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Abstract: Loop-closure detection plays a pivotal role in simultaneous localization and mapping
(SLAM). It serves to minimize cumulative errors and ensure the overall consistency of the generated
map. This paper introduces a multi-sensor fusion-based loop-closure detection scheme (TS-LCD)
to address the challenges of low robustness and inaccurate loop-closure detection encountered in
single-sensor systems under varying lighting conditions and structurally similar environments. Our
method comprises two innovative components: a timestamp synchronization method based on data
processing and interpolation, and a two-order loop-closure detection scheme based on the fusion
validation of visual and laser loops. Experimental results on the publicly available KITTI dataset
reveal that the proposed method outperforms baseline algorithms, achieving a significant average
reduction of 2.76% in the trajectory error (TE) and a notable decrease of 1.381 m per 100 m in the
relative error (RE). Furthermore, it boosts loop-closure detection efficiency by an average of 15.5%,
thereby effectively enhancing the positioning accuracy of odometry.

Keywords: loop-closure detection; multi-sensor fusion; timestamp synchronization; feature extraction

1. Introduction

Loop-closure detection has emerged as a promising approach to addressing the chal-
lenges encountered in simultaneous localization and mapping (SLAM) [1] technology.
This technique, which holds a pivotal position in autonomous driving, augmented reality,
and virtual reality, effectively mitigates the accumulation of errors in localization and map
construction. By establishing robust constraints between the current frame and histor-
ical frames, loop-closure detection significantly enhances the practical utility of SLAM
in autonomous navigation [2] and robotics applications [3]. Consequently, it facilitates
the attainment of more precise and reliable spatial perception and navigation capabilities,
thereby playing a pivotal role in ensuring the accuracy and efficiency of SLAM systems.
Depending on the sensor employed, this methodology can be segmented into two primary
categories: vision-based and laser-based loop-closure detection [4].

Vision-based loop-closure detection techniques hinge on visual features extracted from
the surrounding environment. These features predominantly originate from scenes replete
with textures, such as the facades of buildings or road signage [5-7]. Through the utilization
of methodologies like bag-of-words modeling, the system possesses the capability to swiftly
identify candidate loop-closure frames bearing similarities to the present scene amidst
an extensive corpus of imagery [8,9]. Nevertheless, vision-based loop-closure detection
exhibits notable sensitivity to environmental alterations. For instance, when a robot revisits
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a locale under varying lighting conditions or from altered perspectives, the system might
fail to precisely recognize the loop closure due to substantial shifts in visual features. This
ultimately yields erroneous detection outcomes [10]. Laser-based loop-closure detection
methodologies exhibit enhanced robustness. These approaches generally involve the extrac-
tion of local or global descriptors from point clouds acquired through LiDAR scans. These
descriptors remain unaffected by variations in illumination and viewing angles, thereby
rendering them resilient to environmental changes. Nonetheless, laser-based loop-closure
detection faces challenges in structurally homologous environments [11], such as elongated
corridors or repetitive architectural layouts. In such scenarios, the system might erroneously
identify distinct positions as loop closures due to the descriptor similarities, ultimately
causing disarray within the navigation system and compromising localization accuracy.
To address the prevalent issues and challenges associated with vision- and laser-based
loop-closure detection, this paper presents an innovative loop-closure detection algorithm
based on the principle of multivariate heterogeneous data fusion. Its algorithmic framework
is shown in Figure 1. The present study overcomes the inherent performance limitations of
single-sensor data in specific environments. Our approach harnesses the complementary
strengths of multiple sensor data to enhance the accuracy and robustness of closed-loop
inspection. The primary contributions of this study can be summarized as follows:

(1) This paper proposes an adaptive tightly coupled framework for loop-closure detection,
named two-stage loop-closure detection (TS-LCD), achieving improved robustness
and accuracy for closed-loop detection in different environments.

(3 Aninnovative method based on the interpolation technique is proposed in this paper,
which optimizes the data processing flow and achieves timestamp synchronization.

(3) The effectiveness of the algorithm is validated through the integration of mainstream
laser odometry frameworks and rigorous evaluation utilizing the KITTI dataset.

Preprocessing of input data Loop closure detection

Figure 1. TS-LCD processing pipeline showing the LiDAR, camera, and IMU data input, prepro-
cessing, and feature extraction. The loop-closure detection module utilizes both visual and LiDAR
information for two-stage detection.

2. Related Works

Loop-closure detection holds significant importance in the domain of SLAM and has
garnered considerable research attention in recent times. References [12-14] offer diverse
algorithms for loop detection and location identification, each boasting unique strengths
in efficiency, precision, and versatility. Two loop-closure detection approaches that are
pertinent to our study are those reliant on vision and laser.



Sensors 2024, 24, 3702

30f16

2.1. LiDAR-Based Loop-Closure Detection

Loop-closure detection methods for laser sensors can be categorized into local feature-
based methods and global feature-based methods. For methods based on local feature
fusion to obtain global features, Bosse et al. [15] divided the point cloud data into regions
according to cylindrical shape and fused the average height, variance, overall roundness,
and cylindricality of the point cloud in each region to obtain the global descriptor of the
point cloud. Steder et al. [16] used the NAREF features [17] as the local features and gen-
erated a bag-of-words model through the bag-of-words vectors for keyframe retrieval.
Zaganidis et al. [18] used semantic segmentation to assist loop-closure detection for NDT
statistical maps. For the global descriptor approach, Granstrom et al. [19] utilized point
cloud rotational invariance, The authors used the statistical features of the point cloud
as the parameters of the global descriptor, such as the point cloud range, volume, etc.,
and AdaBoost as the classifier of the features to complete the loop-closure detection. LeGO-
LOAM added a loop-closure detection module based on the LOAM system and used the
construction of a KD tree for the keyframe positions to search for the closest keyframe
in the spatial location. Kim et al. [20] used Scan Context as the point cloud descriptor
for loop-closure detection based on LeGO-LOAM. Lin et al. [21] proposed a new SLAM
system that calculated the feature distribution of keyframes using a 2D statistical his-
togram for loop-closure detection. CNNs (Convolutional Neural Networks) have shown
advantages in feature extraction, so many extraction methods have adopted CNN features.
Yang et al. [22] used the PointNetVLAD network as a local feature extraction network for
loop-closure detection. They improved the classification part of PointNetVLAD, trained the
classification model for the extracted descriptors, and used cross-entropy with stochastic
gradient descent as a loss function to improve the classification results of PointNetVLAD.
Yin et al. [23] utilized the neural network LocNet to extract the global descriptors of point
cloud frames and added loop-closure detection to the SLAM system based on the Monte
Carlo localization algorithm. Zhu et al. [24] proposed the GOSMatch method, which em-
ploys semantic hierarchy descriptors and geometric constraints for loop-closure detection.
They utilized RangeNet++ to detect the semantic information of the current frame of point
cloud data, employed a statistical histogram of semantic object connectivity relations as
the global descriptor of the semantic hierarchy of point cloud frames, and finally utilized
the RANSAC algorithm for geometric validation. Vidanapathirana et al. [25] proposed the
fusion of point cloud features and a point cloud frame spatio-temporal feature network
called Locus for extracting global descriptors. The OverlapNet method [26] used pairs of
depth maps, normal vector maps, intensity maps, and semantic-type maps of the point
cloud to extract the global descriptors.

To address the lack of color and textural information in point cloud data, Zhu et al. [27]
embedded a visual sensor-based loop-closure detection method into a laser SLAM system
and proposed using an ORB-based bag-of-words model and the RANSAC algorithm to
accomplish loop-closure detection. Krispel et al. [28] proposed a global feature extraction
method that utilized fused image and point cloud features. Xie et al. [29] fused point
cloud and image global descriptor extraction methods based on PointNetVLAD, utilizing
PointNetVLAD and ResNet50 as the feature extraction methods for point cloud features and
image features, respectively, and finally obtained global descriptors by fusing these features.

2.2. Vision-Based Loop-Closure Detection

The traditional VSLAM (visual simultaneous localization and mapping) system con-
structs the global descriptor of the current frame by extracting local manual features to
complete the retrieval of loop-closure candidate frames. The loop-closure detection module
of the ORB-SLAM system [30] adopts ORB feature points as the manual features and uses
the bag-of-words model to construct the bag-of-words vector and complete the matching
of candidate frames. Due to the weak robustness of manual features, which were easily
affected by lighting, Zhang et al. [31] used a CNN to extract local features instead of manual
features. Yue et al. [32] proposed adding the spatial structure information of the feature
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points and using triangular segmentation and graph validation as geometric constraints
based on the extraction of local features using a CNN. However, the above methods cannot
obtain the semantic information or dynamic and static attributes of the feature points.

For visual loop-closure detection in dynamic environments, Wang et al. [33] con-
structed a SURF feature database of dynamic objects offline and judged the motion at-
tributes of the feature points based on the database. Migliore et al. [34] filtered static feature
points through triangulation, and Mousavian et al. [35] used semantic segmentation to
eliminate dynamic feature points, improving dynamic feature point recognition accuracy.
Similarly, in DynaSLAM [36], a dynamic feature point rejection part was added to the ORB-
SLAM2 system, rejecting dynamic object feature points through semantic segmentation
based on MaskRCNN [37] and feature point geometric constraint relations. The authors
also discussed the effects of adding image restoration to the SLAM system based on the
rejection of dynamic feature points. In a related study on scene recognition, NetVLAD [38]
improved VLAD by integrating local features to obtain global descriptors. It was suc-
cessfully introduced into deep learning models, which could be trained to obtain global
descriptors through deep learning networks. In addition, the researchers of CALC2.0 [39]
designed a CNN-based approach that integrated appearance, semantic, and geometric
information, categorizing all dynamic objects as “other” semantic attributes in terms of
semantic labels. Although the dynamic objects were unified into the “other” category in
CALC2.0, the method of generating global descriptors through deep learning networks
was still affected by dynamic region pixels to varying degrees due to the lack of image
preprocessing. To avoid the impact of dynamic scenes on the construction of global de-
scriptors, Naseer et al. [40] used a CNN to segment the image and then extracted the
global descriptors from the segmented image. Munoz et al. [41] used a network of object
recognition methods instead of a segmentation network to modify the global descriptors of
an image.

2.3. Deep Learning-Based Loop-Closure Detection

With the development of deep learning technology, learned local features have been
employed for geometrical verification in LCD (loop-closure detection). Noh et al. [42]
introduced the DEep Local Feature (DELF) approach, focusing on extracting and selectively
utilizing local features via an attention mechanism tailored for geometrical verification.
An et al. [43] presented FILD++, an innovative LCD system that leverages a two-pass CNN
model to extract both global and local representations from input images. The geometrical
verification between query and candidate pairs is subsequently conducted based on the lo-
cally learned features extracted through this process. Hausler et al. [44] proposed the patch-
level feature approach (SaliencyNetVLAD), which further optimizes the pixel-level local
features to cover a larger spatial range. Jin et al. [45] utilized the SaliencyNetVLAD method
with a newly designed facet descriptor loss, enabling SaliencyNetVLAD to extract more
discriminative facet-level local features. Jin et al. [46] proposed a generalized framework
called LRN-LCD, a lightweight relational network for LCDs, which integrates the feature
extraction module and the similarity measure module into a simple lightweight network.

Deep learning-based loop-closure detection possesses powerful feature extraction
capabilities compared to traditional methods. Deep learning models are able to extract
high-level features from complex images or point cloud data. These features are then
compared to determine whether a loop closure has occurred. However, it still encounters
some challenges in practical applications. The training and inference of deep learning
models necessitate a significant amount of computational resources, posing a challenge
for resource-limited devices. In this paper, we propose a two-stage loop-closure detection
mechanism. The accuracy and robustness of closed-loop detection are improved by utilizing
the complementary advantages of multi-sensor data.
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3. Method

The proposed TS-LCD algorithm framework is illustrated in Figure 2. The input con-
sists of LIDAR point cloud and camera image data, which undergo parallel preprocessing
to extract real-time LiDAR and visual features. The extracted features are stored in a local
map. Subsequently, by preprocessing the IMU data, the pose information of keyframes is
obtained. Further filtering and calibration of the IMU data can reduce the attitude error
of the keyframes and improve the accuracy of visual loop-closure detection. In addition,
IMU data can be used to address point cloud distortion arising from LiDAR movement.
Finally, SC (Scan Context) is employed for loop-closure frame detection and matching to
minimize false detection rates. The details of each module within the algorithm framework
are introduced in order below.

Data preprocessing Feature extraction Similarity calculation Loop Closure Output
Pre- Visual features Visualloop | ypoop Scan Context
mtegratlon frame
Svnch, ] Lidar loop
ynchronization "” e — Lidar features frame Pose Correction

Figure 2. First, timestamp synchronization is performed. Then, feature extraction is performed to
compute the similarity to obtain the selected frame after loop-closure detection, which is then further
confirmed by SC.

3.1. Preprocessing of Input Data

Since the sampling frequencies of the LiDAR, camera, and IMU are not the same,
this paper synchronizes the timestamps of the LIDAR and camera data by finding the
nearest-neighbor frames based on data processing and interpolation. The position states of
the LiDAR and camera keyframes are obtained by pre-integrating the IMU data.

3.1.1. Timestamp Synchronization

For each frame of the point cloud data, its timestamp T} is registered, and for each
frame of the image, its timestamp T is registered. The timestamps of the LiDAR and
camera are sorted separately. For each LiDAR timestamp T;, find the closest neighboring
timestamps T¢, and Tc, | in the camera timestamp sequence. If the neighboring camera
timestamps TC]. and TC]. ., are located on either side of Ty, the camera timestamp corre-
sponding to Tp, can be estimated using linear interpolation or other interpolation methods.
The linear interpolation formula is:
ch+] - ch (1)

TCESt = ch + (TLi o TC/) x TLHl - TLi

where Tc,,, is the estimated camera timestamp corresponding to Tr,. As shown in Figure 3.

10.0s §0.55 §1.05 §1.55 §2.05 §2.55 §3.0=
ust_cam/image_raw || I[[ 1111 {ITELCTRLATRLYTERTUOCTIVEO RO RN AROL RO TIOFEoA
velodyne_points | || ||||=|||||:|||||=||I||:|| i
10m00s 10m05s {om10s iom15s 10m20s {om25s 10m30s
sync/img
sync/lidar .

Figure 3. Timestamp synchronization. For data without timestamp synchronization, the camera
sampling frequency is much larger than the LIDAR sampling frequency. After performing timestamp
synchronization based on the sampling frequency of the LiDAR, the data stream of the camera is stream
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of the camera stream of the camera is interpolated and synchronized, and finally, the synchronized
timestamp is obtained at a frequency of 10 frames per second.

3.1.2. IMU Pre-Credit

The IMU acquires the acceleration and angular velocity, and the position information of
the keyframes can be obtained through the integration operation of the IMU measurements.
The sampling frequency of the IMU is much larger than the keyframe release frequency
of the image and the laser, corresponding to the red line and the green line in Figure 4,
respectively. Assuming that the two neighboring red lines correspond to moments k and
k 41, the average acceleration and the average angular velocity of the IMU during this
time period are, respectively,

4 = 5[40 (a; = bay) + 41 (B g — bay)] 2

A~ 1 ~ A
Wy = E(wk + wit1) — b, 3)

where dy and dyq are the accelerations of k and k + 1, respectively; b,, and by, are the
zero-biases; 0y and wy ;1 are the angular velocities of k and k + 1, respectively; and gy and
qi+1 are the directional state quantities (DSPs) of k and k + 1, respectively.

At moment k + 1, the position &Z’fi_l, velocity ﬁZ’fH, and attitude 'fr,l:’_‘i_l of a keyframe
can be expressed as follows:

~ 14
&%4:&?+ﬁﬁ&+ﬁn&2 4)
~b Abe |
Bi'i1 = B;" + agot ()
by by ~k ~bi 1
Te+1 = Ve © Vg1 = Yk %wkét] (©)

where Jt is the time interval from frame k to frame k + 1.

Ijllll[ﬂ{,[lll[\"lllll\"‘:[l[ll\’ IMU
y -~ - v - - A 4 ' - A 4 ~ - A 4 Til‘ne
Camera/Lidar
k k+1
IMU
v v v v v Tilne
Camera/Lidar
k k+1

Figure 4. Pre-integration of IMU data for obtaining the pose of keyframes. The red arrow indicates
IMU observation, and the green arrow indicates Camera and LiDAR observation.

3.2. Feature Extraction

Assuming that the internal and external parameters of the LiDAR and camera are
known and fixed, and their distortions have been corrected, in this paper, we adopt the
curvature extraction method defined in LOAM to obtain LiDAR features. LiDAR features
with higher curvatures are defined as LIDAR edge features P,q,, while those with lower



Sensors 2024, 24, 3702

7 of 16

curvatures are defined as LiDAR planar features Py, r. The LiDAR feature extraction
method is shown in Figure 5. The curvature calculation formula is as follows:

1
c =

| ¥ (- X5 | )
EREE e

where S is the set of consecutive points returned by the laser in the same frame and X (Lk i)
and X (Lk 0 refer to the i and k points in the point cloud of the k scan in the L (LiDAR)
coordinate system.

P, edge.
LiDAR
P surf
(a) Pegge and Pgy,r (b) An input frame (c) Lidar feature extraction

Figure 5. Each frame of the point cloud is subjected to feature extraction by calculating the curvature
of each point; lower curvatures are defined as LiDAR planar features P, and higher curvatures are
defined as LiDAR edge features Ppjg,.

For the selection of visual features, this paper calculates the autocorrelation matrix of
each pixel point in the image and then determines whether the point is a corner point based
on the eigenvalues of this matrix. Corner points are areas where the image signal changes
significantly in two-dimensional space, which typically include significant change areas
such as corner points, intersections, and textures. The visual feature extraction method is
shown in Figure 6. The expression of the autocorrelation matrix M is

M = [1Iy; L1, T;) 8)

where I and I, are the gradients of the image in the x and y directions, respectively.

(a) Different types of visual features (b) An input image (c) Visual feature points extraction

Figure 6. The image grayscale-based method detects visual features by calculating the curvature and
gradient of the points.

3.3. Deep Information Correlation

Since a single camera does not have the ability to accurately measure depth infor-
mation, only a scaled estimation of the feature point depth can be made, and the depth
estimation will be highly noisy if the number of observations of the feature point is low
or the parallax is insufficient. Within a multimodal sensor fusion framework, the depth
information of visual feature points can be optimized using the LiDAR point cloud to
improve the robustness and accuracy of the visual-inertial odometry. The depth informa-
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tion correlation module is designed to more accurately assign depths to visual features.
As shown in Figure 7, visual features are projected into the LiDAR coordinate system
through an external parameter matrix.

® [ ] Lidar point (use)
Y ® o
[ ]
®
“\‘\’ ®
iy ¥ Validate Successful ®
‘ X ® Visual feature
®
‘ 2
Lidar coordinate Failed
¢ Lidar point (unuse)

Figure 7. Deep information linkage framework process. The x, y and z axes are the coordinate system
of LiDAR respectively.

For each visual feature, the three closest LIDAR points can be selected via a KD-tree.
Depending on the depth of these points, a validation process is performed to improve
the accuracy of subsequent matching. The specific validation process involves calculating
the Euclidean spatial distances of the three nearest LIDAR points to the current visual
feature. In the experiment, if the farthest distance between the three points is less than
0.5 m, the validation is successful, and the depth can be calculated by bilinear interpolation.
Otherwise, triangulation is applied to assign depths to visual features. Figure 7 shows
the exact process of validation. The purpose of the validation process is to check whether
the points are in the same plane; if the depth difference is too large, the points may be
in different planes and therefore need to be excluded, thus reducing the possibility of
false matches.

3.4. Loop-Closure Detection

The Dbow?2 bag-of-words model is used as the basis of visual loop-closure detection
in this paper. Firstly, the feature points in the latest keyframes tracked by optical flow are
used to calculate the corresponding descriptors, which are then matched with the history
frames to search for the most compatible frames and eliminate the history frames that are
outside the time or distance thresholds with the current frame. Then, the attitude data
of the remaining historical frames are obtained, and the position relationship between
the current frame and the historical frames is optimized by the PnP (perspective-n-point)
algorithm. In order to improve the accuracy of the loop-closure constraint, the attitude
information of the current frame relative to the historical frames in the visual loop closure
is sent to the LIDAR odometer as the initial value. The LIDAR odometer searches for the
optimal match among the stored historical keyframes according to the minimum distance
principle and then matches them according to the initial value provided by the visual loop
closure to further optimize the attitude constraints, ultimately achieving high-precision
loop-closure detection results.

In addition to the optimization of visual loop-closure detection from coarse to fine,
to solve the defective view angle problem of visual loop-closure detection, as shown in
Figure 8, a low-consumption LiDAR loop-closure detection mechanism is added based
on visual loop-closure detection. The LiDAR odometer stores the position of historical
keyframes in real time, and when it detects that the positional information of the point
cloud in the latest frame is close to the historical trajectory, the loop-closure detection
mechanism searches for the historical information and performs a match. Usually, when
there is no visual loop-closure detection, this kind of LiDAR loop-closure detection method
may fail due to the large scene. However, in this paper, we use the coupling of two types
of loop-closure methods to address loop-closure detection in ordinary scenes. Through
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the visual loop closure, we aim to reduce the trajectory error under prolonged system
operation. Meanwhile, the accuracy of LiDAR loop-closure detection based on spatial
distance can be improved significantly to compensate for loop-closure failures caused by
visual perspective problems. Additionally, we introduce the SC (Scan Context) algorithm
to enhance the reliability and accuracy of loop-closure detection by precisely computing
the degree of closed-loop recognition. The algorithmic framework is outlined below.

Algorithm 1 Procedure of the proposed online solution

1: Input:
The data sequence U after timestamp synchronization is divided into consecutive
keyframes (U, Uy, ..., Uk_1), the paired observations T = {Tc,, }%, linear interpola-
tion (math.).
2: Third-party libraries:
Kalman Filter KF; Random Sample Consensus (RANSAC); Scan Context (S5C) loop-
closure detection.
: Output: The set of features for each frame of data Pyjg,, Psyrr, and Harris Feature Point.
: Initialize: Initialize keyframe database; OpenCV and PCL;
: /* Visual loop-closure detection. */
. for New keyframe T¢ in U do
if rotation Angle > 60° then
Similarity S(A, B) Calculation by S(A, B) = “ZA‘:“?/BB‘;
if S(A, B) > 0.75 then
/* Output visual loopback candidate frames TéOOP = T]EOOP */
10: else if S(A, B) <0.75 then

© ® NS U AW

11: Remove T¢;

12: end if

13:  else if movingDistance > 10.0 h then
14: Similarity calculation module;

15: if S(A, B) > 0.75 then
Loop _ TLoop */
— 'L

/* Output visual loopback candidate frames T(-
16: else if S(A, B) <0.75 then

17: Remove T¢;
18: end if

19: Remove T¢;
20:  end if

21: end for

22: /* Laser loop-closure detection. */
23: /* Laser loop closure frame T]I:OOP extraction module similar to visual. */

24: Similarity dist(Dq, D,) Calculation by dist(D;, Dy) = \/Z?:l (D1]i] — Dyi])?;
25: /* Loop-closure detection acknowledgment. */

26: for Each pair of candidate loopback frames TTI:OOP and Tcorrespond 40
27: /* 3D matrix generation module for spatial structure information SC. */
28:  for each SC do

29: /* Feature extraction module. */

30: /* Similarity calculation module. */

31: if Similarity meets the requirements then

32: /*Output loop-closure frames for optimization*/
33: else if then

34: Remove TE oop ;

35: end if

36: end for
37: end for
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(a) Overall trajectory (¢) Normal scene

Figure 8. Failure of visual loop-closure detection. The arrow indicates the direction of travel of the
vehicle.

4. Experiments

The proposed TS-LCD framework was validated on the KITTI dataset, one of the
largest publicly available datasets in the field of autonomous driving. The KITTI dataset
comprises 11 sequences with ground-truth data (sequences 00-10), spanning a total length
of 22 km and featuring a rich and diverse range of environments, including rural, urban,
highway, and other mixed scenes. In this paper, we used datasets from sequences 00, 05, 06,
and 07, which contain loop-closure data, for experimentation. To ensure a fair assessment of
robustness and accuracy, the proposed framework was validated across all KITTI sequences
with ground-truth data. The input data for these sequences consisted solely of LIDAR and
image data, and the frequencies of the LIDAR and camera were pre-synchronized to 10 Hz

using an algorithm. The root mean square error (RMSE) was calculated using EVO as an
evaluation metric.

4.1. Evaluation of Odometer Positioning Accuracy

The experimental inputs consisted of binocular camera images, LIiDAR point clouds,
and IMU data from the KITTI dataset. The primary evaluation metric of the KITTI dataset
was the average translational error (ATE), measured in terms of the drift per hundred
meters and typically expressed as a percentage. The secondary metric was the average
rotational error (ARE), measured in 1610%. LOAM is one of the best-performing LiDAR
odometry algorithms on the KITTI benchmark, and SC is one of the most widely used
loop-closure algorithms in laser SLAM applications. Therefore, in our experiments, we
selected LOAM and SC-LOAM as baselines to validate the effectiveness of the proposed
TS-LCD loop-closure framework. TS-LOAM denotes our algorithm combining TS-LCD
and LOAM.

Odometry is an essential component of SLAM, and its accuracy is primarily reflected
in the precision of trajectories without loops. Here, we compare the odometry performance
of TS-LOAM with LOAM and SC-LOAM. The quantitative comparison results are shown
in Tables 1 and 2, where TS-LOAM refers to the addition of our loop-closure algorithm to
LOAM. Compared to the baseline algorithms, TS-LOAM achieved the best performance,

with an ATE of 1.87 and an ARE of 1.13 1(C)1§gm' The ATE was reduced by an average

of 2.66 and the ARE by an average of 1.44 1813gm.
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Table 1. Translational error index of odometry localization accuracy. Unit: %.

Algorithm  Seq. No. Max. Mean Median Min. RMSE Std.
00 16.638040  6.509289  5.385290  1.038895  7.757144  4.219293
05 12.416641  3.532057 3.166770  1.007233  4.095342  2.072775
LOAM 06 17.947513  7.720748  6.196751  0.000000  8.941244  4.509534
07 1511218  0.673462  0.676061  0.210234  0.708818  0.221072
Avg 12158353  4.608889  3.856218  0.564091  5.375637  2.755669
00 13.155136  3.725957  3.023545  0.752738  4.460252  2.451753
05 3.872862  1.741009  1.572590 0.778893  1.891268  0.738771
SC-LOAM 06 13.888364  6.792742  5.920660  0.000000  7.505593  3.192583
07 1.639146  0.657002  0.678615 0.208712  0.700873  0.24407
Avg 8.138877  3.229178 2798853  0.435086  3.639497  1.656794
00 3.209416  1.317889  1.246500  0.296522  1.437708  0.574607
05 2.788561  1.039795 0.937344  0.222877  1.153234  0.498775
TS-LOAM 06 7.316305  3.818756  3.747921  0.000000  4.198256  1.744263
07 1.182524  0.658270  0.638349  0.149834  0.683565  0.184231
Avg 3.624202  1.708678  1.642529  0.167308  1.868191  0.750469

Table 2. Rotational error index of odometry localization accuracy. Unit: 18.%.

Algorithm  Seq. No. Max. Mean Median Min. RMSE Std.
00 7572816  2.861219 3293702  0.052028 3.371129  1.782677
05 5.962009 2.606564  3.083750  0.012628  3.052875  1.589298
LOAM 06 5957210 2.001717  0.118190  0.015152  3.184903  2.477243
07 6.893125 2.783081  3.128018  0.036888  3.337638  1.842359
Avg 6.596290 2563145 2405915 0.029174 3.236637  1.922894
00 6.944201 1.683658 1.900435 0.026070  2.014907  1.106863
05 4717202  1.533127 1.627286  0.010259  1.824622  0.989327
SC-LOAM 06 5.536863  1.086076  0.095882  0.014956  1.696411  1.303168
07 5404435 1.694663  1.642660  0.024214  2.054873  1.162161
Avg 5.650675  1.499381 1.316566  0.018875  1.897703  1.140380
00 4492446  1.024355 1.004043  0.004296  1.272371  0.754736
05 3.267100  0.914836  1.012487  0.001205  1.110065  0.628745
TS-LOAM 06 2954673 0913674  0.142899  0.007247 1.460142  1.138953
07 1182524  0.658270  0.638349  0.149834  0.683565  0.184231

Avg 2974185 0.877784  0.699445 0.040646 1.131535 0.676667

4.2. Comparison of Odometer Trajectory and Ground Truth

To further analyze the advantages of the proposed framework, a qualitative anal-
ysis was conducted using sequences 00, 05, and 07. The results are shown in Figure 9.
In these scenarios, TS-LOAM demonstrated superior performance compared to both LOAM
and SC-LOAM. When compared to the ground-truth trajectory, the improved accuracy
of TS-LOAM was evident on end-to-end drift constraints, primarily due to the second-
order loop-closure detection strategy. The green rectangular boxes mark the areas where
TS-LOAM showed significant improvements. Both LOAM and SC-LOAM exhibited no-
ticeable drift, while TS-LOAM consistently maintained alignment with the ground-truth
trajectory, proving the high robustness of the proposed algorithm.
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Figure 9. Plot of odometer trajectories versus ground truth using KITTI 00, 05, and 06 datasets.
As seen in the figure, our proposed algorithm outperformed the two baseline algorithms in every
position due to our second-order loop-closure matching mechanism.

4.3. Experimental Validation Using an Unmanned Vehicle

The unmanned vehicle experiment used an unmanned vehicle equipped with a 16-line
LiDAR (RS-Helios 16), a six-axis IMU (HFI-B6), and a binocular camera (Astra Pro). The ex-
periment was conducted in a campus setting, with the experimental equipment shown in
Figure 10a. We selected a circular route around the parking lot in the campus environment
for experimental analysis. Figure 10b shows the projection of the traveling trajectory of the
unmanned vehicle on the satellite map.

Figure 11a shows the data trajectory information from the SC-LOAM operational
experiments. Failure to detect the loop closure while traveling the closed-loop section
resulted in a shifted trajectory. The algorithm proposed in this paper (TS-LOAM) is shown
in Figure 11b after integrating visual loop closure. It accurately detects the loop closure
and optimizes the trajectory. By comparing the performance of the traditional SC-LOAM
algorithm with the TS-LOAM algorithm proposed in this paper, the effectiveness of the
two-stage loop-closure detection system in optimizing unmanned vehicle trajectory offsets
is verified.

4.4. Loop-Closure Detection Performance

The performance of SLAM loop-closure detection is conventionally appraised by two
primary metrics: precision and recall. Precision pertains to the proportion of genuinely
detected loops among all the loops identified by the system, as exhibited in Table 3. In con-
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trast, recall denotes the likelihood of a genuine loop being accurately detected within the
system. The calculation formulas are as follows:

TP

Presion = TP+ EP )
TP
Recall = TP—{——F]\] (10)

HERTATM @

Figure 10. Unmanned vehicle experimental platform and experimental site. (a) Experimental platform;
(b) Experimental site. The experimental site location is the Digital Building in Zhongshan City, China.
The green color is the experimental track of driving.
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Figure 11. Comparison of trajectory information. (a) SC-LOAM trajectory; (b) TW-LOAM trajectory.

Table 3. Evaluation of loop-closure detection parameters.

Algorithm Judgment\Factual Truth Value Be Looped No Loop

Be looped True Positive False Positive
No loop False Negative True Negative




Sensors 2024, 24, 3702

14 of 16

References

The loop-closure detection experiments used the publicly available dataset KITTI to
evaluate the performance of loop-closure detection and compare it with the loop-closure
results of SC-LOAM. The loop-closure detection scheme based on multi-sensor fusion
exhibits higher robustness and can more accurately screen out the candidate loop-closure
frames. As shown in Table 4, the algorithm improves the accuracy of loop-closure detection
by 16.7% and recall by 14.3% relative to the SC-LOAM algorithm.

Table 4. Comparison of loop-closure detection results.

SC-LOAM TS-LOAM
Dataset
Accuracy Rate Recall Rate Accuracy Rate Recall Rate
00 5/5 5/7 6/6 6/7
Our data 0/1 0/1 1/1 1/1

5. Conclusions

This paper proposes a framework for a loop-closure detection algorithm based on
multi-sensor adaptive tight coupling, aiming to achieve accuracy and effectiveness in loop-
closure detection. The proposed framework addresses the issue of mismatched visual loop
frames and laser loop frames due to different sampling frequencies between LiDAR and
cameras by utilizing data processing and interpolation techniques. Additionally, to enhance
the accuracy of loop-closure detection, a second-order loop-closure detection scheme is
introduced. To validate the robustness and accuracy of the proposed framework, extensive
experiments are conducted on the KITTI dataset. The results demonstrate that compared to
existing methods, the proposed TS-LCD and TS-LOAM framework significantly reduces
the absolute translational error (ATE) by an average of 2.76% and the absolute rotational
error (ARE) by 1.381 m/100 m. In addition, it improves closed-loop inspection efficiency
by an average of 15.5%. In future work, we plan to incorporate deep neural networks for
semantic segmentation of point cloud data within the existing algorithm framework and
construct point cloud semantic graph descriptors using graph models.
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