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Abstract: Electrical tomography sensors have been widely used for pipeline parameter detection
and estimation. Before they can be used in formal applications, the sensors must be calibrated using
enough labeled data. However, due to the high complexity of actual measuring environments, the
calibrated sensors are inaccurate since the labeling data may be uncertain, inconsistent, incomplete, or
even invalid. Alternatively, it is always possible to obtain partial data with accurate labels, which can
form mandatory constraints to correct errors in other labeling data. In this paper, a semi-supervised
fuzzy clustering algorithm is proposed, and the fuzzy membership degree in the algorithm leads to a
set of mandatory constraints to correct these inaccurate labels. Experiments in a dredger validate the
proposed algorithm in terms of its accuracy and stability. This new fuzzy clustering algorithm can
generally decrease the error of labeling data in any sensor calibration process.
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1. Introduction

Various sensors play an important role in detection processes in industry, and almost
all sensors must be calibrated before they can be used in formal applications [1]. Different
sensors have different calibration methods. The characterization and low-cost calibration of
particulate matter sensors were proposed at a high temporal resolution to a reference-grade
performance, and the frequencies and duration were tested at a 2 min resolution [2]. A novel
multilocation calibration scheme was introduced specifically to target mobile devices, and
the scheme exploited machine learning techniques to perform an adaptive, power-efficient
auto-calibration procedure through which it achieved a high level of output sensor accuracy
when compared to that of state-of-the-art techniques [3]. An on-site sensor calibration
method was proposed for the quality assurance of process separation measurements, which
can guarantee the optimal performance of the sensor measuring system and assure a
high measurement quality between company inspections [4]. More reviews can be found
in [5–7].

Due to its advantages of being nonradiative, non-invasive, and low cost, as well as
having fast responses, electrical tomography (ET) [8] has been widely used in industrial
detection processes. Accordingly, ET sensors (ETSs) [9,10] are ever-increasingly used for
parameter detection for multiphase flow in pipes, such as the solid-phase fraction (SPF),
flow velocity, and flow regime, etc. In this study, we focus on the measurements and
calibrations of ETSs when detecting the SPF for two-phase solid–liquid flow [11]. In our
previous study [12], a calibration method was proposed when an ETS was used to detect
the flowing velocity. However, when an ETS is used to detect different SPFs, its calibration
is very difficult due to various flow patterns and complex measuring conditions.

ETS calibration can be categorized into three types: ex-factory calibration, indirect
calibration from other sensors, and direct calibration from sampling data. Indirect calibra-
tion can be performed within various measuring conditions and represent all the working
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conditions that ETSs operate in. But these calibrating data may be erroneous and inaccurate.
Inversely, both ex-factory and sampling data are accurate, but they cannot fully reproduce
and represent all actual measuring conditions. According to the case-based reasoning
(CBR) principle [13], “similar problems must have similar solutions”. And if any two
measurements are similar, their labels must be consistent, and inversely, two different
measurements should have different labels. Hence, a set of similar measurements must
be distributed in a cluster within which any two points are close together, and unsimilar
measurements must belong to different clusters. Any clustering algorithm can find various
data distributions or clusters [14]. Accordingly, similar measurements from ETSs have the
same cluster label whereas dissimilar ones have different labels. Consequently, the actual
measurements from indirect data in ETSs have a clustering structure [15], and any cluster-
ing algorithm can find the data distribution. It is always possible to obtain a portion of
special data with accurate labels, which can form mandatory constraints to correct labeling
errors in other data.

Due to the inconsistent and uncertain characteristics of inaccurate labeling data, they
can be represented as the fuzziness in a fuzzy clustering algorithm [16], such as the most
common one, fuzzy c-means (FCM) clustering [17]. In this paper, we propose a semi-
supervised fuzzy clustering algorithm that takes the fuzzy membership degree of these
special data as a set of mandatory constraints, reestablishes the objective function, and
performs alternating optimization to achieve a clustering analysis of all the historical
data used for the calibration. By using the fuzzy membership degree with and without
mandatory constraints as variables, all data labels are reclassified and calibrated. When
using the SPF as the label, the calibrated new label is introduced into the most commonly
used SPF algorithm, the linear regression algorithm [18], to compare the accuracies of the
two labels before and after the calibration.

2. Related Work

This section includes the ETS principle, the SPF calculation, and the FCM algorithm.

2.1. ETS and SPF Calculation

We use a typical 16-electrode ET system to explain the ETS’s measuring principle.
The ETS measures the SPF in a field Ω by boundary measurements [19]. Figure 1a shows
the ETS measuring process in Ω. First, an exciting current “I” is added to electrode 1,
and 15 measurements are obtained in 15 other electrodes. Then “I” is added to electrode
2, and 15 measurements are obtained again. The process is repeated in turn until all
16 electrodes are excited. Therefore, a total of 240 obtained measurements are used to
construct 16 U-shaped curves, in which each responds to the same excitation, as shown in
Figure 1b.
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measurement of ERT; (b) 16 U-shape curves from 240 measurements.

On the basis of prior information and for the repeatability of various SPFs during the
working process, to perform the SPF calculation, we take the vector with 240 measurements
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as an input variable, and the corresponding label of the SPF as the output variable. The
relation f (·) from the input to the output is characterized as follows:

f : X → η = f (X), s.t., X ∈ R240, η ∈ R1 (1)

A set of prior historical data pairs (input X, output η) in (Xk, ηk)(0≤k≤n) are fitted with
either global or piecewise linear formulas for the SPF. Denoting E as the unit vector, the
relationship from X to η is assumed to be approximately linear, so that it can be expressed
by the parameters a and b as follows:

η = f (X) = aX + bE (2)

Generally, there are no parameters a and b that exactly satisfy the equation by
(Xk, ηk)(0≤k≤n). Let X′ = [X E], C = (a b)T. A common approach is to use the least squares
method to solve the following optimization problem:

minz = ∑n
k=1||ηk − (aXk + bE)||2 (3)

Based on the Joseph-Louis Lagrange’s criterion [20], Equation (3) has an analytic
solution as follows:

c = (X′TX′)
−1

X′Tη (4)

However, to reduce the over-fitting effect and noise, it is usually necessary to add a
regularization parameter λ to obtain the following regularization solution:

c = (X′TX′ + λE)
−1

X′Tη (5)

When the relation f (·) is highly nonlinear, piecewise linear fitting is required as shown
below:

cs = (X′T
s X′

d + λE)
−1

X′T
s ηs (6)

where ηs ∈ [Is, Is+1], s = 1, 2, . . ., M, and [Is, Is+1] is divided into M intervals according to
ηs; however, due to the complexity of working conditions, it is necessary to analyze the
applicable range of the above calculation method.

2.2. FCM Clustering Algorithm

Let S = {xi|i = 1, 2, . . ., n} be a dataset with n data vectors distributed in c clusters,
xi∈Rd in a d-dimensional data space. The typical fuzzy clustering algorithm’s FCM is
reviewed as follows. The objective function in the FCM can be stated as follows:

minJ(U, V) = ∑c
i=1 ∑n

j=1 um
ij d2

ij, s.t. ∑c
i=1 uij = 1, j = 1, 2, . . . , n, 0 < ∑n

j=1 uij ≤ n, (7)

where dij =
∣∣∣∣xj − vi

∣∣∣∣, vi is the prototype (center) of the ith cluster, uij is the membership
degree of the jth vector to the ith cluster, and m is a fuzziness exponent, ranging in the
interval of [1,3].

Using Lagrange multiplier optimization [21], both uij and vi in Equation (7) can be
solved as follows:

uij = (∑c
r=1 d2/(m−1)

ij /d2/(m−1)
rj )

−1
and vi = ∑n

j=1 um
ijxj/∑n

j=1 um
ij (8)

All fuzzy membership degrees consist of an n × c partition matrix U = [uij]. The steps
of the FCM are shown in Algorithm 1. But the FCM cannot utilize any a priori information
in practice [22,23]. This information is not only helpful for boosting the clustering quality
but also for meeting mandatory application requirements. In this paper, we proposed a
new method to address these problems along a solid mathematical optimization process.
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Algorithm 1. The FCM algorithm.

Input: Dataset S, the number of clusters c, exponent indexes m, and acceptable error ε

Output: The clustering label of each datum in S

Method:
(1) Initialize all clustering centers in FCM as v1, v2, . . ., vc;
(2) Problem 1:
Fix vi and solve uij by the first formula in Equation (8), i = 1~c, j = 1~n;
(3) Problem 2:
Fix uij and solve vi using the second formula in Equation (8), i = 1~c;
(4) Stop if the difference of the partition matrix at the tth iteration satisfies ||Ut+1-Ut|| ≤ ε and
go to Step (5); otherwise, go to Step (2);
(5) Partition S into c clusters: C1, C2, . . ., Cc by the fuzzy membership degrees of all data.

3. Mandatory Constraint-Based Fuzzy Clustering for Decreasing Error in
Inaccurate Data

In this section, a new fuzzy clustering algorithm is proposed to decrease the error in
inaccurate calibration data after introducing these typical data types from an ETS in practice.

3.1. Three Types of Calibration Data

The three types of calibration data for an ETS are explained separately.
(1) Ex-factory calibration data. The ex-factory calibration process of an ETS is shown in

Figure 2. The ETS is connected to a data acquisition device, and a group of rods with the
same diameter and length are vertically inserted into the cross-sectional ETS. Each group
of rods responds to a fixed SPF after filling water into the ETS.
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Figure 2. Ex-factory calibration of ETS. (a) Data acquisition device; (b) Calibration principle; (c)
Different groups of rods.

Let d be the diameter of the inserted rod, and let D be the diameter of the ETS. The
SPF η is calculated as follows:

η =
Nd2

D2 × 100% (9)

where N is the number of rods.
(2) Indirect and direct data. The data from the vacuum pressure meter on the pipe (see

Figure 3a) can lead to an indirect label of the SPF for all the ETS measurements. These
labels are abundant and available under all ETS working states, but often are inaccurate
and erroneous. Alternatively, the direct data of the solid–liquid mixture in the pipe can
be collected as a label, and then the corresponding SPF is measured through a balance,
as shown in Figure 3b. Such sampling data are accurate, but their obtainable amounts
are limited.
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Figure 3. Indirect and direct calibration process. (a) Data from vacuum pressure meter; (b) Data from
sampling; (c) Comparison of the two types of data.

Figure 3c shows the comparison between the vacuum pressure and sampling data. As
seen, the trend of the vacuum pressure data is roughly the same as that of the sampling
data, but there is still a considerable number of errors between them. The sampling data
are discontinuous, but they can be considered as accurate and standard labels. The vacuum
pressure data are continuously collected by the meter, which may generate errors when
directly using them for the calibration of the ETS.

To address this issue, we propose a data calibration method based on a mandatory-
constraint FCM (MFCM) clustering algorithm, which is used to decrease the number of
errors from indirect data, as explained below.

3.2. Cluster Characteristics of Sample Data

Let D1 be the set of n samples with erroneous and inaccurate labels as follows:

D1 =
{
(Xk, ηk)

∣∣∣Xk ∈ Rd, ηk ∈ R1, k = 1, 2, . . . , n
}

(10)

where
→
Xk is the input vector with d variables (e.g., 240 measurements in the ETS), and ηk is

its corresponding label (e.g., the SPF).
Let D2 be the set of Q samples with accurate labels as follows:

D2 =
{
(Xq, ηq)

∣∣∣Xq ∈ Rd, ηq ∈ R1, q = 1, 2, . . . , Q
}

(11)

where
→
Xq is the input vector with d variables, and ηq is its corresponding accurate label

(e.g., sampling data).
Since the label of the SPF mainly ranges in the interval of [0, 0.40], we partition the

interval into six subintervals as follows: 0, [0.01, 0.1], [0.11, 0.20], [0.21, 0.30], [0.31, 0.40],
and [0.41, 1.0]. Denote the set of input vectors on D1 and D2 as follows:

S1 =
{

Xk

∣∣∣Xk ∈ Rd, k = 1, 2, . . . , n
}

and S2 =
{

Xq

∣∣∣Xq ∈ Rd, q = 1, 2, . . . , Q
}

(12)

Let S = S1∪S2, and partition S into six clusters by the FCM algorithm. According to
the CBR principle, the six clusters should correspond one-to-one to the six relative intervals
of the labels, respectively, i.e., all the labels in each cluster must only fall into the interval.
Since these data in D1 have erroneous and inaccurate labels, partial data must not be
included in their relative intervals. To visually evaluate the consistency from the input
to the output, we use the MDS (multidimensional scaling) [24] technique to map all the
data in S to a two-dimensional space. MDS can preserve any between-point distances that
are unchangeable from the high-dimensional data space to a selected low-dimensional
data space. In particular, if the high dimension is not too large, the mapped distance is
nearly unchangeable.
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The data to be analyzed are a set of vectors S = {X1, X2, . . ., Xn} in Rd for which the
distance function is defined as dij = ||Xi−Xj|| for the ith and jth vectors. These distances
consist of a dissimilarity matrix D = {dij}∈Rn×n. In view of D, the MDS aims to find a pair
of vectors Yi and Yj in R2 for any pair of vectors in Rd such that the following is true:

dij = ||Xi − Xj|| = ||Yi − Yj|| for all Xi and Xj∈S (13)

where || • || is a vector norm. In a typical MDS, the norm is the Euclidean distance.
Usually, the MDS is formulated as an optimization problem, where Y1, Y2, . . ., Yn are solved
by the following typical cost function:

minY1,Y2,...,Yn

{
dij−

∣∣∣∣Yi − Yj
∣∣∣∣}2 (14)

A solution may then be found by numerical optimization techniques. In this paper,
the minimization solution is found in terms of the most used matrix eigenvalue decomposi-
tions [25].

After applying the MDS to S, each sample with the correct label (i.e., SPF η) in each
cluster is marked as a red point, and the others are marked as blue circles. Table 1 shows
the rates of samples that fall into their relative labeling intervals.

Table 1. Clustering results and the values of SPF η in six clusters and relative intervals.

0 [0.01, 0.10] [0.11, 0.20]
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where dik =

∣∣∣∣∣∣∣∣→Xk −
→
v i

∣∣∣∣|2 and diq =

∣∣∣∣∣∣∣∣→Xq −
→
v i

∣∣∣∣|2 ; uik and uiq are the membership degrees to

vi; i = 1, 2, . . ., c; k = 1, 2, . . ., n; and j = 1, 2, . . ., Q. The value of ε represents the effect of
these samples with accurate labels. Since the sum the membership degrees of an object for
all clusters is 1, the sum of Q objects over all clusters in D2 has a maximum value Q. Hence,
ε∈[0, Q], and 0 represents that the samples in D2 are not used.

The first term in Equation (15) is just the objective function of the FCM, while the
second item stands for a mandatory constraint. Equation (15) specifies that any cluster
center must not only minimize the sum of the distances to all points in D1 but also minimize
the sum to all points in D2. ε is used to adjust the relative importance between the two items.

To minimize Equation (15), the Lagrange multiplier method [26] can transform it into
the following equation:

L = ∑c
i=1 ∑n

k=1 um
ikd2

ik + ∑c
i=1 ∑Q

q=1 um
iqd2

iq + ∑n
k=1 λk(∑c

i=1 uik − 1 + ε) + ∑Q
q=1 µq(∑c

q=1 uiq − ε) (16)

The minimization of Equation (16) is usually based on the principle of alternating
optimization, which involves solving the following two alternate problems.

Problem 1: Fix center vi to find the optimal membership degrees uik and uiq, where i =
1, 2, . . ., c and q = 1, 2, . . ., Q.

Problem 2: Fix membership degrees uik and uiq to find the optimal cluster center vi,
where i = 1, 2, . . ., c.

For Problem 1, we take the partial derivative of the sum of the two ends in Equation (16)
and let them be zero, as shown as follows:

∂L/∂uik = ∑n
k=1 mum−1

ik d2
ik + λk = 0 (17)

∂L/∂uiq = ∑Q
q=1 mum−1

iq d2
iq + λq = 0 (18)

From Equations (17) and (18), both uik and uiq are solved as follows:

uik =
(
−λk/(md2

ik)
)1/(m−1)

and uiq =
(
−λq/(md2

iq)
)1/(m−1)

(19)

Since
∑c

t=1 utk = 1 − ε and ∑c
s=1 usq = ε (20)

Thus, we insert Equation (19) into (20) and obtain the following:

(−λk/m)1/(m−1) = (1 − ε)/∑c
t=1 (1/d2

it)
1/(m−1)

and (−λs/m)1/(m−1) = ε/∑c
s=1 (1/d2

is)
1/(m−1)

(21)

Insert Equation (21) back into (19) and obtain the following:

uik = (1 − ε)/[∑c
t=1 (d

2
ik/d2

tk)
1/(m−1)

], k = 1, 2, . . . , n (22)

uiq = ε/[∑c
s=1 (d

2
iq/d2

sq)
1/(m−1)

], q = 1, 2, . . . , Q (23)

The process of solving Problem 2 is as follows. After taking the partial derivative of vi
at both ends of Equation (16) and making it equal to zero, the following are derived:

vi =
∑n

k=1 um
ik xk + ∑Q

q=1 um
iqxq

∑n
k=1 um

ik + ∑Q
q=1 um

iq

, i = 1, 2, . . . c (24)

Let v0
i be the center when partitioning all data in S1 by FCM; v0

i must be different from
vi, and their difference is affected by the value of ε. When ε =|D1|/(|D1|+|D2|) , it is a
balancing point. Since the amount of data in S2 is very small, the difference between v0

i and
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vi is rather small, where i = 1, 2, . . ., c. To stress the effect of the data in S2, ε must be taken
as larger than 0.5.

All samples in D1 are partitioned individually by FCM and MFCM, whereby two
membership degrees uik and u0

ik are obtained to c clustering centers, where i = 1, 2, . . ., c.
Their differences are regarded as the weighting values to correct the label of the data in D1.
Hence, the label of Xj in D1 is corrected by the following coefficient:

hk = ∑c
i=1 ωi(

uik
u0

ik
− 1), k = 1, 2, . . . , n (25)

where ωi is a normalized coefficient. And the label of any sample in D1 is corrected as

η̂k = ηk(1 + φhk), k = 1, 2, . . . , n (26)

where φ is a priori information on the value of ε. η̂k is the new label of the kth sample in D1.
The correcting process is shown in Figure 4.
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Figure 4. Flowchart for correcting the labels in D1 by MFCM. 
Figure 4. Flowchart for correcting the labels in D1 by MFCM.

By using the MFCM, the label of the vacuum pressure data in D1 is corrected. The
comparison curves before and after the correction are shown in Figure 5.
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Figure 5. Comparison of error between corrected and non-corrected labeling data in D1.

Obviously, the trend of the corrected labels in D1 is closer to that of the sampling
calibration data in D2 (see Figure 3c). After correcting all the labels in D1, the average
absolute error of the corrected vacuum pressure data is decreased from 5.05% to 2.18%, and
the average relative error is decreased from 17.44% to 6.23%.

Table 2 further shows the rate of correct labels in D1 before and after correction by the
MFCM. The rate of data with the correct label at each cluster increased after the correction.
The results further validate the effectiveness of the MFCM.
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Table 2. Comparing the number of correct labels between corrected and non-corrected data.

SPF Interval 0 [0, 0.10] [0.11, 0.20] [0.21, 0.30] [0.31, 0.40] [0.41, 1.00]

Noncorrected 61.56% 72.73% 58.19% 66.27% 48.62% 51.08%
Corrected 72.19% 79.49% 68.04% 72.16% 60.94% 58.35%

4. Experimental Section
4.1. Experimental Platform and Measuring Condition

The ETS measurements in the experiments come from data collected on February 2,
2023 at the Tianjin Bureau Dredging Experimental Platform, as shown in Figure 6a. The
liquid in pipe is seawater with a conductivity of about 32 mS/cm, and the measured solid
objects are fine sands. The set of indirect data with SPF labels from the vacuum pressure
meter can be obtained, but the labels may have significant errors when estimating the SPF.
Alternatively, since the experimental pipeline is horizontally closed in circulatory flow,
and two-phase solid–liquid flow is evenly distributed in each cross-sectional pipe. Hence,
SPF can be estimated by the rate between the added solid volume and the entire pipeline
volume. Different rates of solid volumes will generate different SPFs, which are rather
accurate and can be used for the accurate labelling of SPF. Therefore, the samples with
accurate labels are used to decrease the error in the data from the vacuum pressure meter
by MFCM.
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The ETS can obtain 80 measurements a second under excitement frequency of 33.5 kHz
and voltage of 10 Vpp. A total of 67,089 data from the vacuum pressure meter and the
relative measurements from ETS were collected. After removing obvious anomalies and
insufficient data, there were still 42,000 data. The SPF label of these data ranges from 0 to
29%. The entire interval was divided into 6 subintervals, as shown in Table 3.

Table 3. Sample distribution of various SPFs.

SPF(%) 0~5 6~10 11~15 16~20 21~25 25~29 Total

Number 7000 7000 7000 7000 7000 7000 42,000

Alternatively, 3000 data with various rates of solid-object volumes are obtained, which
consist of a set of mandatory constraints with accurate labels. After calibrating ETS, the
linear prediction model (LPM) based on Equation (6) is used to predict the SPF value. The
following error criteria can be used to evaluate the predicting accuracy [27].

(1) Root Mean Square Error: the root mean squared error (RMSE) is a statistical indicator
used to measure the deviation between the predicted value ŷi and the true value yi; the
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closer the value is to 0, the more accurate the prediction is. For N samples, the calculation
formula of RMSE is as follows:

RMSE = (∑N
i=1 (ŷi − yi)

2/N)1/2 (27)

(2) Average absolute error: the mean absolute error (MAE) is a very intuitive evaluation
criterion that expresses the distance between the true and the predicted value. Like RMSE,
MAE measures the absolute deviation between the true and the predicted value. Similarly,
the closer it is to 0, the better the prediction effect. The MAE formula is as follows:

MAE = ∑N
i=1|ŷi − yi|/N (28)

(3) Average absolute percentage error: The mean absolute percentage error (MAPE)
normalizes the error of each point, making it less susceptible to extreme values and reducing
its sensitivity to outlier data. The smaller the value, the better the prediction results. The
calculation formula for MAPE is as follows:

MAE = ∑N
i=1 (|ŷi − yi|/|yi|)/N (29)

(4) Sample decision coefficient: The coefficient of determination (R2) is a statistical
indicator to reflect the reliability of the dependent variable. The purpose of the indicator is
to test the explanatory power of any prediction model. The closer R2 is to 1, the closer the
predicted value is to the true value. The calculation formula of R2 is as follows:

R2 = 1 − ∑N
i=1 (yi − ŷi)

2/∑N
i=1 (ŷi − yi)

2 (30)

4.2. Experimental Results and Analysis

The experimental data are divided into two sets for ETS calibration by MFCM and for
ETS prediction by LPM with a ratio of 0.7:0.3, where λ in the LPM algorithm is taken as
10−5, m = 1.5, and ε is taken as 0.60. Figure 7 shows the comparable curves of the prediction
values by LPM after using correcting and noncorrecting labels by MFCM.
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noncorrected labels; (b) Prediction results using corrected labels.

Figure 7 shows that after using the MFCM algorithm to correct the data labels, the LPM
algorithm obtains more accurate SPFs and smaller errors, whereas the original maximum
absolute error of the predicted values is about 10%. Moreover, a considerable portion of the
relative error values reaches over 30% by noncorrected labels. After calibrating by corrected
label, the absolute error of most of the predicted values is below 4 percentage points, with a
maximum absolute error of about 8 percentage points and most of the relative error values
below 30%.
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Table 4 presents the four errors of RMSE, MAE, MAPE, and R2 when using the LPM
for predictions with noncorrected and corrected labels by MFCM.

Table 4. Comparison of prediction errors by four indexes.

Index RMSE MAE MAPE R2

LPM
Noncorrected 2.6804 2.0141 142.36% 74.56%

Corrected 1.8247 1.3137 62.65% 88.93%

All four indexes show that the prediction accuracies of LPM have improved to some
extent. The change in RMSE is more noteworthy, as this indicator is more sensitive to
certain outliers, and its decrease indicates an improvement in the LPM algorithm to resist
outliers. It is worth noting that both algorithms have high MAPE indicators, especially
the linear regression model, which reaches 142.36% before calibration. This is mainly
because the LPM is essentially a linear fitting of nonlinear data, with poor fitting degree
and large absolute error at low SPF. But MAPE was greatly reduced to 62.65% after using
the corrected labels by MFCM.

5. Conclusions

A calibration method is proposed for electrical tomography sensors based on fuzzy
clustering with mandatory constraints. Using a small number of accurate labels as manda-
tory constraints, all inaccurate data are clustered and corrected to decrease the calibration
error. By using the ratio of fuzzy membership degrees with and without mandatory con-
straints as the weighting value, the labels of all the inaccurate data are reclassified and
calibrated. Our experimental results have shown that the new fuzzy clustering algorithm
can effectively correct the labels of inaccurate data for ETS measurements. When the
corrected data labels are used for predictions using the existing algorithm, the accuracy
is greatly improved, providing a useful way to apply the ETS in practice. Furthermore,
the proposed fuzzy clustering algorithm can be applied to the calibration process of any
other sensor.

However, there are two issues that need to be solved in the future. One is how
to determine the best objective function by selecting the value of ε, which can play an
important role in the calibration process. The other involves the type of fuzzy clustering
algorithm used. Any fuzzy clustering algorithm must be affected by its initiation and fuzzy
exponents. How to find their optimal values remains a challenging task.
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