(f) _ R(f) _
[135] Pz (hB,hT) 72010g10(h3h7) ,d > 200 FZ(hB,hT) 2584d 38—57
Ps (k) - E5(k) k@ 11,900)10g, @) 4 > 1
Xiuming-Chunjiang Ke 42 Kpg 2.273
model [136] Pi(f) B F(f) -
P (h) —1.133h E(h) 0.0507h
Ky 0.61 Kﬂ 2.27
Py(f) — 46567 s~ 5t) R(f) -
Azevedo-Santos 371(—L o~ 1)
foliage model [138] P, (FD) 0.31¢” 20005 057 _ 01| FD F(FD) -
[7.68 x 10792 —4.26 x 1073 f [-11x107%f2 + 6.1 x 1074f
P3(Tp, Dc) —19.85]Tp Dc E(Tp, De) +2.84]Tp De
Botella-Campos et al. Ku PL(1m) —27.56 Ke 2
model [139] by (f) _2010g10(f) 3] (f)
P)(N, Ly) NiLy F (N, Ly) -
K, Lo —27.56 Kﬁ n
BHF model [140] Pi(f) - E(f) (4]
_ anh( 55
Pz(g) FZ(é) CWmZ((J’j)’d>1
K - K n
Phaiboon- iy B
Phokharatkul model Pi(f) M B R (f) B
(82] P,(TAF) Y. TAF; E(TAF) B

i=1

3. Active Measurement Propagation Models

The standard approach of prior models predicts network behaviour in a specific envi-
ronment using analytical expectations or data from similar settings. In contrast, posterior
models acknowledge the inherent limitations of such assumptions and necessitate envi-
ronmental measurements for accurate predictions. These latter models essentially define
a measurement and prediction methodology that can be used at new locations [13] and
address the lack of robustness, insufficient efficiency, and ineffectiveness of conventional
models in challenging environments [141].

More specifically, an active measurement propagation model utilizes empirical data
collected from field measurements to characterize the radio wave propagation environment.
These models can incorporate parameters such as path loss, shadowing, fading, and
multipath effects, offering a comprehensive framework for assessing signal propagation in
diverse scenarios.

One approach involves curve fitting of existing empirical models. This traditional
methodology frequently uses empirical models and tunes its parameters with real-world
measurements gathered across the deployment area, customizing it to the specific environ-
ment. A common methodology is to add the root mean square error as a constant term to
minimize prediction errors. Conversely, Udofia et al. [142] proposed a more innovative
methodology by using a composite function of empirical model residuals rather than di-
rectly adding RMSE to the model. The composite function was derived by fitting a trend
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line to the graph of prediction residuals against the Okumura—Hata model’s path loss
predictions, leading to a correction term added to the Okumura-Hata path loss model for
urban areas, estimated to be [0.1457466236Y (d) — 0.641993705Y (d)] / [Y (d) — 99.3737369],
where Y (d) is the Okumura-Hata predicted path loss. When comparing with the measured
path loss, the un-tuned Okumura-Hata predictions had an RMSE of 16 dB, with an accuracy
of 89%, while the tuned model metrics were 2 dB and 99%, respectively. However, by using
a simple RMSE-based constant, the metrics were 5 dB and 97%, respectively, highlighting
the relevance of adding a correcting term that considers the environmental characteristics.

The interpretability of curve-fitting models is a notable advantage, as it provides
insights into how various factors affect signal strength, thus facilitating a clear under-
standing of propagation behaviours. However, this approach may encounter limitations
in accurately capturing the complexities of real-world propagation, particularly in het-
erogeneous environments. Machine learning was developed to address these types of
limitations by allowing models to learn the patterns directly from data. The models can
further be used to model multiple parameters of the wireless communication channel, as
discussed by Aldossari and Chen [11]. Nevertheless, they are particularly interesting for
path loss analysis [141] since measurement-based models can be constructed using machine
learning techniques.

These machine learning models can discern intricate relationships between multiple
factors and predict signal strength for new locations based on learned patterns from data.
Therefore, these methods can be used as an alternative to empirical and deterministic mod-
els, framing path loss prediction as a supervised regression problem. Moraitis et al. [143]
reported that these models can substantially outperform empirical models in the appli-
cation site, where the RMSE ranged from 4 to 7 dB in the examined rural areas. Their
approach employed principal component analysis to examine the correlation between the
examined features and the measured path loss. It was concluded that the transmitting and
receiving antenna’s heights, path visibility, and the direct distance between the antennas
are the more relevant characteristics for the models. The best performance was attained
when using an Artificial Neural Network (ANN).

Machine learning models are particularly useful in developing models for environ-
ments where an empirical method could not be directly applied. Gomes et al. [144] propose
using k-nearest neighbours with knowledge-based theory to develop a model suitable
to non-homogeneous paths and climates. Specifically, the measured points considered
attributes related to the terrain morphology collected locally and from satellite aerial optical
images. The authors reported a low error in the forecasts. Liu et al. [65] introduced an
alternative method to estimate path loss for long-range LoRa communication in challeng-
ing environments. This approach utilizes remote sensing data, specifically multi-spectral
images, to automatically identify various types of land cover along the signal path. The
identified land cover information is then intake into a bidirectional Long Short-Term Mem-
ory Neural Network (LSTM) followed by a convolutional layer. The effectiveness of this
model is validated using real-world LoRa data, demonstrating a notable reduction in
path loss estimation error to below 4 dB. The employment of deep learning techniques is
particularly significant for path loss estimation, as these models can directly learn relevant
patterns from the data without requiring complex feature engineering methods, which
typically involve laborious feature creation and selection processes.

Machine learning-based models, particularly ANN, have found widespread success
in path loss analysis across various environments [145-160]. They hold promise for achiev-
ing higher accuracy, particularly in settings with intricate propagation characteristics, as
underscored by Hakim et al. [84]. However, their black-box nature may pose challenges in
interpreting and explaining model predictions, especially when employing deep learning
methods. Furthermore, the requirement for extensive and diverse datasets to train the
models may be impractical in certain environments. Additionally, it is crucial to observe if
the models can achieve generalization for new locations, as reported by Rofi et al. [66], who
noted that their proposed method performed optimally when tested on the same dataset.



Sensors 2024, 24, 3877

15 of 41

Hybrid approaches can combine machine learning techniques with traditional prop-
agation models or curve-fitting methods to leverage the strengths of both approaches.
Two main approaches were identified in this domain. The first deals with correcting the
empirical model’s estimations, while the second consists of aiding in selecting the most
suitable empirical model based on the classification of the terrain.

Thrane et al. [161] introduced a methodology for the first approach, employing a
model based on a convolutional neural network for satellite image analysis. This machine
learning model was used to learn how to correct the estimated path loss produced by a
standard path loss model. The evaluation revealed that the model can improve path loss
predictions for unseen locations, showing an improvement of approximately 1 dB for 811
MHz and 4.7 dB for 2630 MHz.

Demetri et al. [45] introduced a method for the second approach. They utilized pixel-
based Support Vector Machines (SVMs) to analyze multispectral images acquired through
remote sensing. The automated classification of environmental types along communication
links facilitates the interpretation of observed signal attenuation. By employing SVM with
radial basis function kernels and the one-against-all strategy, they achieved an accuracy
exceeding 90%. Subsequently, this model enables automated landscape analysis per link,
leveraging the Okumura-Hata model to estimate expected received power. Validation with
over 8000 real-world samples demonstrated the automated approach’s capability to predict
signal power within an error margin of approximately 10 dBm, affirming its efficacy in
accurately characterizing signal propagation across diverse environments.

From the examined literature, it is noticeable that active measurement-based propa-
gation models offer substantial advantages for LoRa network planning and optimization.
Firstly, they leverage real-world data collected through active measurements, leading to
more accurate LoRa signal propagation predictions than empirical models. This enhanced
accuracy provides a more reliable foundation for network design and optimization efforts.
Secondly, these models exhibit adaptability across varied environments and operational
contexts. By incorporating real-world data from the specific deployment scenario, they
can produce customized propagation predictions that account for local factors. How-
ever, verifying the models” generalization capabilities remains imperative. Finally, active
measurements play a crucial role in validating and refining the models. By comparing
model predictions with empirical on-site measurements, researchers can ensure the model’s
effectiveness across different deployment scenarios, fostering continuous improvement.

4. Propagation Measurements

Most empirical propagation models use a log-distance formulation. Equation (1)
defines the path loss at a reference distance of dy, typically corresponding to the free space
loss. Several researchers adopt dy = 1 m, while others opt for values such as 100 m or
1 km [162]. For example, the SUI model employs dy = 100 m, while the Lee model sets
do = 1 km. However, these models incorporate additional losses, resulting in a path loss
PL(d ) that may diverge from that of free space. For a better understanding, we utilized
measurements from published works. Moreover, our analysis extends to the observation
that some models deviate from a log-distance trend, as revealed in prior studies. Herein,
we delve into the examination of the actual tendencies extracted from measurement data.

Many authors choose to present measurement results through graphical represen-
tations. We extracted pertinent information from these graphs to calculate the path loss.
Subsequently, we applied curve-fitting techniques to infer the parameters of Equation (2),
specifically « and B. The parameter dy was determined via Equation (4), representing the
distance at which the path loss intersects that of free space. Additionally, we determined
the parameter 1 of Equation (1) for PL(dg) = PLrs(1 m). Table 9 presents the outcomes of
this analysis with measurements acquired in outdoor environments. The results do not
include LoRa measurements because we will describe this case later. The root mean square
errors for the difference between measurements and models are denoted as RMSE and
RMSE; for Equation (2) and Equation (1), respectively.
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Table 9. Parameters derived from outdoor measurement data found in published works.
Reference Environment Range (m) f « (dB) B RMSE dp (m) PLrs n RMSE
8 (MHz) 0 (1 m) !
[163] Urban 180-8000 203 25.25 2.89 9.46 0.18 18.60 3.08 9.48
[164] Urban 100-2000 800 42.23 2.85 2.56 0.04 30.50 3.25 2.89
[161] Urban 10-1100 811 81.01 1.77 11.36 - 30.62 3.69 13.08
[111] Urban 400-16,000 820 46.58 2.54 5.62 0.001 30.72 2.96 5.88
[111] Urban 300-15,000 820 17.80 3.57 4.49 6.67 30.72 321 4.72
[165] Urban 100-2000 900 —44.96 6.26 7.34 62.7 31.53 3.53 11.61
[166] Urban 200-3000 900 55.87 2.81 4.88 0.001 31.53 3.58 541
[167] Urban 60-900 1800 88.84 1.45 7.36 - 37.55 3.36 9.32
[168] Suburban 400-1400 1800 —10.41 5.06 3.76 37.0 37.55 343 4.72
[169] Suburban 300-3800 1800 23.89 3.27 3.93 119 37.55 2.85 4.09
[170] Urban 5-4000 1800 64.48 245 11.1 107° 37.55 3.28 11.96
[171] Urban 70-1300 2000 24.06 3.35 4.13 11.7 38.46 2.81 4.57
[172] Urban 40-900 2100 22.40 3.53 3.02 119 38.89 2.90 3.65
[173] Urban 100-1400 2200 47.39 2.56 4.92 0.04 39.29 2.85 4.98
[153] Urban 60-1100 2500 34.79 3.78 8.20 2.1 40.40 3.57 8.22
[174] Rural 400-3300 3500 54.44 2.12 10.64 6 x 10710 43.32 2.46 10.66
[174] Suburban 600-6000 3500 67.44 1.81 11.09 - 43.32 2.55 11.23
[174] Urban 400-2500 3500 65.36 2.37 11.9 107° 43.32 3.12 11.98
[175] Urban 170-1100 3500 49.11 321 4.44 0.33 43.32 342 445
[176] Suburban 10-600 5800 98.41 1.20 5.98 - 47.71 3.34 9.84
Comparing  with n in Table 9, we may observe that the highest differences between
both occur when § falls below the path loss exponent of free space [161,167,176] and for
the highest B values [165,168]. Examining dy, we find ten values below or around 1 m,
four around 10 m, and two ranging from 30 to 60 m. As illustrated in Figure 1a, there
appears to be a trend of dj to increase with B. Figure 1b presents the parameter § plotted as
a function of a. This outcome reveals a linear trend, indicating a decline in 8 as & increases
and corroborating the observation of dy increasing with B. This tendency is independent
of frequency, as demonstrated in the case of the 900 MHz band. The high values of RMSE
observed in Table 9 are typically associated with a substantial spread of path loss at adjacent
points. From the d results shown in Table 9, there is no basis for the assigned values of
100 m and 1 km.
70 7
° ® Allfrequencies
60 6 900 MHz
—— All frequencies
>0 > 900 MHz
40 4
E ¢ =
- 30 3
Ll e
20 2 ° \
10 [ ] 1
°
0 omoo ® 0
2 4 6 8 60 -40 -20 O 20 40 60 80 100
B a(dB)
(@) (b)

Figure 1. Results derived from measurement data: (a) relationship between the reference distance
and 8 parameters; (b) relationship between p and «.

Some effects may not be immediately evident when comparing the results in Table 9.
Figure 2 displays specific cases of the data used to construct Table 9. The examples aim to
illustrate various situations related to the measurements found in the literature.
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Figure 2. Measurement data: (a) Walfisch et al. [111] (a« =17.80, p = 3.57); (b) Phillips
et al. [165] (a = —44.96, B =6.26); (c) Meza et al. [176] (ax =98.41, p =1.20); (d) Ibhaze
etal. [172] (« = 224, B = 3.53); (e) Thrane et al. [161] (a« = 81.01, B = 1.77); (f) Waheed et al. [170]
(o = 64.48, p = 2.45).

Figure 2a shows the measurement data acquired in Philadelphia, corresponding
to the fifth row of results in Table 9. Averaging the path loss measurements removed
small-scale fading. We may verify a good agreement with the log-distance model, as
found in several cases of measurement data. Figure 2b shows measurements taken from
the COST-231 dataset [165]. These results also follow a log-distance tendency, giving
the highest values of § and dj in Table 9. The measurement results in Figure 2c reveal
significant variability around log-distance decay. The data collection employed a van along
a designated route within the urban area of Tangud, Brazil. The parameter § determined
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by the log-distance model is 1.2, considerably lower than the free-space loss. The signal
fluctuation implies varying obstacle densities along the propagation path between the
transmitter and the receiver. Figure 2d illustrates a scenario where the path loss experiences
a notable increase during the final segment of the measurements. This divergence signifies
the inapplicability of a uniform model to all data. By curve-fitting data just to distances up
to 800 m, the root mean square error decreases from 3.02 dB to 1.1 dB, while dy diminishes
from 11.9 m to 5 m. The results presented in Figure 2e depict data obtained from a vast
area, resulting in a remarkable root mean square error related to the log-distance decay.
Consequently, the challenge arises in developing a model that accurately tracks the data,
even for the data locations. The data depicted in Figure 2f were acquired using a mobile
phone with a transmitter positioned at a height of 70 m. Notably, measurements taken
at the closest distance from the transmitter exhibit remarkably high values, resulting
in a substantially low reference distance, as indicated in the eleventh entry of Table 9.
One plausible explanation for this high attenuation is the impact of the radiation pattern,
particularly in positions near the transmitter. Figure 2f reveals distinct zones displaying
varied path loss tendencies, suggesting the employment of different propagation models
for fitting the data accurately.

The preceding methodology was applied to indoor environments, yielding the findings
presented in Table 10. These results reveal that the reference distance dj typically falls
within or below the range of one meter for indoor environments. Additionally, there is an
observable trend of decreasing 8 as a increases, albeit with a more dispersed alignment
when compared to outdoor outcomes. It is worth highlighting the elevated values acquired
when the propagation path contains multiple floors.

Table 10. Parameters derived from indoor measurement data.

Reference Environment Range (m) (M{-Iz) « (dB) B RMSE dy (m) (I; LI;S) n RMSE;
[102] Four floors 5-50 856 32.04 5.29 15.13 0.94 31.09 5.36 15.13
[177] Office 1-20 858 36.97 212 4.69 1075 31.11 2.71 5.12
[92] Same floor 1-55 914 28.01 3.58 5.48 17 31.66 3.31 5.55
[92] One floor 5-60 914 44.34 3.52 2.47 0.15 31.66 4.42 3.29
[92] Three floors 10-40 914 2.83 7.73 521 3.2 31.66 5.47 5.88
[102] Four floors 5-50 1800 46.60 5.09 18.28 0.51 37.55 5.80 18.35
[178] Three floors 3-30 2500 55.7 0.89 4.40 - 40.40 2.38 5.69
[179] Corridor 1-20 3500 47.23 227 2.85 0.03 43.32 2.64 3.20
[180] Corridor 5-45 5000 57.81 1.82 3.47 - 46.42 2.64 3.83
[181] Same floor 1-25 5300 42.10 4.25 5.47 1.6 46.93 3.80 6.07

Figure 3 illustrates several scenarios of measured data within indoor environments.
In Figure 3a, measurements were taken on the same floor, whereas in Figure 3b, the
measurements refer to data collected across four floors. The latter case demonstrates
significant fluctuations around the average, resulting in a high root mean square error, as
evidenced in the fourth line of Table 10. While a log-distance model can be employed,
incorporating losses attributed to walls and floors increases accuracy, as emphasized by
Degli-Esposti et al. [177]. Figure 3¢ depicts measured outcomes obtained in an office setting,
while Figure 3d shows results collected in a corridor.

Various authors have conducted measurements on propagation within vegetation,
providing the data presented in Table 11. The propagation range within vegetation is
notably shorter compared to outdoor environments. Another observation is that the
reference distance is around or below one meter in most cases. In such situations, the
close-in model proves to be effective, yielding a root mean square error increase below
0.6 dB. Similar to outdoor environments, there is a tendency for dy to increase with j, as
illustrated in Figure 4. From the results of this figure, it is noteworthy that some values
deviate substantially from this trend. Through representative measurement examples, we
will elucidate a reason for this divergence.
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Figure 3. Measurement data: (a) Seidel et al. [92] (a« = 28.01, B = 3.58); (b) COST 231 [102]
(a =32.04, B =5.29); (c) Degli-Esposti et al. [177] (« = 36.97, p = 2.12); (d) Al-Samman et al. [179]
(a0 =47.23, p =2.27).
Table 11. Parameters derived from measurement within vegetation.
. f PLgg
Reference Environment Range (m) (MHz) « (dB) B RMSE dy (m) 1 m) n RMSE;
[182] Forest-hill 1500-65,000 203 23.26 2.87 14.71 0.3 18.60 2.98 14.72
[127] Forest 5-1000 300 —-7.73 4.24 4.31 21.2 21.98 3.10 8.24
[140] Forest 50-280 605 52.67 2.64 3.95 104 28.08 3.75 4.59
[134] Pine 1-120 870 23.02 291 4.80 6.8 31.23 2.48 5.11
[134] Eucalyptus 1-90 870 18.84 3.72 4.06 5.3 31.23 2.96 5.06
[138] Forest 1-60 870 16.87 4.50 4.88 3.8 31.23 3.53 6.16
[135] Forest 1-400 900 8.01 3.15 4.07 0.2 31.53 3.00 4.25
[183] Forest-hill 20-2600 918 —46.62 6.50 7.38 55.0 31.69 3.80 16.84
[126] Forest 5-100 1000 21.92 3.81 4.51 3.8 32.44 3.18 5.07
[184] Plane tree 1-110 1300 36.36 2.77 3.39 0.6 34.72 2.87 3.44
[184] Common lime 1-60 1300 33.45 3.28 6.73 1.3 34.72 3.19 6.74
[132] Forest 10-300 1800 19.53 3.36 5.51 21.2 37.55 2.49 6.48
[185] Palm tree 5-50 2100 34.49 3.68 3.33 1.8 38.89 3.38 3.46
[134] Pine 1-120 2400 34.48 2.87 4.21 4.4 40.05 2.56 4.40
[186] Plum orchard 1-120 2400 42.44 2.65 3.18 0.4 40.05 2.78 3.21
[137] Apple orchard 1-30 2400 43.46 3.43 3.04 0.6 40.05 3.71 3.28
[138] Forest 1-60 2400 21.88 5.16 5.97 3.8 40.05 3.92 7.66
[187] Forest 1-100 2400 36.93 3.02 5.05 2.0 40.05 2.83 5.11
[188] Forest 5-40 2400 34.42 3.80 3.78 2.1 40.05 3.38 3.97
[189] Campus garden 20-110 2400 5.17 497 2.95 149 40.05 2.80 5.61
[190] Forest 1-150 2450 40.07 3.70 5.38 1.0 40.23 3.69 5.38

Figure 5 presents measurement results that serve to clarify the previous issues. Figure 5a
represents the measurement data employed to derive the outcomes presented in the tenth
row of Table 11. This outcome is a typical example of data following the log-distance model
with a reference distance of around one meter. Figure 5b displays measurements leading
to the highest value of dy. Figure 5c illustrates a scenario characterized by significant
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variability in data points around the trend line, emphasizing a range exceeding 60 km.
This long-range highlights the need to establish distinct models for regions exhibiting an
approximately homogeneous environment.
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Figure 4. Reference distance as a function of j.
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Figure 5. Measurement data: (a) Rogers et al. [184] (« = 36.36, § = 2.77); (b) Hejselbeek et al. [183]
(0 = —46.62, B = 6.50); (c) Jawhly et al. [182] (a =23.26, § = 2.87); (d) Phaiboon et al. [132]
(« =19.53, B =3.36); (e) Azevedo et al. [138] (a = 16.87, p =4.50); (f) Azevedo et al. [189]
(v =517, p=497).
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Let us consider the cases diverging from the expected tendency of dy. An illustrative
instance of this phenomenon is evident in the outcomes of the twelfth row of Table 11,
characterized by parameters § = 3.36 and dyp = 21.2 m. The value of dj is high for a
relatively low B. Figure 5d shows a discernible lower attenuation below 200 m compared
to values beyond this threshold. Employing the log-distance model with dual slopes yields
B = 2.41 for distances below 200 m and 8 = 3.17 for distances above 200 m. The reference
distance diminishes to approximately 4 m, aligning with the observed trend in Figure 4.

A different situation occurs for the results in rows six and seventeen of Table 11, with
the values of dg much lower than the trend. Figure 5e shows the case for 870 MHz. The
data appears to follow the log-distance model for all ranges. When comparing the results
to those of Figure 5b, the primary distinction lies in the range of measurements. Figure 5b
exhibits a range of 2600 m, whereas Figure 5e shows a significantly reduced range of 60 m.
This implies that the reference distance cannot be substantial when the range is limited.
Similar conclusions also occur for indoor environments with high attenuation in short
ranges. Figure 5f refers to the results presented in the twentieth row of Table 11. In this
case, the reference is lower than expected but exceeds that of Figure 5e because of the
extended range.

5. Propagation in LoRa Systems

The study focusing on LoRa primarily operates within the Industrial, Scientific, and
Medical (ISM) band of 900 MHz, with 868 MHz employed in Europe and 915 MHz in
North America.

5.1. RSSI, SNR and ESP

The extended range achieved in LoRa systems is due to their operation with Signal-to-
Noise Ratio (SNR) values below 0 dB. For example, a typical Semtech LoRa radio operates
with a minimum SNR value of —20 dB [191].

The study outlined in the Introduction regarding LoRa literature reveals that numer-
ous authors utilize the term Received Signal Strength Indicator (RSSI) to denote the received
signal power. RSSI serves as a measure of the received power given by the receiving radio.
However, this parameter contains both the power of the received signal and any accom-
panying noise and interference [192]. The RSSI values much lower than 0 dB essentially
mirrors the power of the noise and interference. Consequently, determining the path loss
from RSSI in such scenarios becomes impractical. To mitigate this limitation, the authors
typically sum the SNR to the RSSI to approximate the received signal power for SNR < 0 dB
and consider the RSSI when SNR > 0 dB.

Some authors advocate for utilizing Effective Signal Power (ESP) over RSS to define
the received signal power [19,193-195]. The ESP is derived from the signal-to-noise ratio
and is given by

ESP(dBm) = RSS(dBm) + SNR(dB) — 10(1+ 10*1SNR(H)) (23)
The path loss is then defined by
PL(dB) = Pr(dBm) + Gr(dBi) + Gg(dBi) — ESP(dBm) (24)

where Pr is the transmitted power, Gt is the transmitter antenna gain, and Gg, is the receiver
antenna gain.

5.2. RSSI Calibration

The RSSI is a metric given by LoRa radios to indicate the received power. Gutiérrez-
Gomez et al. [80] underscored the imperative need for RSSI calibration. In their study,
Benaissa et al. [196] noted a shift of 6 dB disparity between the RSSI reported by a LoRa radio
operating at 868 MHz and the power measured by a spectrum analyzer. Linka et al. [58]
evaluated the LoRa SX1272 chipset’s RSSI accuracy. Their findings revealed that the
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radio consistently measured values lower than those indicated by the spectrum analyzer.
Specifically, they reported a discrepancy of approximately —21 dB for a received power of
—30 dBm and roughly —12 dB for a signal strength of —80 dBm. Some studies revealed
a correlation between the RSSI and the Spreading Factor (SF) of LoRa [24,197]. A higher
SF yields a more elevated processing gain, thereby augmenting the range. However,
as the path loss should remain unaffected by the measurement system, it mandates a
calibration procedure.

To test the accuracy of LoRa radio RSSI readings, we devised an experimental setup
following the calibration procedure outlined by Ameloot et al. [198]. Utilizing the signal
generator SMC100A from Rohde and Schwarz [199] with an output power of 0 dBm as the
transmitter, we measured the received power using a spectrum analyzer FSHS, also from
Rohde and Schwarz [200]. Stepped attenuators positioned between the transmitter and the
receiver, connected via coaxial cables, regulated the attenuation introduced in the system.
We evaluated the RFM95 Adafruit LoRa modules operating at 868 MHz, housing the
5X1276 transceivers from Semtech [201], with an output power of 0 dBm and a frequency
bandwidth of 125 kHz. We measured the RSSI and SNR for three SF values, 7,9, and 12. The
corresponding receiver sensitivity was —123 dBm, —129 dBm, and —136 dBm, respectively.
Afterwards, we applied Equation (23) to calculate the ESP and subsequently compared
these results with the received power provided by the spectrum analyzer. Figure 6 shows
the outcomes. Observing this figure, it is evident that the ESP values are consistently lower
than the received power reported by the spectrum analyzer. In addition, the difference in
results is not uniform across the range of the received power, aligning with findings in [58].
This variation exhibits an almost linear trend, which facilitates that calibration procedure.
Furthermore, it is notable that the difference between received power and ESP widens with
increasing spreading factors.

Received power—ESP (dB)
AR
2

-140 -130 -120 -110 -100 -90 -80 =70 —-60 =50
Received power (dBm)

Figure 6. ESP accuracy verification.

5.3. Path Loss Measurements with LoRa Radios

Following the methodology previously employed for conventional communication
systems, we extracted the log-distance parameters from the curve fitting of LoRa measure-
ments. When analyzing the measurement results, we encountered a notable deviation from
the results outlined in Section 4. In numerous instances, our analysis of LoRa measurements
unveiled a phenomenon where the average attenuation tends to stabilize. This behaviour
typically occurs around the receiver’s sensitivity threshold. This situation can be justified
by the extended transitional region of LoRa systems, resulting in non-uniform coverage [45].
Such behaviour has the potential to skew the path loss parameters.

To address this issue, we followed two distinct approaches to derive the log-distance
parameters. Firstly, we utilized all accessible data to extract the desired parameters. Sec-
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ondly, we focused on data up to the transitional zone. This zone can be defined as either
the point where the system starts encountering packet loss or a distance where the ESP
exceeds the receiver’s sensitivity by roughly one standard deviation of the data. Table 12
presents the obtained results. As confirmed by the results of this table, the transitional
region manifests in data collected within distances spanning several kilometres. Figure 7
illustrates measurement examples to aid in comprehending some findings presented in
Table 12.

Table 12. Parameters derived from measurements with LoRa.

f All Data Below Transitional Region
Reference Environment Range (m)
(MHz) 4 (dB) B RMSE  dotm)  «(dB) B RMSE  do(m)

[86] Forest 5-100 433 7.18 597 6.31 2.8 - - - -
[88] Palm tree 10-90 433 —16.59 6.56 2.24 8.2 - - - -
[202] Suburban 250-8150 868 12.00 3.48 3.36 19.9 517 3.72 3.86 329
[17] Urban 2000-18,000 868 55.18 2.34 8.29 1077 —10.38 4.19 8.05 80.0
[203] Rural 50-900 868 30.62 3.39 2.29 1.1 - - - -
[19] Suburban 100-20,000 868 93.75 1.47 5.71 - 72.99 2.13 5.56 -
[204] Urban 80-6000 868 54.88 2.45 722 5x 107° 49.46 2.63 7.4 0.001
[20] Urban 30-6000 868 57.24 2.41 8.62 5x 1077 89.52 1.28 6.80 -
[21] Suburban 5-50 915 38.00 3.05 3.63 0.3 - - - -
[45] Suburban 900-50,000 868 39.49 2.18 3.83 2 x107° 43.51 2.05 4.02 -
[46] Urban 60-2300 868 33.18 3.24 6.76 0.69 33.74 3.20 6.96 0.62
[22] Forest 10-800 915 37.54 3.41 5.39 0.38 - - - -
[15] Campus 10-210 915 41.23 2.73 321 0.05 - - - -
[23] Rural 1-1000 868 91.79 1.87 9.96 - 83.27 2.19 10.54 -
[32] Campus 5-155 868 42.14 3.41 10.41 0.17 - - - -
[32] Rural 700-20,000 868 21.86 2.94 6.78 9.9 22.14 2.93 6.31 9.5
[33] Urban 1-15,000 868 83.48 1.45 8.81 - 59.83 2.33 12.50 3x107°
[34] Campus 50-1000 868 —4.81 5.30 13.71 12.3 —37.04 6.76 16.27 27.1
[34] Forest 40-900 868 46.04 3.63 8.85 0.12 23.18 4.68 11.38 2.0
[34] Urban 1-1000 868 100.9 1.82 7.00 - 63.29 4.22 7.47 0.04
[35] Urban 5-1000 868 72.39 1.85 4.88 - 59.14 2.57 4.07 1075
[65] Campus 50-3500 868 70.93 2.25 7.61 - 57.21 2.81 10.85 6 x 1074
[205] Indoor 10-120 868 44.81 3.82 3.32 0.18 - - - -
[81] Forest 400-2000 920 44.45 2.53 8.16 0.004 - - - -
[89] Forest 150-1000 920 33.27 2.94 9.11 0.68 - - - -

[6] Forest 60-2500 915 50.10 2.78 8.99 0.004 -3.27 475 6.63 18.5
[28] Suburban 80-1600 915 34.21 3.12 423 0.59 - - - -
[28] Suburban 80-1600 915 24.42 3.59 7.15 3.1 - - - -
[28] Suburban 800-2800 915 9.07 4.16 7.28 11.2 25.28 3.56 5.50 2.6
[28] Suburban 800-2800 915 17.42 3.89 6.82 57 18.62 3.85 6.86 5.1
[28] Suburban 500-2600 915 —0.76 4.62 8.10 17.4 23.38 3.69 6.62 3.1
[28] Suburban 500-1900 915 4.50 4.67 10.49 10.4 28.11 3.60 7.41 1.7

Figure 7a shows measurements conducted by Petdjdjarvi et al. [17] in Oulu, Finland,
utilizing an end device attached to a vehicle. The data reveal significant variability around
the average, attributed to diverse obstruction densities between the transmitter and the
receiver. The transitional region emerges above 6 km. According to the findings from
Table 12, in this scenario, the parameter dg is 10~® m when utilizing all available data to
derive the log-distance parameters. However, this value rises to 80 m when restricting
the analysis to distances up to 6 km. Remarkably, the authors noted a significant packet
loss ratio of 74% between 10 and 15 km, with only a few packets received beyond the
15 km threshold.

Figure 7b depicts the data collected in a forest environment. Once more, it is evident
that a single-slope model cannot accurately represent the data. Chall et al. [32] collected the
data depicted in Figure 7c from a rural environment. These measurements depict the path
loss variation at each position, facilitating the extraction of the small-scale fading effect.
The results presented in Table 12 for this example indicate a higher dy value compared to
the trend outlined in Figure 4. However, the authors only gathered data above 700 m and
across a wide range of distances. We observed this effect in other similar situations. The
results presented in Figure 7d exhibit significant deviation from the average, spanning from
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the free-space path loss to the limit imposed by the receiver sensitivity. Figure 7e illustrates
measurements acquired in an indoor environment [205]. The authors also determined
the variation of the received signal per position, obtaining a small-scale fading up to
approximately 10 dB. Batalha et al. [28] conducted measurements on various routes in
Belém, Brazil (Figure 7f). Focusing on data from a single route provides better insights into
various obstruction tendencies. With the gateway positioned on the roof of a 50 m building
and the end device mounted on a vehicle, significant attenuation is noticeable near the
transmitter due to antenna gain loss and potential diffraction from the building roof.
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Figure 7. Measurement data: (a) Petdjdjarvi et al. [17]; (b) Avila-Campos et al. [22]; (c) Chall et al. [32];
(d) Stusek et al. [33]; (e) Muppala et al. [205]; (f) Batalha et al. [28].
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5.4. Evaluation of Propagation Models

The objective of this section is to compare model outcomes with measurement data.
The study focused on outdoor environments due to the higher number of developed
empirical propagation models and the large number of measurement results. In most cases,
the authors collected LoRa measurements with terminal antenna heights ranging between
2 and 3 m. Therefore, we evaluated results for 870 MHz and a terminal antenna height
of 3 m. Altering the antenna height to 2 m resulted in an average attenuation decrease of
2.3 dB, with most models showing differences below 2.5 dB.

Given the fixed frequency, we undertook a comparison of the results of P;(f) from
Equation (5). As this parameter encapsulates frequency attenuation beyond free-space
loss, we anticipated some consistency in model outcomes. However, the findings reveal
significant variability, with values spanning from 0 to 45 dB and one model indicating a
value close to —40 dB.

The outdoor models of Tables 1, 3, and 4 employ distance, frequency, and antenna
heights as input parameters. We fixed the frequency and antenna height of the terminal
device (h7) and varied the gateway antenna height (#p) within the range from 20 to 150 m.
Figure 8 displays the results showing the relationship between « and B. From this figure, it
is evident the propagation models do not encompass the range of  values observed in the
measurement results. Some models assume § to be constant and limited variations in «.
Since many of these models were developed based on the Okumura—-Hata framework, they
exhibit similar trends. Notably, the SUl model demonstrates a broader range of variation
in B. The model results suggest an average effect of the measurements carried out over a
wide range of values. Another observation is that the « parameters provided by the models
are lower than those obtained from measurements. This trend suggests a higher reference
distance (dp) than that derived from measurements. It is worth mentioning that several
authors consider this reference distance to be 100 m or even 1 km. Therefore, the accuracy
of the models in estimating the received signal of a LoRa system is low.

® Measurements - LoRa
® Measurements - Outdoor

Egli model
Lee model - Rural

6 Lee model - Suburban
Lee model - Urban
= Okumura-Hata model - Urban
5 ) = Okumura-Hata model - Suburban
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Figure 8. Parameter f as a function of « for the models described in Tables 1, 3, and 4.
The outdoor models outlined in Table 5 incorporate additional input parameters. The

results depicted in Figure 9 were determined similarly to those in Figure 8, with discrete
variations in model parameters. The representation of parameter f as a function of «



Sensors 2024, 24, 3877

26 of 41

reveals similarities to those observed in Figure 8, such as several cases with a constant f.
The COST231-Walfish-Ikegami model exhibits a broader range of variation in §, potentially
due to its foundation on other models. Nevertheless, this model does not cover the range
of B < 3.8. The 3GPP model for Rural LOS demonstrates a larger variation in 8, but solely
for distances falling below the breakpoint.
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°
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Figure 9. Parameter f as a function of « for the models described in Table 5.

We have also compared the outcomes of propagation models developed for vegetation
environments with actual measurement data. Upon examination of Table 8, it becomes
clear that some models are semi-empirical, requiring the measurement of propagation
parameters within the environment, while other models extract directly these parameters
from the environment. Figure 10 depicts the correlation between « and § for the second
category of models.
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Figure 10. Parameter j as a function of « for the models described in Table 8.
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The propagation models for vegetation depicted in Figure 10 exhibit a broader range of 8
values. The Kurnaz-Helhel model, designed for pine forests, potentially indicates a departure
of a from the observed measurement results. Conversely, the Xiuming—Chunjiang model,
devised for an apple orchard, demonstrates a narrower range in . The Azevedo—Santos trunk
and the Azevedo—Santos foliage models overlap more closely with the measured outcomes.

5.5. Multi-Slope Log-Distance Model

One problem with published models based on logarithmic distance is that authors
often apply the same model to all data. This form does not consider the non-homogeneity of
the propagation environment. Figure 7a,d demonstrate the limited accuracy of employing
a single-slope model.

Several works have employed a dual-slope model [23,27,34,134,206-209], with some
considering the free-space path loss for the first region. Some other authors defended
the application of multi-slope models on cellular networks [210-214]. These authors
assert extending the log-distance path loss model to a multi-slope variant with multiple
distance-power gradients enhances its effectiveness in representing the radio channel
and its fluctuations. By considering physical characteristics, such as terrain and obstacles,
multi-slope path loss offers a comprehensive approach to modelling signal propagation in
diverse environments.

We assessed the multi-slope model using propagation measurements obtained from
LoRa systems. To interpret the significance of the log-distance parameters for each region,
we have also evaluated the parametrization of propagation results for different systems.
Interestingly, some studies have reported path loss exponents considerably lower than
those observed in free space scenarios [23,165,212]. For instance, a single-slope model
applied to data depicted in Figure 7d gives f = 1.4 when the received signal reaches the
highest attenuation values for small distances from the transmitter.

Let us examine the following example: Andrade and Hoefel [210] describe a log-distance
model for indoor environments featuring four distinct regions. The parameters of Equation (2)
defining this multi-slope model are as follows: & = 40.05, 8 = 2for1l <d < 10; 0« =
3005 B =3for10 <d <20, « = =895 B=6for20 < d < 40; « = —104.95,
B = 12 for d > 40. Figure 11a displays the results for a range from 1 to 60 m. Initially, the
model follows the free-space behaviour up to 10 m, transitioning thereafter into an almost
linear trend. The high value of § = 12 appears elevated compared to the empirical findings.
To address this issue, we approximated the region above 10 m by a linear tendency as a
function of distance, defined as model A. Here, « = 50.58 and B increases from 1 at 11 m
to 3.2 at 60 m. However, such low  values, diverging significantly from the free-space
path loss exponent, may not accurately represent real-world scenarios. Alternatively, we
propose a linear increase in  above 2 for distances exceeding 10 m as a more plausible
interpretation. Figure 11b illustrates the results, with « = 40.05 (reflecting free-space path
loss at 1 m) and 8 progressively rising from 2 at 10 m to 3.8 at 60 m (model B).

The single-slope model parameters corresponding to the data depicted in Figure 7b
are in the twelfth row of Table 12. The application of a multi-slope model segmented
into four regions to this dataset, as illustrated in Figure 12, enhanced the RMSE from
5.39 dB to 3.26 dB. However, careful consideration was necessary in extracting the log-
distance parameters. For instance, during curve-fitting for the second region, « = 137.1 and
B = —0.11 were obtained, indicating an unrealistic § value. Incorporating the initial data
point, situated approximately 10 m from the transmitter, yielded « = 34.36 and g = 3.73.
This process emphasizes the importance of considering data points near the transmitter to
characterize the model’s behaviour.

Figure 13 represents a scenario where the path loss conforms to free space propagation
in two regions and has an additional zone characterized by higher values [79]. Utilizing
the single-slope model yields an RMSE of 13.97 dB. We employed the multi-slope model,
assigning B = 2 to the regions exhibiting path loss similar to free-space propagation
and B = 3.26 to the zone experiencing higher path loss. Between zones, 8 increased or
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decreased linearly with distance. This model reduced the RMSE to 4.56 dB. As can also
be seen in Figure 13, the path loss is high for short distances from the transmitter. This
discrepancy may be due to the significant difference in transmitter and receiver antenna
heights. Excluding these distances, the RMSE was reduced to 3.10 dB.
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Figure 11. Multi-slope model example: (a) model results defined in [210] and linear approximation;
(b) parameter B as a function of «.
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Figure 12. Multi-slope model applied to data represented in Figure 7b.
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Figure 13. Multi-slope model applied to data outlined in [79].
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Several authors measured path loss across extensive areas within an environment,
grouping the data based on distance from the transmitter. In such cases, it becomes
challenging to associate the measurements with their acquisition locations. However,
in certain instances, authors have depicted data acquired along specific routes within
an environment. Figure 14a presents an illustrative example of this approach [28]. By
explicitly stating the location of the measurement campaign, the article facilitated the
examination of urban environment variations using the ‘Street View’ feature of Google
Maps. Upon inspecting Figure 14a, a distinct zone with notably high path loss values
around the transmitter becomes apparent. Modelling the path loss within this zone requires
knowledge of the measurement setup geometry not presented in the paper. Utilizing the
details of a 50 m gateway height, a terminal antenna height of 1.8 m, and the distance to the
transmitter, we applied the knife-edge method to estimate the diffraction loss caused by the
building edge. Incorporating an estimation for loss attributable to the antenna radiation
pattern, we derived an excess attenuation ranging from 20 to 30 dB around the transmitter.
These estimates align with the values depicted in Figure 14a. Upon removing this zone, a
single-slope model yielded an RMSE of 4.23 dB. Although the path loss above the previous
zone diminishes, it maintains high values. The log-distance parameters were determined
tobe a = —19.18 and B = 5.94, indicating a substantial influence of building diffraction on
path loss. Above this zone, we identified four distinct groups of path loss, characterized
by the following log-distance parameters pairs: («, 8) = (31.67, 2.90), (31.96, 3.02), (31.80,
3.15), and (31.90, 3.29). Figure 14b illustrates these results. The application of a multi-slope
model reduced the RMSE to 1.84 dB.
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Figure 14. Data measured in an urban route: (a) measurements; (b) multi-slope model.

In specific scenarios, employing a multi-slope model instead of a single-slope model
may lead to incorrect outcomes. For example, in Figure 15a, the blue dots represent data
collected from Liu et al. [65]. Above 700 m, the path loss reaches a peak due to the receiver
sensitivity (155 dB). The log-distance model parameters are shown in Table 12. Observing a
distinct slope in the transitional region, some researchers have attempted to model it using
different parameters. To delve into this matter, we utilized the « and 8 values acquired
below the transitional region to simulate path loss values. Random values, with a standard
deviation derived from the RMSE, were added to the log-distance model, resulting in the
simulated outcomes depicted in Figure 15a. Filtering out simulated values above 155 dB, we
obtained the results illustrated in Figure 15b. As we may observe, these data closely match
the measured values, reflecting the impact of packet loss on path loss in LoRa systems.
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Figure 15. Data with a great transitional region: (a) measurements and simulated results; (b) after
elimination of simulated values above a threshold.

6. Discussion and Conclusions

The categorization of propagation models often lacks uniformity among different re-
searchers. Based on this review, we identified three primary propagation models: empirical,
deterministic, and active measurements. Employing deterministic models for network
planning in LoRa systems poses challenges owing to the necessity for extensive databases
that encompass environmental parameters. While these models might find utility in areas
with limited spatial extents, the long-range achievable with LoRa makes their application
impractical. Consequently, the prevailing approach in the literature favours empirical or
active measurement models for estimating path loss in diverse propagation environments.
Active measurement models require path loss measurements to be conducted within the
specific environment where the model will be applied. On the other hand, empirical models
should incorporate parameters designed to adapt to diverse propagation environments.

From this study, we concluded that the most used empirical propagation model
to describe path loss considers the logarithmic distance decay. The log-distance model
based on the close-in form employs the parameter PL(dy), defining the free-space path
loss at a reference distance dy. Researchers have imposed this reference typically at 1 m,
100 m, or 1 km. By fixing this parameter, the model only requires the path loss exponent.
However, based on actual measurements, there is no justification for assuming a reference
distance of 1 km. The second form for the log-distance model, as described by Equation (2),
incorporates two parameters. The first parameter, , denotes the path loss at a distance of
one meter, while the second parameter, 3, represents the slope of the trend line concerning
distance. Applying this model to the actual propagation measurements has enabled the
determination of the reference distance. Additionally, the log-normal model includes a
third parameter, X,;, a zero-mean Gaussian distributed random variable accounting for
the fading effect. This parameter adds further information to the model, describing the
stochastic nature of wireless propagation phenomena.

Upon examining various empirical models for outdoor environments, we found that
most of them could be characterized using a log-distance model. Even models exhibiting
linear variations with distance are log-distance, with f increasing over distance. By em-
ploying the floating-intercept model, we can effectively determine the & and 8 parameters,
which correlate with environmental characteristics and communication system parameters.
The categorization into different terms, as proposed in our work, offers insight into the
influence of environmental parameters on path loss. For instance, let us consider the impact
of frequency among outdoor models. Using the frequency of 870 MHz typical in LoRa
applications for urban environments, we observed a wide range of values for P (f) ranging
from —39 dB to 41 dB, with an average of 12.5 dB and a standard deviation of 20.6 dB.
This dispersion of results prompts us to question whether the proposed models adequately
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account for the frequency effect on path loss. Many of these models only consider the
distance to the transmitter, the carrier frequency, and antenna heights as input parameters.
Some models incorporate additional environmental parameters primarily relevant to urban
environments, such as average building height, distance between buildings, street width,
and angle of arrival relative to the street axis. These parameters reflect the complexity of
urban propagation environments and highlight the need for more comprehensive models
for a broader range of factors.

For empirical models applied to indoor environments, we could again represent them
using a log-distance model. Typically, the input parameters from the environment include
the number of walls in the propagation path, the wall attenuation, the number of floors
in the propagation path, and the floor attenuation. These parameters collectively define «,
reflecting the initial path loss at close distances. While several models incorporate the
parameter of free space, others necessitate actual measurements to ascertain 3, capturing
the rate of path loss increase with distance within the indoor environment.

Empirical models designed for environments within vegetation initially considered ex-
cess attenuation above free-space loss rather than path loss. Consequently, several models
deviate from the log-distance model framework. However, upon analyzing measurements
used to develop some of these models, it became evident that the error incurred by sub-
stituting those models with a log-distance model is negligible. Thus, we concluded that
log-distance models could effectively replace these alternative models. Some authors have
proposed log-distance models adapted for environments within vegetation. The parame-
ters employed in these models are tree density, average trunk diameter, number of trees,
average tree loss, leaf dimensions, leaf density, height of trees without leaves, and canopy
diameter. By including these parameters, empirical models offer a more accurate approach
to modelling propagation within vegetation environments.

Active measurement models use empirical data from field measurements to character-
ize radio wave propagation environments. These models can incorporate parameters such
as path loss, shadowing, fading, and multipath effects, offering a robust framework for
assessing signal propagation. Machine learning models offer advantages over curve-fitting
models by learning patterns directly from data, outperforming empirical models in some
scenarios and requiring less feature engineering. Hybrid approaches combining machine
learning techniques with traditional propagation models or curve-fitting methods lever-
age the strengths of both approaches, improving prediction accuracy. As a result, active
measurement-based propagation models offer substantial advantages for LoRa network
planning and optimization, providing more accurate predictions than empirical models
and facilitating validation and refinement of other models. The problem associated with
active measurement propagation models is the necessity to perform measurements in the
environments, mainly for LoRa systems because of their long range. However, we can
use these procedures to obtain the main parameters employed in empirical models and to
determine how they affect path loss.

Based on our evaluation of the measurement results from published works, we have
concluded that the reference distance dy exhibits a notable increase with parameter f.
Furthermore, we found that the highest values of dy observed outdoors were below 80 m.
Conversely, indoor environments yielded lower reference distances, even for large values of
B, as measurement distances rarely exceeded a few tens of meters. We also observed these
findings in results within vegetation environments. Therefore, we have concluded that dy
should not be constant but a function of f. Our analysis revealed an inverse relationship
between « and S, too. This relationship was approximately linear for outdoor environments,
where more data were available. Considering the correlation between a and j, our study
suggests that specifying one parameter while deriving the other through a trend line could
offer a more simplified approach to developing new models.

Our study also evaluated LoRa measurements, revealing distinctive characteristics
compared to other communication systems. In contrast to many systems operating with
values of SNR above zero, LoRa can operate even with negative SNR values. This pecu-
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liarity makes RSSI inadequate to serve as the right measure of the received signal quality.
Below an SNR of 0 dB, the RSSI becomes primarily influenced by channel noise and in-
terference, often plateauing at a minimum value. In this case, we determined the ESP,
offering a more accurate measure of the received signal. Another situation found in the
literature and experiments is that the RSSI provided by LoRa radios can have high errors,
with discrepancies sometimes reaching up to 20 dB. These errors introduce considerable
inaccuracies in path loss estimations, requiring the calibration of LoRa radios to rectify
these discrepancies. The LoRa measurements documented in published works corroborate
several findings from other communication systems. However, a notable distinction lies in
the substantial transitional region observed in LoRa measurements, significantly affecting
the development of propagation models tailored to LoRa environments. We observed
deriving log-distance parameters using data below this transitional region is essential
for accurate modelling. Moreover, if the environmental characteristics remain consistent,
analyzing received sensitivity and the standard deviation of path loss could offer insights
into packet error rates. Nevertheless, more studies are required to validate this assumption.

Upon confronting existing models against LoRa measurements for outdoor environ-
ments, we concluded that most of these models yield limited results. The range of outcomes
fails to align closely with the actual data, thus rendering them inadequate for accurate
predictions. Consequently, employing such models leads to significant prediction errors in
various scenarios. Notably, only models incorporating parameters specific to the environment
demonstrate better alignment with the observed data, a trend reinforced by some results
obtained within vegetated environments. Moreover, after observation of the poor outcomes
reached with existing empirical models, some authors have resorted to tuning these models
to enhance prediction accuracy [33,35,47,54]. However, given that most empirical models are
log-distance, there is no need to tune model constants. Instead, such adjustment is an indirect
means of determining the & and B parameters of the log-distance model.

Our observations also underscored the imperative for a multi-slope model instead of a
single-slope, as revealed by numerous measurement results. Given the extensive coverage
range of LoRa systems, keeping log-distance parameters constant across all positions within
a given environment becomes unreal. Consequently, the development and implementation
of a multi-slope model becomes essential. We found that employing such a modelling
procedure reduces the prediction errors, highlighting its efficacy in capturing the nuanced
variations in signal propagation across different locations within the same region.

Modelling path loss propagation in a given environment involves determining the
three parameters of the log-normal model. However, various authors developed empirical
models using measurements aggregating data acquired in large ranges, posing challenges
for accurate model extraction. For instance, measurements acquired along a specific route
can facilitate the modelling process by providing more cohesive data. Empirical models
should incorporate environmental parameters to ensure applicability across different regions.
Machine learning techniques offer a promising avenue for evaluating the connection between
model parameters and environmental factors due to the ability to learn non-linear relationships.
Such approaches could lead to developing models that are more tuned to the environment.

It is important to note that the measurements should include the third parameter of
the log-normal model, X, which is essential for assessing the fading effect. For example,
investigating potential relationships between «, , and X,; parameters, analogous to the
correlation observed between «, , and d, can provide valuable insights. Small-scale
fading phenomena are inherently specific to each position in the environment, particularly
evident in measurements acquired within a few wavelengths. Large-scale fading accounts
for signal variation over large distances. Future advancements in propagation modelling
could benefit from considering the log-distance model as the foundation for new empirical
models. Furthermore, new measurement campaigns with LoRa systems should explore
innovative approaches to data utilization. Ultimately, research with new measurement
data should aim to uncover correlations between model parameters and environmental
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factors, elucidating the intricate relationship between the two domains and advancing our
understanding of propagation characteristics.
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