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Abstract: By integrating sensing capability into wireless communication, wireless sensing technology
has become a promising contactless and non-line-of-sight sensing paradigm to explore the dynamic
characteristics of channel state information (CSI) for recognizing human behaviors. In this paper, we
develop an effective device-free human gesture recognition (HGR) system based on WiFi wireless
sensing technology in which the complementary CSI amplitude and phase of communication link are
jointly exploited. To improve the quality of collected CSI, a linear transform-based data processing
method is first used to eliminate the phase offset and noise and to reduce the impact of multi-path
effects. Then, six different time and frequency domain features are chosen for both amplitude and
phase, including the mean, variance, root mean square, interquartile range, energy entropy and power
spectral entropy, and a feature selection algorithm to remove irrelevant and redundant features is
proposed based on filtering and principal component analysis methods, resulting in the construction
of a feature subspace to distinguish different gestures. On this basis, a support vector machine-based
stacking algorithm is proposed for gesture classification based on the selected and complementary
amplitude and phase features. Lastly, we conduct experiments under a practical scenario with one
transmitter and receiver. The results demonstrate that the average accuracy of the proposed HGR
system is 98.3% and that the F1-score is over 97%.

Keywords: human gesture recognition; WiFi-based wireless sensing; channel state information

1. Introduction

With the ongoing development of information and communication technology, human-—
computer interaction (HCI) has become an emerging paradigm, within which human
gesture recognition (HGR) plays a significant role [1,2]. Thus, how to develop an efficient
and robust HGR system that can recognize the gestures captured by diverse devices and
map them to the specific commands is a critical issue. Because human behaviors can
greatly affect the wireless propagation environment, wireless sensing technology based
on WiFi, which captures the dynamic characteristics of WiFi channels to analyze the
human behaviors, is a promising paradigm. It integrates sensing capability into wireless
communication, and shows potential to realize contactless and non-line-of-sight (NLoS)
sensing while protecting privacy. In this paper, we aim to design an efficient device-free
gesture recognition system based on wireless sensing technology.

For HGR, most existing research works can be categorised into methods based on
visual, sensor, or wireless sensing. By deploying cameras to capture gestures, vision-
based HGR systems, i.e., Leap Motion [3] and Kinect [4], can achieve a high accuracy in
detecting human behaviors. However, the line-of-sight (LoS) requirement and the privacy
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leakage issue restrict the application scenarios of vision-based methods. In sensor-based
methods, i.e., Wiimote [5], dedicated sensors are equipped to capture hand movements.
However, this can be inconvenient due to the requirement of human cooperation, and
energy supply remains a great challenge for sensor based methods. Among wireless sensing
based methods, mmWave is characterized by its high frequency and strong anti-jamming
ability [6,7], allowing it to be applied for human gesture recognition. However, high signal
attenuation and the requirement for specialized hardware units limit its application for
human gesture recognition. Recently, WiFi-based wireless sensing technology has attracted
much research attention due to its advantages of passive and NLoS sensing capability and
independence from the lighting environment [8-10].

An HGR system called WiGest was proposed in [11], which explored the fluctuating
characteristics of the received signal strength indicator (RSSI) to recognize seven gestures
and then control a media player application. Compared with RSSI, the channel state
information (CSI) can provide more useful information to unveil the impact of human
gestures on wireless channels. CSI amplitude is exploited in the WiGeR system proposed
in [12], where an effective segmentation algorithm based on wavelet analysis and short-
time energy was also proposed. Similarly, WriFi, proposed in [13], uses the energy of the
CSI amplitude based on the fast Fourier transform (FFT) to continuously detect air writing
gestures. In addition to the CSI amplitude, the fine-grained CSI phase can be used for HGR
system. In [14], the time and frequency features of the CSI phase were explored in the
proposed PWiG system. WiADG, proposed in [15], constructs CSI frames as the input data
of the classifier based on the phase difference among the receiving antennas, then uses a
convolutional neural network (CNN)-based classifier to extract the most discriminative
features from the CSI frames for to mapping to a domain-invariant latent feature space.
In [16], a novel approach for converting CSI data into images and inputting them to a 2D-
CNN was proposed, resulting in improved recognition accuracy. The authors validated that
attention-based bidirectional long short term memory (BiLSTM) could be further exploited
to improve system performance. In [17], an attention mechanism-based BiLSTM model
was proposed for passive human activity recognition using CSI signals. In this approach,
representative features are learned through BiLSTM, after which different weights are
assigned to the learned features through the attentional mechanism. Experiments validated
the effectiveness of this model. These works exploit either the CSI amplitude or phase to
realize the gesture recognition. Thus, it seems natural to utilize the amplitude and phase
jointly to improve the recognition accuracy. To achieve this, an HGR system called WiGrus
was proposed in [18]. In this approach, the phase and amplitude features are extracted
based on two feature extraction mechanisms, then combined to form a feature space.
In addition, a two-stage random forest algorithm was proposed for gesture recognition.
Meanwhile, an embedded approach can be used to address the sensitivity of the CSI over
multiple subcarriers. The accuracy can be guaranteed only if the feature selection classifier
is also used for new data samples. In fact, the CSI amplitude and phase are complementary
to each other [19], which means that their sensitivities to human gestures can mutually
cancel. To the best of our knowledge, this complementary characteristic has not yet been
fully exploited for HGR systems, especially concerning diverse sensitivities of CSI over
multiple subcarriers, which motivates our present work.

In this paper, we study a WiFi sensing-based human gesture recognition system con-
sisting of modules for data collection, data processing, feature extraction and selection,
and training and gesture recognition. To improve the quality of the original CSI amplitude
and phase, operations for eliminating the phase deviation based on a linear transform
and removing abnormal data and background noise are successively conducted in the
data processing module. Then, in the feature extraction and selection module, six time
and frequency domain features which can effectively describe the CSI in terms of the
sample data distribution, frequency band distribution, and spectral structure are chosen,
namely, the mean, variance, root mean square (RMS), interquartile range (IQR), energy
entropy (EE) [20], and power spectral entropy (PSE) [21]. This greatly reduces the system’s
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computation time while preserving the original sample’s separability. To select the feature
subspaces from a large number of features, the filtering method, which is widely adopted
in feature selection [22], is utilized to remove irrelevant features. Meanwhile, the feature
reduction method is used to remove redundant features. Feature selection and reduction
can effectively reduce the complexity of the algorithm while guaranteeing its performance.
Furthermore, we propose a classification fusion estimation scheme based on a stacking
algorithm that jointly exploits the complementary CSI amplitude and phase. Our experi-
mental results validate the performance of the proposed HGR system. In summary, the
main contributions of this paper are as follows:

* A WijFi-based gesture recognition system in which the complementary CSI amplitude
and phase are jointly exploited for the classification fusion estimation.

*  Animproved Fisher method for feature selection which incorporates the distances
among category centers to calculate the Fisher score, effectively avoiding misunder-
standings caused by the overlap between different categories.

¢ A classification fusion estimation approach based on a stacking algorithm which in
which the CSI amplitude and phase models are trained separately, then a meta-model
is constructed to exploit the complementary characteristics of the phase and amplitude.

*  Our experiments show that the average accuracy of the proposed HGR system is 98.3%.

The rest of this paper is organized as follows: Section 2 reviews related research
works on wireless sensing and gesture recognition, especially WiFi sensing based gesture
recognition; Section 3 presents the details of the proposed device-free gesture recognition
system, including overview framework, data collection, data processing, feature extraction
and selection, and training and gesture recognition; Section 4 presents the experimental
evaluation; finally, Section 5 discusses limitations and challenges and concludes the paper.

2. Related Works

In this section, we review the extensive existing research works on WiFi-based wireless
sensing and gesture recognition, especially WiFi-based gesture recognition technology.

2.1. WiFi-Based Wireless Sensing

In 2000, Bahl et al., firstly exploited the received signal strength (RSS) of WiFi sig-
nals to design an indoor positioning system [23]. This was the pioneering work utiliz-
ing WiFi signals for wireless sensing operation. Subsequently, the use of WiFi signals
for human behavior recognition has attracted much research attention, including the
detection/recognition/localization of indoor persons [24-29], identification of human
gestures [10,18] and human falls/activities/language [9,30,31], and more.

In [32], NLoS sensing of human actions was achieved by collecting WiFi signals and
analyzing the Doppler frequency shifts (DFS). Zhou et al. exploited RSSI to detect the
presence of indoor people in [29], in which their proposed scheme first introduced the
concept of omnidirectional passive human detection. In [33], a CSI tool was released to
greatly facilitate the acquisition of fine-grained CSI data from commercial WiFi network
interface cards (NICs), enabling more fine-grained identification than with coarse-grained
RSS and RSSI. To recognize human gestures, a gesture recognition system called Wikey
was proposed in [34] which recognized 37 keys on a computer keyboard. A language
detection system called WiHear was proposed in [30]. The authors showed that WiFi
signals could determine what a person was saying by building a verbal model for each
syllable. In [31], a human fall detection system called WiFall was developed, exploring
finer-grained CSI to aid in health monitoring of elderly persons. The complementary
characteristic of the CSI amplitude and phase was demonstrated in [19], where it was
utilized to eliminate “blind spots”. In general, WiFi-based wireless sensing technology
has become a promising paradigm for human behavior sensing and recognition. It has
been deployed for various applications, including NLoS sensing, omnidirectional passive
detection, fine-grained signal acquisition and recognition, and and exploration of various
human behavior recognition systems.
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2.2. Gesture Recognition

Gestures can come from actions of all parts of a person’s body, but generally refer
to actions of the face and hands. Humans can use simple gestures to control or interact
with devices, enabling computers to understand human behavior. Generally speaking,
gesture recognition schemes can be divided into three categories: wearable sensor-based
methods [35,36], vision-based methods [37,38] and WiFi-based methods [39-41].

2.2.1. Wearable Sensor-Based Methods

Wearable sensor-based gesture recognition techniques are mainly used to achieve
gesture recognition by attaching sensors (such as acceleration sensors [42]) to the human
body and collecting relevant motion information [43]. Despite the low cost of acceleration
sensors and their easy large-scale application, sensors embedded in sensory gloves which
directly adhere to the skin of the hand have gained the most attention thanks to their ability
to collect more accurate hand movement data. Sensory gloves equipped with bending
sensors and inertial sensors can be worn to sense hand movements and enable gesture
recognition, as in [44,45]. Compared to acceleration sensors and sensory gloves, electromyo-
graphy (EMG) signals can reflect subtle changes in human muscle movement, enabling
the recognition of more refined and complex gestures, as in [46,47]. More interestingly,
activity recognition can be achieved through sensors integrated into smartphones. In [48],
acceleration, gyroscope, and magnetometer data from a cyclist’s smartphone were obtained
through a sensor logger, then a 1D-CNN-BiLSTM model based on an attention mechanism
was used to detect the cyclist’s activity. Although the sensor-based gesture recognition
approach can accurately recognize movements, it requires users to wear special sensors,
resulting in poor user comfort.

2.2.2. Vision-Based Methods

Early work has provided a solid foundation for gesture recognition using dedicated
cameras [49,50]. Computer vision-based gesture recognition technology usually involves
cameras deployed to acquire images or videos containing gesture information. After pro-
cessing the resulting images via denoising and segmentation, the features of the gestures in
the image are used for training. Gesture recognition in images or videos can be realized by
techniques such as pattern recognition, as in [51,52]. Although vision based gesture recog-
nition does not require the user to wear any sensors, it has specific brightness requirements
and cannot work in the dark. In addition, vision-based gesture recognition only works in
LOS scenarios, and invades the user’s privacy.

2.2.3. WiFi-Based Wireless Sensing Methods

Compared with the above two methods, commonplace WiFi technology has been
exploited for wireless sensing due to its ubiquity, low cost, and easy scalability. The CSI of
communication links under specific scenarios can be acquired by widely deployed WiFi
devices. The CSI features can then be further extracted and used for training to unveil the
effects of diverse human gestures on WiFi channels for full human gesture recognition.
For example, WiGAN [53] removes noise and extracts amplitude features, then uses a
generative adversarial network to generate new signals that resemble the training data
for each gesture. The discriminator compares the generated signals with the real signals
to determine specific gestures. In [54], a novel motion pause buffer was proposed to ad-
dress issues caused by short gesture pauses. The CSI is captured for different gestures,
then the gesture segments are extracted by detecting the change of the preprocessed CSI
amplitude. Subsequently, the CSIs of multiple antenna pairs were combined to construct a
gesture image, allowing the gesture recognition problem to be transformed into an image
classification problem. A fine-tuned CNN model was then used to extract the high-level
features from the gesture images, which were in turn exploited to recognize the gestures.
WiHGR [55] adopts a sparse recovery method to identify the primary propagation path
of WiFi channels, based on which it constructs a phase difference matrix by computing
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the phase difference between the primary propagation paths of adjacent receiving anten-
nas. Subsequently, an improved attention based bidirectional gated recurrent unit (BGRU)
network is exploited to extract features and perform training from the phase difference
matrix. A lightweight few-shot learning network called WiGR was proposed in [56] to
address the problem of hard domain shift, consisting of a feature extraction subnetwork
and a similarity discrimination subnetwork. The learning network introduces lightweight
and efficient blocks to reduce computational complexity and achieve high performance.
The feature extraction subnetwork uses a 2D convolutional kernel to simultaneously extract
the spatial features and temporal dynamics of the CSI phase filtered by finite impulse re-
sponse. The similarity discrimination subnetwork utilizes a learning-based neural network
as the similarity measurement method to determine the gestures. Furthermore, the authors
created a CSI-domain adaptation dataset containing CSI traces with various domain factors
to simulate real-world scenarios. In [57], a method based on higher-order statistics was
proposed to extract third-order cumulant features from original CSI data. In this method,
feature extraction is performed directly from the CSI by introducing third-order cumulant
estimation, with a multi-level Support Vector Machine (SVM) classifier with radial basis
function (RBF) kernel theb used for gesture recognition. A robust device-free number
gesture recognition approach was proposed in [58]. First, phase calibration and prepro-
cessing were performed on the collected CSI. Second, the amplitude difference is used to
detect gesture segments, as the CSI amplitude difference provides a better basis signal than
the phase difference for recognizing gesture transition endpoints. After normalizing the
amplitude and phase of the three antennas, their average is used as the input for feature
extraction, with a four-layer deep learning model deployed to extract features. Finally,
the features are used as input to the classification model to achieve device-free number
gesture recognition. Wi-SL [59] is a gesture recognition method based on the CSI amplitude
and phase difference in which the normalized amplitude and phase difference covariance
matrices are extracted and then combined as features. In [60], a novel classification model
was proposed to recognize driver gestures for vehicle infotainment system applications by
exploiting sparse representation-based classification and a variant of the k-nearest neigh-
bors algorithm. First, the proposed method linearly calibrates the measured CSI phase,
filters the measured CSI amplitude, then detects gesture segments based on the variance
of amplitude and phase. Second, PCA is used to extract the second, third, and fourth
principal components from the subcarriers. Finally, six statistical features are extracted
from the principal components, then six phase features and six amplitude features are
combined into a feature vector, which forms the input data used by the classification model
to realize driver gesture recognition. In summary, the gesture recognition approach based
on WiFi wireless sensing shows great potential in terms of NLoS and contactless sensing
capability. The CSI of WiFi communication links consists of fine-grained information,
and is being increasingly exploited by gesture recognition techniques thanks to its more
sensitive to environmental changes; however, a lack of sample feature space selection and
the complementary characteristics of the CSI amplitude and phase restrict the recognition
performance. In this paper, we aim to develop a device-free gesture recognition system
that can exploit the complementary characteristics of the CSI amplitude and phase, along
with a corresponding classification fusion estimation algorithm.

3. Human Gesture Recognition System Based on Wireless Sensing
3.1. Framework Overview

In this paper, we develop a device-free HGR system based on WiFi sensing technology,
as illustrated in Figure 1. The HGR system consists of four modules: data collection, data
processing, feature extraction/selection, and gesture trainning/recognition. In the data
collection module, dedicated sensing devices are not necessary, and the universal WiFi
transceiver is explored to measure and collect the CSI (including complementary amplitude
and phase) under different gestures scenarios. Then, to improve the quality of CSI data,
some processing operations are conducted, i.e., deleting abnormal data and denoising
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On this basis, six features of CSI data in the time and frequency domains are taken into
account and a feature selection algorithm is investigated. Finally, a classification algorithm
is proposed to train and recognize human gestures. All symbols and notations used in this
paper are listed in Table 1.

Feature Extraction
and Selection

Training and
gesture recognition

Data Collection

Data Processing

Feature
selection

The CSI test data
after feature
processing

Extraction of time__
Amplitude domain features
Remove

abnormal —> Denoising l

@ CSItool Extract CSI

Linear

and phase . —> data values Extraction of
ase transformation . Feature Trainin; Model Gesture
Ll frequ;l;tt;\’l r‘i‘:mam_ redu::tion set ¢ training recng:lition
Figure 1. The proposed HGR system framework.
Table 1. Definitions of symbols and notations.
Symbol Definition Symbol Definition
H(#) The CSI at time ¢ Hi £(8) The CSI of the i-th transceiver antenna pair in

The transmitted and received frequency signals
of the i-th transceiver antenna pair in the f-th
subcarrier at time ¢

The measured CSI phase of the i-th transceiver

Ai(t), @if(t)

the f-th subcarrier at time ¢
The amplitude and phase of H; ¢(t)

The subcarrier index varying from —28 to 28 in

Pif (t) antenna pair in the f-th subcarrier at time ¢ kf IEEE 802.11n
N The number of (FFT) window points 5(4) The.t1me of.fset between the transmitter and
receiver at time ¢
B(t) The unknown phase offset at time ¢ Z(t) The noise 1ptr0duced by the measurement pro-
cedure at time ¢
The two variables introduced to realize the lin-
a;(t), b;(t) ear transformation of the i-th transceiver an- The total number of subcarriers

tenna pair at time ¢

The calibrated CSI phase of the i-th transceiver

The mean and variance of the i-th transceiver

@i f(t) antenna pair in the f-th subcarrier at time ¢ pif(t),0if(t)  antenna pair in the f-th subcarrier at time ¢
under the window
The CSI phase or CSI amplitude of the i-th
x; f(t) transceiver antenna pair in the f-th subcarrier W The time series window size
at time ¢
my The length of CSI data samples thr The threshold value
w0, Wy 3\71:‘3] gétgg;zlfgcai‘e]iit coefficients and processed ¢i(t) The i-th IMFs
E The total energy of all IMFs Ei, pi The energy and energy percentage of ¢;(t)
X(ewr) The FFT on A; ¢(t) or ¢; ¢(t) wi The frequency point at time ¢
N’ The number of frequency points of the FFT P(wy) The PSD
Pt The PSD distribution function Sy(fi) The inter-class scatter of i-th feature f;
g (F) The intra-class scatter of k-th class of gesture FS(f)) The Fisher score of the whole feature dataset at
B samples under i-th feature f; ! the i-th feature f;
ne The number of instances of all gesture samples ¢ The number of gesture types
. The mean of all samples under the i-th fea- ( 5(1()) 2 The variance of the k-th class of samples under
Hi ture f; i the i-th feature f;
B The value of the j-th sample in the k-th class of NewS, (f;) The inter-class scatter of i-th feature f;

ij

samples taken under the i-th feature f;

after correction
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Table 1. Cont.

Symbol Definition Symbol Definition
K (k) The means of the samples of k-th and k' -th _— The number of gesture samples of k-th and
Hio class under the i-th feature Tk k -th class
) The number of k-th and k -th class of gesture ]
n]((;(), samples that takes the same value under the O]((;), The cross coefficient under the i-th feature
i-th feature
NewFS(f;) The improved Fisher score at the i-th feature f; F The data set of features after feature selection
e The number of selected features eq The? e1genvalges and eigenvectors of the co-
variance matrix
m The number of folds in stacking algorithm Dphases Damp Dataset of CSI phase and amplitude
aqi, Yd,i Amplitude feature vector and gesture label PdirYd,i Phase feature vector and gesture label
Cphases Sphase  Primary phase learner parameter Camp, Samp Primary amplitude learner parameter
Csecy §sec Secondary learner parameter SVM-Stacking classification model
D;th) ase” Déi,)w Training dataset of CSI phase and amplitude D;(:Z)ﬂ - D[(,z,;)p Validation dataset of CSI phase and amplitude
I The primary phase model and the primary
"y The number of validation dataset Lphases Lamp amplitude model
Dewe The secondary model training set PP phases Preans The phase model and amplitude model proba-

bility estimation vector

3.2. Data Collection

The external environment greatly affects the channel conditions of communication
links. Wireless sensing technology can be used to reveal and distinguish the factors that
cause the dynamic characteristic of wireless channel, by collecting and analyzing the CSI
data under different scenarios, e.g., different gestures.

The hardware unit of data collection consists of a WiFi access point (AP) and a mobile
terminal with multiple antennas. When the AP is transmitting its information, the terminal
is able to receive the radio frequency (RF) signals, then estimate and collect the correspond-
ing CSI. In general, orthogonal frequency division multiplexing (OFDM) is exploited in
WiFi, which means that the actual transmission channel consists of multiple orthogonal sub-
channels with different frequency bands (i.e., subcarriers). Therefore, the CSI is the channel
frequency response (CFR) between each pair of transmitting and receiving antennas over
30 OFDM subcarriers. For example, when the AP and mobile terminal are deployed with
one and three antennas, respectively, the CSI can be expressed as a 3 x 30 matrix, i.e.,

Hyi(t) Hip(t) -+ Higo(f)
H(t) = | Ha(t) Hap(t) --- Hazolt) |, (1)
Hs1(t) Hsa(t) -+ Hagol(t)

where H(t) is the CSI at time t and H; ¢(t) is the CSI of the i-th transceiver antenna pair in
the f-th subcarrier at time t. Meanwhile, H; ¢(t) is rewritten as

Y (¢ -
Hif(t) = le((t)) = A f(£)elisD), 2

where X; ¢(t) and Y; ¢(t) denote the transmitted and received signals, respectively, while
Ajf(t) and g; ¢(t) are the amplitude and phase of H; f(t), respectively. Because the theoreti-
cal channel model of CSI has been extensively discussed in [61,62], we do not repeat it here.

3.3. Data Processing

Because the received signals are affected by the background noise and frequency shift,
there are several important issues that need to be addressed for the collected CSI, e.g., phase
deviation, abnormal data, and noise, before the original CSI can be used for the recognition
procedure. To address this, a number of essential processing operations are performed.
Accordingly, the collected CSI phase is first processed to eliminate phase deviations, then
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the CSI amplitude and phase are processed by deleting abnormal data and eliminating
background noise.

3.3.1. Eliminating Phase Deviation

Usually, deviation exists between the true CSI phase and the measured phase. To
improve the recognition accuracy, it is necessary to eliminate this CSI phase deviation. As
presented in [63], the measured CSI phase of the i-th transceiver antenna pair in the f-th
subcarrier is provided by

k
91,0 (1) = @i p(t) = 2750(8) + B(E) + Z(1), ©)

where @; ¢(t) is the true phase, J(#) is the time offset between the transmitter and receiver,
B(t) is the unknown phase offset, Z(t) is the noise introduced by the measurement proce-
dure, ky is the subcarrier index varying from —28 to 28 in IEEE 802.11n, and N is the number
of (FFT) window points. Essentially, the components §(t) and B(t) can be eliminated via
linear transformation. To realize this, we define two variables a;(#) and b;(t) as follows:

ai(t) = (Pi,n(lfz :Z’li,l(f) _ Gl’i,n(kti :Z)li,l(t) B %50), )
L o(t
S PILCE wHCRS st} ®
= =]

where 7 is the total number of subcarriers. According to the IEEE 802.11n protocol, the
frequencies of the subcarriers are perfectly symmetric, that is, Z}‘:l ks = 0. Therefore, b;(t)
can be rewritten as

= ifil pif (1) + BLO). ©

Then, the linear expression a;(t)ks + b;(t) can be subtracted from the measured phase
¢;,f(t) to obtain the calibrated phase information of the f-th subcarrier, ¢; ¢(t), as follows:

Pif(t) = @ir(t) — ai(b)ky — bi(t)

@in(t)—@in(t)

7
= ip(t)— k— f—*Z% 7

To this end, the linear components §(¢) and B(t) are eliminated when the measurement
noise Z(t) is small.

In Figure 2, we take an example of CSI phase from practical experiment to validate
the effect of the phase deviation elimination procedure, where the phases of all subcarriers
for the first, thirtieth, sixtieth, and ninetieth CSI samples of the second transceiver antenna
pair are presented. The original CSI phases are shown in Figure 2a. It can be seen that the
phases of the different subcarriers vary from — 7 to 7r, and are inverted at the critical points
7t and — 7. Therefore, it is necessary to perform the phase unwrapping procedure on the
original CSI phases. When the absolute value of the difference between two CSI phases
before and after detection exceeds 7, there is considered to be an inversion of the phase;
at this point, the CSI phase is increased or decreased by 27 to ensure that the absolute
value of the difference between the two CSI phases before and after does not exceed 7,
and so on for all of the phase values obtained from the measurement. After the phase
unwrapping process, the original phase can be expanded into a continuous form in this
way, as shown in Figure 2b. This process can be implemented using the unwrap function
in MATLAB. Subsequently, based on the above theoretical analysis, the calibrated phase
@i f(t) is obtained by eliminating the noise and phase deviation components via linear
transformation, which is shown in Figure 2c.
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—@— The 90th CSI packet
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—#— The 60th CSI packet | |
—@— The 90th CSI packet

06 —8— The 60th CSI packet | |
—@— The 90th CS! packet %
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Unwrapped phase (radian)
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Linear transformed phase (radian)
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o

|
e
o

5 10 15 20
Subcarrier index
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|
o
=
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Subcarrier index Subcarrier index

(b) Phase after unwrapping operation (c) Phase after linear transformation
Figure 2. CSI phases of some subcarriers.

3.3.2. Replacing Abnormal Data

Among the collected CSI, there always exist some abnormal data which are much
higher or lower than the mean and standard deviation of the CSI samples. In general, the 3¢
criterion is an effective method for deleting and replacing such abnormal data, defined as
values that deviate from the mean by more than three times the standard deviation. When
such abnormal data are found, they are replaced with the mean value of the CSI samples.

If the time series window size is set to 7, then the mean y; () and standard variance
0; £ (t) of the time series CSI samples of the f-th subcarrier in the i-th transceiver antenna
pair at time t can be calculated under the current window as follows:

1 t+3
if(t) = — i / 8
pif(t) Wp:;SX,f(P) ®)
1 t+3
g () = | Y, (xip(p) —pif(t)?, ©)
w p=t—3

where x; ¢(t) is the CSI amplitude or phase of the f-th subcarrier in the i-th transceiver
antenna pair at time t and W is the time series window size. Based on the 3¢ criterion, if
xXif(t) & [pif(t) —30; ¢ (t), i () +30; ¢ (t)], then the current data are regarded as abnormal.
Any such abnormal data are ticked and replaced by p; f(t).

3.3.3. Denoising

For background noise, a low-pass filter (i.e., Butterworth filter) is theoretically able
to cancel high-frequency noise. However, conventional low-pass filters are not effective
for removing burst and impulse noise, and a strict low-pass filter can result in the loss
of useful signal [26]. Instead, we use a threshold-based denoising method based on
wavelet decomposition [64]. This method can effectively protect spikes abrupt signals in
the expected signals, remove burst and impulse noise, and suppress interference from
high-frequency noise. Wavelet decomposition decomposes the CSI into two terms, the
approximation coefficients and the detail coefficients; the former describe the shape of the
CSI waveform, while the latter capture the noise and fine details of the CSL In the wavelet
domain, the effective CSI corresponds to large coefficients, while the noise corresponds to
small coefficients and satisfies a Gaussian distribution. Thus, the threshold is predetermined
such that the coefficients in a certain interval of the wavelet domain are set to zero and the
high-frequency noise is suppressed.

We use the WAVEDEC function provided by the MATLAB wavelet toolbox to perform
the signal decomposition. In this paper, we use the db4 wavelet function to decompose the
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CSl into three layers in order to obtain three detail coefficient vectors and one approximate
coefficient vector. Meanwhile, the threshold is set as

thr = /2 x log (m;), (10)

where m; is the length of the CSI data samples and thr is the corresponding threshold value.
The detail coefficients and approximate coefficients are processed by the hard threshold
function, written as follows:

fw | w|> thr
wth’_{ 0 |w|<thr (1

where w represents the original wavelet coefficients and w;,, the wavelet coefficients after
hard threshold function processing. The wavelet coefficients after hard threshold function
processing are then recombined and reconstructed to obtain the noise-reduced CSI.

Figure 3 presents the CSI amplitude A 1 (t) before and after data processing. Figure 3a
shows the original amplitude waveform obtained from the original measurement, con-
taining both high-frequency noise and abnormal data. The waveform after replacing the
abnormal data according to the 3¢ criterion is presented in Figure 3b, and the waveform
after removing the high-frequency noise by wavelet decomposition is shown in Figure 3c.
It can be observed that the waveform of the processed CSI is smoother than that of the
original CSL
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(a) Raw amplitude waveform
1 2 T T T T T
o 1
i)
=
=
S
< i
6 1 1 1 1 1

0 50 100 150 200 250 300
No. of packets

(b) Amplitude waveform after removing abnormal data values

Figure 3. Cont.
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Figure 3. Amplitude waveform with “push and pull” gesture.

3.4. Feature Extraction and Selection

On the basis of the processed CSI, we chose the following six typical features in the
time and frequency domains for both the CSI amplitude and phase: mean, variance, RMS,
IQR, EE, and PSE. In the time domain, the mean and variance describe the average and
uncertain trends of the CSI, with the latter also reflecting the degree of dispersion among
individuals within the dataset. The RMS (known as the effective value) unveils the validity
of the CSI. The IQR describes the state of the distribution of the data as a whole. In addition,
two kind of frequency domain features are taken into account. The EE represents the energy
distribution in different frequency bands of CSI data, while the PSE can reflect the spectral
structure of the CSL

Similar to [20], empirical mode decomposition (EMD) is employed for decomposition
into several intrinsic mode functions (IMFs). The first eight IMFs, which contain the most
dominant information, are selected and arranged as ¢1(t), c2(t), c3(t), ca(t), c5(t), c6(t),
c7(t), cs(t) according to the frequency components, from highest to lowest. To this end, the
EE is provided by

8
EE=—)_pilogp;, (12)
i=1

where p; = % is the energy percentage, E; is the energy of ¢;(t), and E = Y%, E; is the
total energy.

Similar to [21], the discrete Fourier transform X(w;) is obtained by performing the
FFT on A; (t) or ¢; ¢(t), where w is the frequency point at time ¢. Then, the power spectral
density (PSD) is calculated as

-~

Blwr) = — [ X(wi)[, (13)

N/
where N’ is the number of frequency points of the FFT. The PSD distribution function is
derived by normalizing P(wy), i.e.,

P
mz—éﬂL. (14)
L Pwr)
Then, the PSE is provided by
PSE = —)_ptlogpr. (15)
t

To this end, we obtain 540 features for the CSI amplitude and 540 features for the CSI
phase. Because noise and interference negatively affect the accuracy of gesture recognition,
it may be the case that only part of the subcarriers can be chosen and used for gesture
recognition. Thus, selecting effective features while eliminating redundant and irrelevant
features, is an essential and significant step in improving recognition accuracy. In the



Sensors 2024, 24, 3414

12 of 27

feature selection phase, we use the improved Fisher score [65] to select the features. The
Fisher score is a filter-based supervised feature selection method [66] which aims to find the
most effective feature subspaces. In the traditional scheme, the score is calculated based on

the ratio of the inter-class scatter S, (f;) of the i-th feature f; and intra-class scatter S ( fi)
of the k-th class of gesture samples under the i-th feature f;, which are provided by

fl = Z - .ul r (16)
Sgk) (fz) _ Z(X(,I;) _ ‘ul{k))Z =1y - ((5l(k))2, (17)
j=1
c (k) )2
Fs(fz) _ Sb(fl) — Ek:1 nk(}’li Vl) (18)

Ykt S (f ) Yk=1 ”k(5z‘(k))2

where 7 is the number of instances of the k-th class of gesture samples, ¢ is the number

(k)

of gesture types, y; " is the mean of the k-th class of samples under the i-th feature f;, y;

is the mean of all samples under the i-th feature f;, (6 .k)) is the variance of the k-th class

of samples under the i-th feature f;, x /) is the value of the j-th sample in the k-th class of

samples taken under the i-th feature f;, and FS(f;) is the Fisher score of the whole feature
dataset at the i-th feature f;. An inter-class scatter Sy (f;) that is larger under the i-th feature
fi indicates higher inter-class discrimination, while a smaller sum of the intra-class scatter

Y1 Sgk) (fi) of the classes ¢ indicates a smaller intra-class error. Therefore, the larger
the Fisher score under the i-th feature f;, the stronger the discrimination of that feature
for gestures. However, the traditional Fisher score has an obvious drawback in that the
inter-class scatter Sy (f;) is obtained by subtracting the sample mean of each gesture type
under the i-th feature from the total sample mean under the i-th feature, then squaring, and
finally summing. This may not be reasonable; for example, when the difference between
the sample mean of a gesture type under the i-th feature and the total sample mean under
the i-th feature remains the same, the gesture type takes the same value for the i-th feature
as the other gesture types take for the i-th feature, which results in both the inter-class
scatter and the Fisher score remaining unchanged. In other words, the traditional Fisher
score cannot reflect inter-class differences. Therefore, a correction is needed to account for
the inter-class scatter, which is denoted by NewS,(f;) as follows:
(i)

le —+ le/ — lek,

@ _

O = ", ’ 19)
. k k/
NewSy(f) = Y ol — )2, (20)
1<k<k’<c
where n, = Y {_, ny is the number of instances of all gesture samples, ylgk) and yl(k ) are the

means of the samples of the k-th and k'-th classes under the i-th feature, respectively, nj

) i

and n,, are the number of gesture samples of the k-th and K -th classes, respectively, n , is

the number of k-th and k -th classes of gesture samples that takes the same value under the

i-th feature, and o(i), is the cross-coefficient under the i-th feature. Therefore, the improved

Fisher score is written as follows:
i

i), (k K
Lk <c Ol(ck)'(ﬂz( = V} Y2

v m(6M)2

NewFS(f;) = (21)
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where NewFS( f;) is the improved Fisher score, for which the intra-class scatter is calculated
in the same way and the inter-class scatter is modified to be the sample mean of each gesture
type under the i-th feature minus the sample mean of all other gesture type under the
i-th feature. This improvement allows the score to better reflect inter-class differences.
Similarly, a larger inter-class scatter NewFS( f;) under the i-th feature f; and smaller sum
of the intra-class scatter of the classes c indicates stronger discrimination of that feature
for gestures.

Figure 4 presents the improved Fisher scores of the 540 features extracted from all
subcarriers. Every 30 improved Fisher scores in the figure correspond to one feature,
e.g., 1-30 are the means of the first antenna pair, 31-60 are the variances of the first antenna
pair, etc. It can be seen that not all subcarriers have high scores, which implies that the
features with low scores are less sensitive to gestural movements compared to the features
of higher scores. It can also be seen that the EE of low scores (121-150, 301-330, 481-510)
cannot distinguish each gesture very well. To reduce those features that cannot effectively
distinguish gestures, we empirically chose 0.12 as the threshold. Features with scores below
this threshold were removed.
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0

(a) Improved Fisher scores for the CSI amplitude (b) Improved Fisher scores for the CSI phase

Figure 4. Improved Fisher scores of 540 features over all subcarriers.

In the next step, PCA is used to eliminate the redundant features, further reducing
the computational cost of the subsequent training procedure. The PCA method converts
the original feature vector into a set of linearly uncorrelated principal components and
eliminates the redundant components. The details of PCA can be summarized as follows:

e  Step 1: Calculate the covariance matrix. The covariance of the features selected based
on the improved Fisher score is calculated and a covariance matrix with dimension
ng X ng is constructed, where 74 is the number of selected features.

*  Step 2: Calculate the eigenvalues and eigenvectors. The eigenvalues ¢ and eigen-
vectors g of the covariance matrix are calculated, then the contribution scores are
obtained based on the eigenvalues. The contribution scores are ranked, and all of the
eigenvalues and eigenvectors with contribution scores up to 0.95 are selected.

e  Step 3: Calculate the principal components. Using the eigenvalues and eigenvectors
selected in Step 2, the linearly uncorrelated principal components can be obtained by
decomposing them with F x q (where F is the dataset of features after feature selection)
for use as the training set in the next step of model training.

3.5. Training and Gesture Recognition

The extracted and selected features can now be used in machine learning to train
a gesture recognition classification model. According to the CSI Fresnel zone theorem,
the CSI amplitude and phase are a pair of complementary signals [19] that have different
sensitivities to gestures. In this paper, we jointly exploit the features of the CSI amplitude
and phase to obtain a gesture recognition classification model. In addition, we propose an
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Training set

Training fold

Validation fold

m folds

Cross-validation

SVM-Stacking algorithm based on the stacking algorithm concept, wherein the averaged
probability estimation vectors of both models for CSI amplitude and phase are exploited as
the input to train a meta-model for classification fusion estimation.

SVM is a supervised based machine learning method that solves nonlinear classi-
fication problems using kernel functions [67]. Hence, it can be applied to the gesture
recognition classification problem in this paper to train a phase model and amplitude
model, then average the probability estimation vectors of the two models. The traditional
SVM can only handle binary classification simultaneously, and requires the dataset to
be linearly separable. As the gesture recognition classification in this paper is a multi-
classification problem, some modifications are needed. Multi-classification with SVM can
be achieved by using a one-versus-one (OVO) strategy. First, the dataset is assigned c
classes; then, a classifier is trained for each two of the c classes, yielding a total of @
binary classifiers. Finally, when classifying a sample of an unknown class, it is put into
0(627_1) binary classifiers, and the class with the most votes is assigned as the class of the
unknown sample.

With the development of classification algorithms such as SVM, better classification
results can be realized. However, these algorithms can easily fall into overfitting situations.
Ensemble learning can effectively alleviate the overfitting problem for traditional classifica-
tion algorithms. As a special ensemble learning algorithm, the stacking algorithm combines
multiple individual learners to realize higher classification accuracy. The individual learner
and the learner used for combination are called the primary and secondary learners, respec-
tively. In this paper, there are two kind of primary learners, namely, a phase-based training
model and an amplitude based training model, and the secondary learner is used to train
a meta-model by taking the averaged probability estimation vectors of the two models as
the input.

The structure of the generic stacking algorithm is presented in Figure 5, with the
details summarized below:

: o E Second-round training
First-round training El
Combine : E Train o Final output
Train | &5 Predict > P E > | 3 "
EE —p 5 S -
E g z = Predict | §
T > > =
.................... £ Ppredicc | § = E
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Figure 5. Structure diagram of a generic stacking algorithm.

e  First, as there are m primary learners, the training dataset is randomly divided
into m folds.

*  Second, in the first round of training, for the i-th (i € {1,2,3,--- ,m}) primary learner,
we select the corresponding i-th fold as the validation fold and the remaining m-1
folds as the training folds. Subsequently, we train the i-th primary learner, resulting in
a total of m primary learners.

e  Third, each primary learner makes primary predictions on the corresponding valida-
tion fold. These primary predictions are reconstructed to form a new training set for
the secondary learner, which is then obtained through a second round of training.
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e Fourth, the test set is fed to the m primary learners, resulting in m sets of primary
predictions. These primary prediction sets are then averaged to form a new test set for
the secondary learner.

e  Finally, the secondary learner is used to make predictions on the new test set and
obtain the final output.

Stacking is easily scalable and can be used to build algorithmic models for different
tasks. Therefore, in this paper we apply it to combine the complementary advantages of the
phase and amplitude, which can efficiently improve the training of gesture classification
models while effectively alleviating the overfitting problem. The details of our SVM-
Stacking algorithm are described in Algorithm 1, which consists of two main stages. In
the first stage, we use the training set of the CSI phase data samples to train the primary
phase learner and use the amplitude training set to train the primary amplitude learner. In
the second stage, we use the two primary learners obtained in the first stage to train the
secondary learner. We put the validation set of the phase into the primary phase learner to
derive the phase probability estimation vectors and put the amplitude validation set into
the primary amplitude learner to obtain the corresponding probability estimation vectors.
Based on the complementarity of the CSI phase and amplitude, we average these two
probability estimation vectors and combine the corresponding class labels as a new training
set, which is used to train the secondary learners. Finally, the SVM-Stacking classification
model is generated.

Algorithm 1: SVM-Stacking algorithm for gesture classification

Input:
Dataset of CSI phase Dppase = { (a1, Y1), (Pa2 Ya2)s -+ (Pane Yan) }i
Dataset of CSI amplitude Damp = {(a41,v41), (242, Yd2), - (dn., Yan,) };
Primary phase learner parameter ¢ppase, $phases
Primary amplitude learner parameter camp, Samp;
Secondary learner parameter csec, gsec;
Output:
SVM-Stacking classification model £(Dppase, Damp);
1 Initialize Randomly selecting 70% of the Dataset D 5 and Dapmp are used as the

.. t t
training set D;}z e and Dfm)z,,, 30% as the test set D;Z)a 5. and D[(lz,)n)p ;

2 Set the training conditions of the phase model option .5, = [cp;mse, gphase] ;
3 Train the phase model according to the training conditions

_ () ; :
Lphase = svmtmzn(Dphase,optzonphﬂse),

4 Similarly set the training conditions of the amplitude model
Optionamp = [Campr gamp]}
5 Train the amplitude model according to the training conditions

f)

Lomp = svmtmin(D,smp,optionump);
Define a new training set Dg,c = &;
Set the training conditions of the secondary learner optionse. = [Csec, gsecl;
fori=1,2,...,n, do
Put the phase validation set into the phase model to get the phase probability
estimation vector pre,jase; = sompredict(py,i, Lphase);

© o N9 o

10 Put the amplitude validation set into the amplitude model to get the amplitude
probability estimation vector prey,,; = svmpredict(a, i, Lamp);
11 | Average these two probability estimation vectors
T pha ,'+ TCamp,i
Dgec = Dgee U (%r yv,i)

2 Train the SVM-Stacking classification model according to the training conditions
L = svmtrain(Dsec, 0ptionse)
3 return L£(Dppases Damp)

Juy

[y
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4. Performance Evaluation

In this section, we describe the experiments conducted to evaluate the performance
achieved by the proposed gesture recognition system.

4.1. Experimental Setting

In the experiments, an AP with an omnidirectional antenna was used as the transmitter
and a minicomputer equipped with an Intel 5300 NIC was deployed as the receiver. In
addition, the operating system of minicomputer was Ubuntu 14.04. We used the linux-
802.11n-csitool to modify the driver to collect the CSI sample data in the NIC. While the
experiment was in progress, the transmitter continuously sent data to the receiver at a rate
of 100 CSI samples per second. In the collected samples, the CSI is a two-dimensional
complex matrix with size 3 x 30, where 3 stands for the three receiving antennas and
30 represents the thirty subcarriers. The experiment was conducted in a square room with
dimensions of 7.7 x 7 m?, and the AP and minicomputer were both deployed at a height of
1 m. During the experiment, there were five volunteers, each of whom stayed in the testing
area while completing a gesture within 3 s. Figure 6 shows six typical hand gestures. In
order to achieve a higher generalization capability, each volunteer was selected randomly,
meaning that we did not intentionally focus on characteristics such as height, weight, or
body contour.

‘ E
4

Class 1: Push and Pull ~ Class 2 : Applaud Class 3: Up
—
‘LT == <«

Class 4: Down Class 5: Left Class 6: Right

Figure 6. Sketch of six gestures, where the start and end directions are the directions of the red and
blue lines, respectively.

4.2. Recognition Accuracy Performance

For the SVM algorithm, we used the RBF kernel function and employed a grid search
approach to optimize both the reward and penalty parameters for model tuning. We
used a PC equipped with an Amd Ryzen 7 4800H central processing unit (CPU) with
Radeon Graphics during data processing and training. At the same time, we used cross-
validation to train and validate the model. Ultimately, to improve the robustness of the
model, we did not impose a strict limit on the hand speed of volunteers, only requiring
that gestures be completed within 3 s. Moreover, we have shared all our source codes and
datasets at https:/ /github.com /hn86441283 / Device-free- Wireless-Sensing-for-Gesture-
Recognition-based-on-Complementary-CSI- Amplitude-and-Phase/ tree /master to facili-
tate further validation and optimization.


https://github.com/hn86441283/Device-free-Wireless-Sensing-for-Gesture-Recognition-based-on-Complementary-CSI-Amplitude-and-Phase/tree/master
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In the proposed gesture recognition system, six features are extracted: mean, variance,
RMS, IQR, EE, and PSE. After feature selection is performed, these features are used in
the the SVM-Stacking classifier. On average, the gesture recognition accuracy approaches
98.3%. The confusion matrix of the classification results for the six gestures is shown in
Figure 7. Our system produces stable performance on different gestures, with recognition
accuracy ranging from 95.9% to 99.3% with a standard deviation of 0.0151129.

1 0.7%
2 0.6% 0.6%
B3 20%
)
&)
o
2
— 4
5
6
1 2 3 4 5 6

Predicted Class

Figure 7. Confusion matrix of classification results.

The precision and recall of six gestures are evaluated in Table 2. The lowest recall
for the six gestures is higher than 95%, and the lowest precision is higher than 94%. The
average precision and recall for the six gestures reaches 98.3%, demonstrating the good
accuracy of our system in recognizing various gestures. Figure 8a,b respectively present
the Receiver Operating Characteristic (ROC) curve and the Precision—Recall (P-R) curve of
the SVM-Stacking classification for the six classes. It can be seen that the values of the area
under the curve (AUC) for the six classes all converge to 1 or are equal to 1. The closer the
AUC value is to 1, the better the model’s performance; thus, these results indicate that the
classifier is able to accurately recognize the gestures with minimal error. Meanwhile, the
P-R curve characterizes the relationship between precision and recall; similar to the ROC
curve, a larger area under the curve indicates better performance on the part of the classifier.

Table 2. Precision and recall of recognition for six gestures.

Class of Gesture
Class1 Class2 Class3 Class4 Class5 Class6
Recall 98.5% 98.7% 95.9% 99.3% 96.3% 99.3%
Precision 97.3% 99.4% 99.3% 94.7% 99.4% 97.4%

Value
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Figure 8. ROC and P-R curves of the classification results.

4.3. Impact of Feature Selection and Classification Methods

In this part, we evaluate the performance of our system with and without feature selec-
tion and stacking in order to evaluate their effectiveness. The accuracy comparisons of the
phase classification model, amplitude classification model, and SVM-Stacking classification
model are shown in Table 3, and the confusion matrix of the results is shown in Figure 9. It
can be seen that fewer instances are predicted incorrectly after the model undergoes feature
selection compared to no feature selection; the overall accuracy is improved by an average
of 8.7%, while the computation time (including grid optimization) decreases by 89.57%. In
particular, the number of iterations of the model and the total number of support vectors
are both reduced, implying a decrease in the complexity of the model. The feature selec-
tion operation calculates the contribution score of each feature in order to distinguish the
gesture, then finally selects only those features that can effectively distinguish the gesture,
which helps to reduce the useless and redundant features, thereby improving accuracy and
reducing computational cost. In addition, the stacking algorithm significantly outperforms
the separate phase and amplitude models, with an average increase of 5.6% in overall
accuracy. The stacking algorithm is used train a meta-model based on the complementarity
of the phase and amplitude by averaging the probability estimation vectors of the phase
and amplitude models. An interesting phenomenon is that although the stacking algorithm
is used to integrate the phase and amplitude models, the computation time (including
grid optimization) is not a superposition of the time of the two models, but is instead a
compromise between the times of the two models. Thus, there is only a slight improvement
in the number of iterations and total number of expenditure vectors, as when integrating
two models the training set of a single model continues to be split into a training set and a
test set. The experimental results show that the proposed gesture recognition system using
feature selection and stacking algorithm can accurately estimate the class of gestures from
the feature data.

Here, we compare the performance of the proposed feature selection algorithm with
those of two classical feature selection algorithms: Lasso [68] and ReliefF [69]. Lasso is
an embedded method, while ReliefF is a wrapper methods. In Lasso, we performed ten-
fold cross-validation in the range [27°,2°] and choose the lambda corresponding to the
minimum cross-validated mean squared error for feature selection. In ReliefF, we chose to
use 100 similar samples as nearest neighbors. Because the feature selection module is only
a part of our system, we show the performance difference between the different feature
selection algorithms by comparing the performance of the system after using the algorithms.
The performance comparison results are shown in Table 4, which reveals that the improved
Fisher score slightly outperforms the ReliefF and Lasso algorithms in terms of both overall
accuracy and computational efficiency. This is to the improved Fisher score paying more
attention to the differences between categories. Furthermore, integrating the improved



Sensors 2024, 24, 3414

19 of 27

Fisher score with the PCA method greatly improves the computational efficiency, while
the recognition accuracy remain basically unchanged. This is because the PCA method
converts the original feature vectors into a set of linearly uncorrelated principal components

while eliminating the redundant components.
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Figure 9. Confusion matrix of the classification results.
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Table 3. Comparison of the phase classification model, amplitude classification model, and SVM-Stacking classifier before and after feature selection.

Accuracy

Computing Amplitude Amplitude
Method Classl Class2 Class3 Class4 Class5 Class6 Overall Time Phase Iter Iter Metalter Phase nSV nSV MetanSV
Before feature Phase model 759% 99.4% 85.2% 81.7% 86.1% 87.9% 86.1% 405.06 s 1060 — — 1818 — —
selection Amplitude model 85.9% 98.7% 81.6% 71.3% 83.4% 84.7% 84.1% 384.29 s — 1092 — — 2066 —
SVM-Stacking classifier 93.3% 99.4% 94.4% 88.3% 94.4% 93.3% 94.0% 323.66 s 740 855 72 1351 1457 83
After feature Phase model 98.2% 100% 92.0% 95.0% 96.0% 97.4% 96.4% 47.87s 840 — — 1434 — —
selection Amplitude model 94.6% 100% 92.8% 94.1% 95.3% 96.8% 95.6% 27.99 s — 959 — — 1500 —
SVM-Stacking classifier 98.5% 98.7% 959% 99.3% 96.3% 99.3%  98.3% 39.44s 614 675 43 1140 1144 65
Table 4. Performance comparison of different feature selection algorithms.
Method Overall Comp uting Phase Iter Amplitude Meta Iter Phase nSV Amplitude Meta nSV
Accuracy Time Iter nSV
ReliefF 97.7% 245.36 s 790 836 50 1230 1313 88
Lasso 96.8% 22543 s 753 790 31 1329 1447 59
NewFisher 98.1% 21750 s 697 739 48 1239 1243 80

NewFisher + PCA 98.3% 39.44 s 614 675 43 1140 1144 65
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4.4. Performance Comparison

Next, we compare the performance of the proposed classification algorithm with
those of other existing algorithms, including LSTM, 1D-CNN, and BiLSTM. The LSTM
network contained one LSTM hidden layer and 128 hidden units. In the 1D-CNN model,
two ConvlD layers with 32 filters of size 5 were deployed and ReLU was used as the
activation function after each Conv1D layer. For BiLSTM, we used one BiLSTM layer with
200 hidden units and used ReLU as the activation function afterwards. Because these
classification algorithms cannot utilize the CSI phase and amplitude jointly, either phase
features or amplitude features were used. The results of the performance comparison are
presented in Figure 10. It can be seen that the SVM-Stacking algorithm performs best due to
joint utilization of the complementary CSI phase and amplitude. Meanwhile, because the
neural networks require extensive computational resources for training the classification
models, SVM-Stacking shows great benefits in terms of reduced execution time.

100

[ LSTM phase
[ JLSTMamp
[ 1D-CNN phase
["""71D-CNN amp
I BiL STM phase
I BiLSTM amp
I SVM-Stacking

Overall accuracy(%)

90 r

Model building/training time(s)

85 — — o
Overall accuracy Model building/training time

Figure 10. Performance comparison of different classification algorithms.

Lastly, we compare our proposed system with two other schemes: WiGrus [18], which
uses a two-stage random forest algorithm for classification of gestures, and Wri-Fi [13],
which uses a combination of a Gaussian mixture model and a hidden Markov model for
the classification of air-handwritten alphabets. We applied both schemes to the dataset
obtained from our experiments. The confusion matrix results are shown in Figure 11, from
which it can be observed that our proposed system has the least instances of estimation
error. The overall classification results and comparison are shown in Figure 12a, where it
can be seen that our proposed system reaches an accuracy of 98.3%, compared to 90.5% and
77.8% for the other schemes. The Fl-scores of the three schemes are shown in Figure 12b,
where it can be seen that our proposed system exceeds 97% with minimal fluctuations. In
addition, the micro-average ROC and P-R curves of the classification results yielded by the
three schemes are shown in Figure 12¢,d, respectively; it can be seen that the results of our
proposed system are optimal for both curves. All of these results validate the effectiveness
of our proposed gesture recognition system.
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Figure 11. Confusion matrix results of the three schemes.
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Figure 12. Comparison of the three scenes.

5. Discussion and Conclusions

In this section, we discuss the research limitations and challenges around this topic
based on the above results, then conclude with the main findings of this paper.

5.1. Discussion

The experimental results presented above validate the effectiveness of the proposed
HGR system based on exploiting the complementary CSI amplitude and phase. However,
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there are some research limitations and challenges around both our work and the research
topic as a whole which need to be addressed in the future. These are listed below:

1. Robustness and generality issues for real-world applications. The research work
in this paper, as well as most of the existing research work, collects CSI data on
different gestures in a relatively ideal environment, and subsequent processing steps
are conducted based on machine learning or deep learning. However, the practical
environment usually changes over time, for instance, changes in the external scene of
the gesture action or the speed and angle of human movements, and the CSI is highly
sensitive to the above factors. Thus, how to improve robustness in practical application
scenarios remains one of most significant research challenges in the field of wireless
sensing technology. In general, large-scale and high-quality datasets containing the
CSI of samples taken from diverse and dynamic environments are necessary in order
to address the robustness issue.

2. Practical wireless sensing applications within the edge computing paradigm. In order
to truly apply WiFi-based gesture recognition technology to real life, it is necessary to
consider the load of the central server along with data transmission delay and other
issues. Recent developments in edge computing technology allow part of the data
processing and analysis tasks of edge devices to be offloaded to the edge server, which
can reduce the load on the central server and reduce data transmission delays [70].
Therefore, integrating wireless sensing technology into the edge computing paradigm
represents a critical way to deploy WiFi-based gesture recognition technology into
daily life.

3. Issues with recognizing multiple gestures in complex environments. When mul-
tiple peoples perform gestures in a complex environment, channel variations and
interference caused by their bodies may be superimposed, leading to complex sig-
nal aliasing. In addition, multiple gestures made by multiple peoples may lead to
cross-interference, where the gesture of one individual may affect the signal of another.
This makes it challenging to extract effective gesture features, leading to a decrease in
gesture recognition performance.

5.2. Conclusions

This paper has developed a wireless sensing-based human gesture recognition sys-
tem which jointly exploits the complementary CSI amplitude and phase to improve the
recognition accuracy. Meanwhile, a feature selection algorithm based on an improved
Fisher score is utilized to construct an effective feature subspace for distinguishing different
gestures, then an SVM-Stacking algorithm is proposed for gesture classification. Finally, our
experiments validate the robustness of the proposed system, reaching an average accuracy
of 98.3%, which outperforms other recent schemes.

In the future, our work will seek to use techniques from generative adversarial net-
works (GAN) or transfer learning to generate samples of new gestures by learning and
utilizing features and representations of existing gestures to synthesize and train samples
of gestures outside the dataset. This will allow the model to learn a wider range of ges-
ture patterns, thereby improving its recognition and understanding of unknown gestures.
Concerning the issue of limited coverage, complex ultra-dense network scenarios with
multiple access points (APs) can enlarge the coverage of wireless sensing applications
and improve their practicability. Furthermore, in this work we have considered a sensing
scenario consisting of a single transmitter-receiver pair. In the future, we will continue
this work by considering a more complex scenario and the design of robust device-free
wireless sensing approaches. These research efforts can enhance the practical deployment
of wireless sensing technologies and improve the quality of daily life.
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