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Abstract: The evolving technologies regarding Unmanned Aerial Vehicles (UAVs) have led to
their extended applicability in diverse domains, including surveillance, commerce, military, and
smart electric grid monitoring. Modern UAV avionics enable precise aircraft operations through
autonomous navigation, obstacle identification, and collision prevention. The structures of avionics
are generally complex, and thorough hierarchies and intricate connections exist in between. For
a comprehensive understanding of a UAV design, this paper aims to assess and critically review
the purpose-classified electronics hardware inside UAVs, each with the corresponding performance
metrics thoroughly analyzed. This review includes an exploration of different algorithms used for data
processing, flight control, surveillance, navigation, protection, and communication. Consequently,
this paper enriches the knowledge base of UAVs, offering an informative background on various
UAV design processes, particularly those related to electric smart grid applications. As a future work
recommendation, an actual relevant project is openly discussed.

Keywords: unmanned aerial vehicles; communication modules; embedded sensors; control algorithms;
thermal imaging; obstacles avoidance

1. Introduction

The evolution of Unmanned Aerial Vehicles (UAVs) is accompanied by instantaneous
effects over many industries, thus reflecting a new era of telemetry, efficiency, and safety.
At a first glance, agricultural surveying [1] and infrastructure inspection are alleviated by
means of modern UAV technologies, hence reducing labor-intensive and risky tasks. From
a different perspective, precision agriculture [2] is ameliorated through the sensors and
cameras embedded in UAVs. Crop health can hence be better monitored, soil conditions
accurately assessed, and resource utilization better optimized, contributing therefore to
more sustainable farming practices [3]. Elsewhere, in military applications, UAVs with their
highly versatile nature and reliability (i.e., remote control ability, durable flight periods,
etc.), are found to be ideal for reconnaissance [4], border patrol [5], and disaster response [6].
Aside from agricultural- and military-based applications, environmental processes also
benefit from UAVs, such that ecosystems can be remotely surveyed [7], wildlife can be
dynamically tracked [8], and crucial data for conservation efforts and disaster management
can be better gathered [9]. Forwardly, building inspection operations [10] and oil and gas
infrastructure monitoring [11] can also be leveraged by means of UAVs for the commercial
and industrial sectors [12]. For the part of mapping and surveying applications [13],
terrains can be efficiently mapped, construction sites can be better monitored [14], and
aid in urban planning [15] can be as well granted with high-resolution cameras and Light
Detection And Ranging (LiDAR) sensors embedded in UAVs [16]. The ongoing innovation
in UAV technologies, which is mainly based on advances in artificial intelligence [17],
communication systems [18], and swarm technology [19], will eventually yield a continuous
integration of UAVs into daily lives and industries [20]. It is of no doubt that UAVs are
progressively evolving and widespread in diverse fields of application.
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Despite the significant benefits and remarkable technological advancements associated
with UAVs, their highly complex operational landscape implies various failure scenes [21],
ranging from performance disruptions to risky mechanical failures [22]. Because of the
sensitive hierarchies between the embedded electro-mechanical systems within UAVs, com-
plexities arise from the integration of sensors [23], communication equipment [24], power
systems, and others [25]. Firstly, UAVs can experience general system failures that are
mainly linked to flight control programs [26]. Hence, maintenance challenges correspond-
ingly emerge to ensure proper functioning. From another part, the inclusion of multiple
electro-mechanical components yields increases in both the total weight of the drone and
its power consumption, affecting its flight endurance [27]. Moreover, the interconnected
system architecture induces a cascading failure effect when one component fails, potentially
compromising the entire system [28]. Concerning the mechanical part, UAV’s continuous
use and exposure to harsh operational conditions contribute to the wear-and-tear effect
on different mechanical components [29]. A UAV’s structural frame and body can lose
integrity, posing catastrophic consequences. Additionally, unavoidable vibrations [30]
during flights induce resonance issues, successively leading to accelerated fatigue in the
drone’s materials. In some applications, UAVs carry payloads, such as drop-off sensors or
delivery packages [31], causing issues with their deployment or release mechanisms.

Besides mechanical failures, UAVs can be subjected to software bugs and glitches,
leading to erroneous behaviors that affect their stability and performance [32]. For example,
navigation errors are the result of inaccurate Global Positioning System (GPS) data [33] or
misprocessed data in the UAV’s navigation algorithm [34], leading to deviations from the
intended flight’s path. Regulation and compliance standards require a continuous update
of UAV’s software to ensure continued adherence to legal and safety requirements [35],
constituting a challenging chore. Where a UAV relies on remote communication systems
for flight control and data transmission [36], any loss of communication (e.g., when UAVs
operate beyond signal range limitations) poses a significant risk to the control and data
transmission quality of the UAV (e.g., delayed responses and degraded data). Sensors
inside a UAV, on the other hand, can be subject to failures [37], especially those that
require precise calibration for accurate data interpretation [38]. Calibration errors or time-
induced drifts lead to inaccurate readings (e.g., non-invasive current sensors reflect a false
image over the actual current norm inside overhead electrical cables), hence compromising
the performance of data collection [39]. In relation to the power systems inside a UAV,
batteries (i.e., the main power source in a drone) can fail, with a sudden discharge or cell
malfunctions [40]. Thus, the resulting loss of power can potentially limit the UAV’s flight
time [41], and in the worst cases, causes the UAV to shut down and crash. On the other
hand, environmental conditions [42] (i.e., weather) can impact UAV performance. For
instance, proper UAV performance is affected by strong winds [43], heavy rain [44], and
extreme temperatures as follows:

• Water-related challenges (i.e., rain) result in UAV operational limitations [45] as water
can leak into the UAV, permanently damaging sensitive electronic components.

• Humidity: high levels of air humidity induce condensation and water accumulation
inside a UAV.

• High temperatures: the performance of semiconductors inside a UAV is greatly af-
fected by high temperatures.

With the mentioned challenges and obstacles objecting to proper UAV performance,
the more detailed the knowledge about different UAV subsystems is, the better the overall
design will be. In other terms, a detailed analysis of the hierarchies between the electro-
mechanical components of a UAV, in addition to the sensory parts, with algorithms and data
processing, serves as a predictive UAV maintenance scheme. Eventually, the performance
of a UAV will be optimized by better decision-making (i.e., in the design part) and problem-
solving (i.e., after a fault occurrence). In accordance, there are many drone-related literature
reviews in the field, which serve in turn as informative backgrounds about different aspects
of UAVs. In [46], the established review took only into consideration the interactions
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between a UAV and the payload (i.e., suspended loads), whereas in [47], the state-of-
the-art focused mainly on drone detection and classification techniques. From another
perspective, the review in [48] identifies current gaps in the application of UAVs for
the creation of 3D models in the contexts of urban planning and historic monuments
preservation. The review in [49] took into consideration the diverse possible applications
of drones in healthcare applications, whereas in [50], the main focus was on the study of
marine mammals (i.e., individual estimation, body conditions and biometrics, behavioral
patterns, etc.). On the other hand, the review in [51] examined the drone-integrated
Geographic Information System (GIS) in different fields, differently from the work in [52],
which focused on UAVs’ potential to advance climate change research and monitoring.
Although the work in [53] mainly accounted for the UAV remote sensing of crop species,
it included some of the multispectral sensors used in such applications, thus enriching
the informative background about UAVs. In a more general approach, the review in [54]
considered a structured presentation of the recent trends in the UAV field, classifying
them according to their flight characteristics, showcasing the potential areas for further
development, and addressing the hardware/software within a UAV. In [55], the research
considered an overview of anti-collision technologies for UAVs with the associated types
of sensors, whereas in [56], the focus was on UAV threat models, with security and privacy
aspects. Divergently, in [57], the focus was on search and rescue operations driven by
UAVs, whereas in [58], the review examined the deployment of UAVs for monitoring and
inspection in the construction industry. Concerning the You Only Look Once (YOLO)
algorithm used for real-time detection and classification of multiple targets, the work
in [59] investigated the integration of YOLO with UAV technology and the corresponding
practical applications (e.g., engineering, transportation, automation, etc.). Given that path
planning holds significance in the context of drone autonomy, the authors of [60] reviewed
the environmental representation as well as the path generation techniques for drones.
Considering the potential of UAVs in warehouse management, a systematic literature
review was conducted in [61], enriching the background of knowledge about the obstacles
versus the adoption of UAVs in warehouse handling, unlike in [62], where the review
primarily focused on the role of drones in flood management. Different UAV platforms for
autonomous applications are reviewed in [63], which also presented the state-of-art and
estimation techniques for UAVs, in addition to their correspondent flight phases.

As can be noted from the literature survey encompassing the modern reviews in [46–63],
the majority of these articles actually focus on the UAV domain of usage and application
fields. In other terms, there exist no reviews about the drones themselves, involving differ-
ent architectures, structures, avionics, and software-to-hardware branches (i.e., the results
of algorithms over the behavioral mechanism of sensors). Forwardly, as a matter of proof,
and despite the extended application fields for UAVs such as concentrating solar thermal
system planning and operation [64], intrusion detection [65], forest ecology [66], forensic
civil engineering [67], plant-scale growth estimation [68], and photovoltaic plant diagnosis
and maintenance [69,70], the available related reviews provide a less detailed informative
background about the realm of UAVs. To address this issue, this paper aims to critically
review and assess the different UAV facets, decomposed into five major sets including
flight control and navigation, communication and remote control, computing and data
management, sensing and monitoring, and power and energy management. The intended
structure of this review aims to establish an informative background concerning the UAV
compositional realm, instead of possible field applications, for UAV design processes.

The rest of this paper is structured as follows: Section 2 presents the research method-
ology used to obtain data, Section 3 outlines a general UAV operational overview in which
a comprehensive synopsis of UAV operations is presented, Section 4 elucidates the actual
review of different sets (i.e., subsystems) within a UAV, Section 5 discusses the obtained re-
sults, Section 6 highlights an actual UAV-based future project design with a corresponding
link to this review, and finally, in Section 7, conclusions are derived.
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2. Research Methodology

Because of UAVs’ widespread applications in various industries, as indicated in the
Introduction, extensive literature in this field has arisen. This fact in turn creates a challenge
while conducting a thorough review of UAVs’ internal structures and composers. To
address this challenge, and to better guide interested audiences through the different
aspects of UAVs, the systematic approach adopted here consisted of dividing a UAV into
five main sets as follows:

1. Control: This set includes navigation systems, flight control, autopilot, collision
avoidance, target tracking, fail-safe, motor speed, and other related systems that are
dedicated to managing and directing a UAV’s flight.

2. Computing: This set includes the computational elements including data processors,
onboard computers, data loggers, and all computing platforms responsible for the
execution of different algorithms.

3. Communication: This set includes the information exchange between a UAV and
external parties (i.e., for remote control options) performed through different commu-
nication modules (e.g., Bluetooth, Wi-Fi, Long Range (LoRa) modules, etc.).

4. Sensory: This set includes data captured from internal (e.g., UAV’s power consump-
tion and temperature), as well as external (e.g., altitude, pressure, and wind speed)
environments held through UAV-embedded sensors.

5. Power: This set includes the energy sources (e.g., battery/solar cell drives), power
distribution, and power management systems with the related circuitry to provide
UAVs with optimal power for proper overall functionality.

Technically speaking, this research began by searching for relevant keywords, such
as flight control in UAVs, avionics integration, UAV autonomous navigation, different
power source types for launching UAVs, communication modules in UAVs, and others. In
the first step, the corresponding results formed a large database, which was decomposed
later according to the previously mentioned five main sets. Concerning the aim to inform
readers about different aspects of UAVs, the conducted structure was developed in the
form of relative answers to the following research questions (RQs):

RQ1: What are the different subsystems within a UAV?
RQ2: Is there any hierarchy between the different subsystems?
RQ3: Is there any integration between the subsystems?
RQ4: How can UAV reliability be enhanced by means of multiple sensory systems?
RQ5: What are the programming languages for different computing systems?
RQ6: What is the relationship between sensory and computing systems?
RQ7: How is the interdependence between subsystems managed?
RQ8: What are the standard UAV communication protocols?
RQ9: How can fail-safe be ensured in emergencies?
RQ10: How can limits be set for motor speed and UAV maximal altitude?

The answers to the raised questions consequently shaped the general overview of
this manuscript, allowing thorough knowledge to be gained about the various facets of
UAVs. The methodologies inside each set are mutually compared and assessed. Ultimately,
concerning the resultant tabulated performance and other metric data for each set, the
relevant discussed project highlights the contribution of this paper’s outcomes to the body
of knowledge of UAVs.

3. UAV Operational Overview

Each of the main sets emphasizes a function (or a set of functions) as its collaborative
job with respect to other sets, which are together aimed at achieving the accurate, stable, and
successful flight of a UAV [71]. The key to a general understanding of UAV technologies
is to establish a relationship between the five main sets according to two parameters, as
discussed in this review, including hierarchy [72] and integration [73]. Figure 1 presents an
overview of the hierarchy and integration between the five sets.
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Additionally, a hierarchy exists between the composers of the same set. For instance,
the commands from the autopilot system override the flight control and lead the navigation
system [74]. The collision avoidance system utilizes data from the sensory subsystem as
well as from the navigation system [75]. Higher prioritized hierarchies [76] (e.g., fail-safe)
override and modify commands and data from other systems, where, for example, all
sensory data would be instantaneously blocked to reduce computational efforts on the
central processor and ensure that the UAV shuts down safely. As for hierarchies between
the composers of different sets, the data processors on the first hand receive inputs from
sensory subsystems, and sometimes from the control subsystem, for real-time process-
ing [77]. The equipped computers on the UAV manage and coordinate tasks across all
subsystems by executing flight control algorithms based on the processed data [78]. Data
loggers, on the other hand, save different input data for further investigation during the
same flight (i.e., metaheuristic analysis-based flight modification) or offline (when the
UAV is not on a mission) [79]. The UAV’s health and performance indices are captured
by internal sensors, thus providing data to both the control and computing subsystems,
where external sensors share environmental data with the corresponding computing sub-
system for decision-making [80]. As shown in Figure 1, the control subsystem establishes
real-time decision-making and executes flight control algorithms when integrated with
the computing subsystems (i.e., based on the processed data output from sensors). In
turn, the communication system, aside from facilitating interaction/integration among
all subsystems, enables real-time command reception/execution when integrated with
the control subsystem. From the different perspective of integration/hierarchies, a UAV’s
technology may implement mechanical redundancy systems [81] (i.e., to ensure reliability
in the case of failures), encryption [82] (i.e., for secure data exchange/communication), and
payload swing suppressor [83], which can act as standalone subsystems.

4. Avionics Assessment

As indicated in the Introduction, this review consists of five main subsystems of
UAVs (control, computing, communication, sensory, and power). Concerning the control
review, it includes different schemes for navigation (strategy, path planning/obstacle
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avoidance, localization), target tracking, and payload integration. The computing-based
review encapsulates the different single-board computers, as well as the system on modules,
used for data processing in UAVs. The communication review presents the possible
communication protocols along with their relative modules, which can be UAV-embedded.
Sensors are mainly classified as environmental-, vision-, and position-based, with each
set including different technically reviewed physical sensors. Finally, the power review
includes different sources that can be utilized to power up UAVs.

4.1. Control

The control subsystem inside a UAV manages and directs its flight operations, with its
decision-making process relying on sensory data. Its primary purpose is to exercise precise
command over the UAV’s navigation, stabilization, movements, positioning, balancing,
take-off, and landing. In other words, the control subsystem acts as the brain and steering
mechanism of a UAV. As can be concluded from Figure 1, the computing subsystem
interacts with the control subsystem by providing the necessary algorithms, whereas the
communication subsystem allows dynamic adjustments through real-time data exchange.

4.1.1. Navigation

Assuming that a UAV has its path already determined (i.e., concerning its mission,
purpose of usage, etc.), its navigation involves the real-time process of guiding it along
that path. It can therefore be perceived as the constant monitoring of the UAV’s position,
velocity, and orientation with respect to the planned trajectory. As a short general descrip-
tion, under the control subset of a UAV, navigation refers to the ongoing execution and
adjustments of the UAV’s movement along its planned path. Other related reviews in
the field mainly classify UAV navigation techniques as either indoor (i.e., used in closed
areas where GPS signals, for example, can be weak or unavailable), or outdoor environ-
ments (i.e., for aerial surveying, crop monitoring, and rescue missions). Indoor navigation
methods, on the one hand, can be achieved using a packet loss-based approach [84]. In
GPS-denied environments, a drone is capable of estimating its current position based
on the wireless packet loss from a reference point packet transmission. Specifically for
indoor corridor environments, a UAV can be navigated through a Convolutional Neural
Network (CNN), resulting from the combination of ResNet and DenseNet networks [85].
The CNN analyses the images captured by the UAV’s monocular camera and estimates
the position/orientation of the UAV relative to the environment. A precise indoor UAV
location estimation can also be obtained by means of ultrasonic acoustic signals with a
three-stage localization scheme [86]. Outdoor UAV navigation methods, on the other hand,
mainly rely on GPS [87], Inertial Navigation System (INS) [88], Global Navigation Satellite
System (GNSS) [89], integrated INS/GNSS [90], and others [91]. This manuscript, however,
conducts another approach for reviewing UAV navigation techniques, namely, classified as
navigation strategy, path planning/obstacle avoiding, and localization.

Strategy

(a) Vision-based techniques

In general, vision-based navigation techniques have evolved from the need for proper
UAV navigation in GPS-challenging (i.e., indoor) environments and for collaborative
navigations for swarms of UAVs. This is also the case when two UAVs exist in contra-
dictory environments, where one UAV operates under a good GPS coverage, unlike the
other. In such circumstances, the navigation can be held using a father–son information
exchange [92]. By means of line-of-sight (LOS) communication between the father and
son UAVs, navigation information can be exchanged and acknowledged to the son UAV
through the father UAV installed onboard camera, thus providing related data such as
the Body Reference Frame (BRF) [92]. Vision-based navigation systems for UAVs can also
act as backup for signal-enabled navigation methods (e.g., GPS, INS, etc.) for cases of
jamming and drift errors, where the pre-obtained latitude and longitude data are utilized
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after their integration with the Google static map Application Programming Interface
(API). UAV position estimation is hence acknowledged using matching techniques, such
as normalized cross-correlation with prior edge extraction [93]. Map generation during
navigation is another effective vision-based technique to guide a UAV under undesirable
weather conditions (e.g., rain, storms, etc.) [94]. For instance, a high-resolution depth map
can be developed by means of segmented optical flow from two successive frames, yielding
a dense map picture reconstruction by optimizing a convex algorithm [95]. On the other
hand, by means of a stereo visual-inertial (SLAM), with a two-step refreshing approach of
an awareness map, the occupancy state (i.e., positioning cells in the map) is then updated,
thus allowing for a visualization-enabled UAV navigation [96].

Vision-based navigation for UAVs is a popular trend in the field of UAV technology,
mainly because of its sequential working mechanism, utilizing real-time target, environ-
mental, and other data as the basic input to reveal a UAV’s instantaneous position after data
processing through an onboard computer [97–100]. Overall, this set of navigation strategies
relies on visual clues, thus offering dynamic spatial awareness for the UAV to build deci-
sions upon. For instance, a UAV can navigate through unstructured terrains with precision
because of real-time visual data interpretation. The BRF, on the other hand, ensures an accu-
rate maneuvering of the UAV, as is the case with map construction (i.e., through harnessed
images). From another perspective, vision-based strategies, mainly dependent on graphics,
are susceptible to poor lighting conditions and visual clutter, leading unfortunately to
errors in navigation. Table 1 encapsulates the pros/cons of vision-based UAV navigation
methods, along with the incorporated challenges and different considerations.

Table 1. Assessment of vision-based UAV navigation methods.

Vision-Based Navigation for UAVs

Advantages Disadvantages Challenges Field of Application

✓ Informative scene data
X Complex environment

structures reflect complexities in
the navigation algorithm

Real-time processing
requirements Agriculture

✓ Anti-jamming ability X Performance is impacted by
adverse weather conditions

Integration with image-based
sensing modalities Surveillance

✓ Relatively high accuracy X Vulnerable to visual illusions Power consumption Environmental monitoring

(b) Artificial Intelligence (AI)-based techniques

Unlike vision-based navigation techniques, Artificial Intelligence (AI) contributes
toward better autonomy in UAV navigation [101], mainly by allowing drones to learn
from their surroundings [102]. From another perspective, AI allows for automatic fea-
ture extraction while better managing onboard resources, which differentiates it from
traditional cognitive algorithms [103]. Concerning UAV navigation, AI algorithms are
characterized in this manuscript according to their paradigm as follows: AI algorithms that
involve mathematical model formulation to find the best solution to a given problem by
relying on predefined rules and objectives to guide the UAV are grouped in the first set
(i.e., mathematical optimization) [104]. The other set emphasizes a paradigm that trains
the models to make better decisions in UAV navigation (i.e., performance is evolved over
time based on training data and gained experience) [105].

(b.1) Mathematical optimization

For any given non-deterministic polynomial complex problem (i.e., the navigation
path of a UAV), mathematical optimization-based AI approaches achieve near-optimal
solutions [106]. The most dominant algorithms in this field are Particle Swarm Optimiza-
tion (PSO) [107], Ant Colony Optimization (ACO) [108], Genetic Algorithm (GA) [109],
Differential Evolution (DE) [110], and Gray Wolf Optimization (GWO) [111], as assessed in
Table 2 and defined below:
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• PSO: the optimal path for particles (i.e., drones with a swarm) can be attained by
means of a competition strategy-based PSO, after comparison between the current
global path with respect to other global candidates [112].

• ACO: the premature convergence of a single-colony ACO algorithm can be overcome
using multi-colony ACO, where multiple UAV groups search for the optimal routes to
the destination [113].

• GA: the 3D position of a UAV is encoded into a chromosome which in turn contains
information about the UAV’s position/motion (e.g., acceleration, rate of the climbing
angle, rate of the heading angle, etc.). The present-time 3D coordinates are obtained
from the chromosome decoding and then evaluated by a fitness function. Eventually,
path selection and information loss/exchange are referred to genetic operations [114].

• DE: in the case of a disaster (i.e., the navigation becomes harder), a constraint DE
converges toward the optimum UAV route by selecting the high fitness values and
minimum constraint violations among all probable traveling points [115].

• GWO: for fast convergence and efficient environmental exploitation, the conventional
GWO can be hybridized with other algorithms (e.g., modified symbiotic organisms
search), eventually yielding better UAV path navigation [116].

Table 2. Assessment of AI mathematical-based algorithms for UAV navigation.

Mathematical-Based AI Algorithms

Algorithm Ref. Performance Efficiency Contribution

PSO [112] High Moderate Non-feasible paths can be attained by means of an error factor
ACO [113] Moderate High Intra-/inter-colony yield a better convergence toward an optimum
GA [114] High High Chromosome decoding yields path navigation acknowledgment
DE [115] Moderate High Better convergence is achieved by means of selective mutations

GWO [116] High High Flexible algorithm hybridization with UAV navigation-based data

Each of the algorithms presented in Table 2 is nature-inspired, and they all aim to effi-
ciently explore the space of available solutions to achieve the best/optimal solution (i.e., in
this case, the best navigation route). Additionally, they utilize a population-based approach,
such that multiple candidate individuals (e.g., swarms in the case of PSO) are iteratively
improved. Optimal performance (i.e., finding the optimal route) is eventually achieved
by means of parameter tuning. In comparison with vision-based navigation techniques,
such algorithms require no image processing, thus implying no graphics complexities
(e.g., resolution, light conditions, etc.). The shared drawback among these algorithms is the
slow and/or premature convergence, reflecting reduced navigation accuracy.

(b.2) Training models

Representing model-based AI algorithms, training models aim to achieve near-optimal
solutions (i.e., best route/path for a UAV) by means of self-training and to learn how to
perform continuously better decision-making [117]. On the one hand, Reinforcement
Learning (RL) [118–120] allows UAVs to learn about the environment, yielding optimum
navigation. Because an agent and the environment represent the fundamental component
of RL, through interaction with the latter, an optimum path can be chosen by the agent
(i.e., UAV) using a Markov decision process [121]. From another perspective, based on
the reward-to-target compensation system (i.e., the closer the UAV to the target, the more
reward given by the environment), a Q-learning algorithm navigates an indoor UAV
through the control of a Proportional Integral Derivative (PID) controller [122]. Amid the
Q-learning algorithm context, Deep Reinforcement Learning (DRL) can be utilized for
UAV navigation by using Q-values, such that the Q-table is replaced with a Deep Neural
Network (DNN), hence offering better scalability [123]. Instead of performing repetitive
manual calculations, as is the case with the Q-table, the DNN can make predictions and
visualization the same way the human brain does [124]. Deep Learning (DL), on the other
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hand, with its different types such as Fully connected Neural Networks (FNNs) [125]
and Convolutional Neural Networks (CNNs) [126], helps in autonomous UAV navigation
under harsh environments by only utilizing the DNN part of the DRL. For instance, a UAV
can be navigated through DNN by means of an image augmentation method [127], as well
as via real-time photos and CNNs [128].

Despite the numerous advantages offered by training model-based AI in the field of
autonomous UAV navigation, such techniques require long training time and large compu-
tational power, in addition to presenting high complexity in algorithm implementation, the
need for extended information updates, and slow adaptation to new environments [129,130].
Generally, machine learning algorithms, as in the stated examples of FNNs and CNNs,
are restricted by computational power. This is mainly due to their functional mechanism,
which resembles heuristic search algorithms. In other terms, such training models use
computers to search and resolve the algorithm automatically through massive trial-and-
error. The algorithm is hence modeled using parametric optimization, beginning with the
framework, equations, and structure defined with initial parameters. The end goal in these
training models is to find the optimized parameters, through which the problem (in this
case, finding the best route for a UAV) can be solved. Therefore, smarter training models
(i.e., with more parameters to achieve a sharper convergence toward an optimal solution)
require more computational power. For such reasons, and in order to reduce complexities
in the hardware (e.g., GPU) implementation of these models, modern research aims to
optimize DL models by reducing their energy consumption and memory requirements. By
means of parameter quantization and pruning, network architecture search, knowledge
distillation, and compressed convolutional filters, the high computational power of CNNs
and FNNs can be reduced [131].

Path planning/obstacle avoidance

Navigation strategies encompass the overall approach guiding the UAV, mainly includ-
ing the physical execution of algorithms through actuators (i.e., motors). It is unlike path
planning and obstacle avoidance, which focus on determining the optimal trajectory while
reacting to the real-time obstacles encountered along the planned path. In other terms, path
planning/obstacle avoidance considers a feasible trajectory for the UAV to follow between
start and end points, ensuring a smooth path while detecting and avoiding obstacles in
the airspace. For the mentioned purpose, on the one hand, there exist passive and active
sample-based algorithms, such as rapidly exploring random graphs [132], Probabilistic
Road Maps (PRMs) [133], Rapidly exploring Random Trees (RRTs) [134], and Dynamic
Domain RRT [135]. In addition, obstacles can be momentarily avoided (i.e., collision-free
path) in collaboration with the RRT algorithm [136]. Other path-planning algorithms can
also be mathematically based (e.g., Mixed-Integer Linear Programming (MILP) [136], in-
teger programming [137], and non-linear programming [138]). Different path planning
algorithms can also be fused together to obtain better convergence accuracy and to over-
come the drawbacks of each algorithm. For example, in [139], a 3D PRM is used to form
the roadmap, combined with the A* node-based optimal algorithm, to find the optimal
obstacle-free path. From a different perspective, path planning can be bio-inspired, as such
algorithms require less learning. For instance, the Bio-Inspired Neural Network (BINN)
and Sparrow Search Algorithm (SSA) in [140] scan the flight environment, smoothing it
for further safe surface obtainment. By means of SSA, the nodes are determined with the
lowest comprehensive cost, hence achieving dynamic obstacle avoidance. Table 3 lists
different sets of path planning and obstacle avoidance algorithms.

Localization

The localization of a UAV is the process of determining its position in a given
environment, involving the obtainment of accurate information about the UAV’s spa-
tial coordinates (i.e., latitude, longitude, orientation, etc.). In relation to other naviga-
tion hierarchies (e.g., path planning), it enables a precise execution of the planned paths
and strategies [141–145]. Concerning vision-based UAV localization techniques, they can
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be characterized according to two main sets as follows: Relative Visual Localization
(RVL) [146,147] and Absolute Visual Localization (AVL) [148]. Among RVL methods,
the popular Visual Odometry (VO)-based techniques [149] analyze the difference in “ego-
motion” by comparing between current and previous frames while performing with Optical
Flow (OF) analysis [150]. Generally, all RVL methods suffer from drift over time [151], ig-
nited by the usage of recursive estimations in order to formulate new estimations. Because
of this, AVL methods have evolved in the field of UAV localization, mainly because of
their inherent immunity against drift over time. Unlike the working mechanisms for UAV
localization in RVL methods, AVL localizes a UAV by means of reference data, which are
mainly composed of precisely georeferenced aerial images [152]. For example, a UAV’s
absolute position can be acquired by means of normalized cross-correlation [153], as well
as via a Mutual Information (MI)-based dense approach, as shown in Figure 2 [154].

Table 3. Assessment of different sets of path planning and obstacle avoidance algorithms.

Algorithms Set Working Mechanism

Sample-based

• Divide the environment into a set of nodes.
• Connect nodes via “depth-first” search procedure.
• Begin the searching process for the optimal UAV route.
• Easy to implement and better work online.

Mathematical-based

• Describe constraints (i.e., dynamic/kinematic) mathematically.
• Bind the cost function.
• Require high computational resources.
• Work better offline.

Multi-fusion
• Integrate several algorithms.
• Save time.
• Appropriate to work online.

Bio-inspired

• Heuristic-based.
• Excellent handling of complex unstructured constraints.
• Mutation is a key factor for path optimization.
• Appropriate to work offline.
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The global reference map in Figure 2 is constructed from a mosaic of georeferenced
images, such that an “sRt” model (i.e., accounts for the 3D motions) is produced for usage
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after an assumption of a planar ground and a UAV image that is parallel to it, defined as
in (1).

w(Xt, µ) = sR2dxt + t2d (1)

where R2d represents a 2D rotation, s is a scale factor, xt is a point in space, and t2d is a
2D translation. The MI function’s maximum is found using Newton’s optimization warped
in the “sRt” model with respect to the global reference map. Results indicate small relative
mean squared errors in the localization data [154]. AVL methods for UAV localization over-
come the drawbacks of GNSS-based localization methods, such as reception issues [155],
spoofing attacks [156], and signal degradation [157].

4.1.2. Target Tracking

Within a UAV’s field of vision, target tracking refers to its process involving the
identification and localization of certain objects or points of interest [158]. Such a procedure
begins with data capturing (i.e., images of the surroundings) [159] through the embedded
cameras. Obtained data can then be pre-processed in order to ameliorate its quality,
therefore rendering the target tracking algorithm more accurate [160]. The target tracking
algorithm afterward identifies objects of interest in the processed data, thus providing class
probabilities and bounding box coordinates [161]. After refining the results through filtering
techniques [162], the UAV’s path control can be adjusted accordingly [163]. In this context,
regression-based approaches aim to compute the object’s correlative and class probability,
including YOLO [164], YOLOv2 [165], YOLOv3 [166], YOLOv4 [167], and YOLOv5 [168].
On one hand, YOLO aims to detect small objects in real time by identification in image
frames. The input image (i.e., taken by the UAV’s camera) is divided into a grid, where,
for each of the grid cells, the algorithm predicts the class probabilities, bounding boxes,
and object scores. Bounding boxes represent the potential locations of objects inside the
cell, and class probabilities are then assigned to each bounding box (i.e., the likelihood
of an object belonging to a particular class such as a car, person, etc.). At the last stage
of the YOLO algorithm, the certainty regarding the object inside a box is calculated after
multiplying the class probability with the confidence score. Despite its real-time image
processing capability, YOLO may face challenges in adapting to dynamic environments,
localizing small objects, and handling overlapping objects [169].

With the drawbacks of YOLO, YOLOv2 represents an updated version with enhanced
bounding box predictions through the implementation of anchor boxes. Additionally,
YOLOv2 can handle more object categories because of its incorporated hierarchical clas-
sification with enabled joint training on multiple datasets. It can be therefore stated that
YOLOv2 detects more diverse object classes than YOLO with an improved overall accuracy.
Still, YOLOv2 suffers from overlapping object suppression difficulties [170]. Successively,
as an improvement of YOLOv2, YOLOv3, consists of a hybrid architecture composed of
Darknet-53 [171] and ResNet [172]. It detects multi-scale objects via a feature pyramid
and integrates the regression of the bounding box, class prediction, and score calcula-
tion in a single forward pass. Despite its increased effectiveness over its predecessors,
YOLOv3 still lacks temporal information consideration, making it less suitable in dynamic
environments [173].

The consecutive YOLOv4 is mainly characterized by three grids as follows: backbone
(utilizes the CSPDarnet53 classifier), neck (a parameter assembling approach within lessen
the information trajectory), and head (same as in YOLOv3). The evaluation target in
YOLOv4 is improved compared with its predecessors via Generalized Intersection over
Union (GIoU), which is used as a loss function [174]. As compared with YOLOv3, the
backbone architecture in YOLOv4 enhances feature extraction with improved accuracy
because of its progressive training with larger image sizes [175]. Forwardly, YOLOv5
represents a more streamlined model since it removes the CSPDarknet53 backbone, in
addition to focusing on model size reduction [176]. As a visual interpretation, Figure 3
presents the graphics of the same objects detected by YOLOv3, YOLOv4, and YOLOv5 [177],
where the boundary boxes become more precise with the evolution of each YOLO (i.e., by
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means of YOLOv5, the boundaries of each tennis court become tighter and more realistic
with respect to the predecessors, higher degree of confidence of the objects’ classes, etc.).
Moreover, YOLO-based target tracking algorithms kept evolving toward YOLOv6 [178],
YOLOv7 [179], and YOLOv8 [180], aiming to have better object detection accuracy than
each predecessor. The comparative assessment of YOLOv6, YOLOv7, and YOLOv8 is
represented in Table 4.
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Table 4. Assessment of the YOLOv6, YOLOv7, and YOLOv8 algorithms.

YOLOvx-Algorithm Aspect

Algorithm Ref. Working Mechanism Additional
Improvements Performance

YOLOv6 [181,182]

• Anchor-free.
• Decoupled head architecture

(i.e., backbone: EfficientRep and
neck: Rep-PAN).

• Two loss functions for
classification/regression.

Knowledge distillation
(i.e., teacher–student

training model)

Achieves higher mean
Average Precision (mAP) at

different Frames Per
Second (FPS) than its

predecessors
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Table 4. Cont.

YOLOvx-Algorithm Aspect

Algorithm Ref. Working Mechanism Additional
Improvements Performance

YOLOv7 [183,184]

• Extended-Efficient Layer Aggregation
Network (E-ELAN) is implemented in
its backbone.

• Compound model scaling.
• Module level re-parametrization.

Presents trainable
Bag-of-Freebies

Improving accuracy
simultaneously with

maintained high
detection speeds

YOLOv8 [185]

• Backbone (CSPDarknet53) is modified
with five times sampled input features.

• An enriched information flow is
acquired by means of C2f (i.e., the
number of bottlenecks).

• Feature maps are efficiently pooled via
the Spatial Pyramid Proofing Fast
(SPPF) module.

Dynamic task-aligned
allocator

Positive and negative
samples are specified by an

anchor-free
detection model

4.1.3. Payload Integration and Control

Depending on the UAV flight mission (i.e., the purpose of the flight), additional
equipment (e.g., sensors, packages, etc.), referred to as payload [186], can be embedded
with it in order to fulfil its mission’s objectives. In other terms, payload refers to any added
weight or equipment to the UAV beyond its essential components for flight. With that being
said, a payload can disturb a UAV’s proper flight, representing an external physical trigger
for swinging and other forms of physical perturbations [187]. Therefore, payload control
aims to operate and control the added weight, thus ensuring a UAV’s stable flight. For
that purpose, suspended payload perturbation can be suppressed by means of a Nonlinear
Disturbance Observer (NDO)-based neoteric anti-disturbance control strategy [188]. For
the case of a cable-suspended payload, the full nonlinear dynamic behavior of a UAV is
stabilized through a nonlinear control technique with a repetitive algorithm: reference
points are tracked via back-stepping and integral sliding mode control, where the iterative
algorithm shuts the error terms down to zero [189]. Similarly, for suspended-load systems,
the UAV’s flight is stabilized through a nonlinear controller with the following working
mechanism [190]: at each iteration, the UAV’s dynamic model undergoes an approximate
linearization (i.e., relying on first order Taylor series expansion) at equilibrium; an H-
infinity feedback controller is then designed for the resulting approximately linearized
model. This results in fast and accurate tracking of the entire UAV system (incorporating
the payload). The stability of the control scheme is justified with Lyapunov analysis [190].
Many other embedded payload solutions in UAVs exist [191]. Hence, it is easier to choose
a control technique, where payload control is imperative for all tasks demanding high
precision, adaptability, and real-time decision-making, expanding the possibilities for
aerial applications.

A UAV control subsystem is diversified in nature, where its main aim is to ensure an
effective flight, most importantly with autonomous operation [192]. Regardless of the UAV
type (e.g., fixed wing [193], rotary wing [194], etc.) and its corresponding field of application
(e.g., surveillance, packet delivery, etc.), its corresponding mission must successfully bypass
obstacles and concisely follow the pre-planned path. AI-based navigation strategies excel
in the adaptation to dynamic environments as compared to vision-based techniques. On
the contrary, vision-based navigation techniques require less training than AI models.
From another perspective, multi-fusion and bio-inspired path planning methods demand
higher computational facilities than their relatives because of the fact that they involve data
integration. As for the localization criteria, VO focuses on incremental changes, while RVL
is based on local references and AVL relies on global coordinate systems. Considering target
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tracking, the reviewed models of the YOLO algorithm present real-time processing and
detect objects based on the entire image context, but they still show less tracking ability in
complex environments when compared with other specialized algorithms such as Kalman
Filter [195], and Deep-SORT [196]. The payload deployment on the final destination cannot
be generalized under defined methods or techniques since it is seen that such a criterion
mainly depends on the geometry of the load, its weight, its installation/release mechanisms,
and other application-specific constraints.

4.2. Computing

In relation to the previous control subsystem, the presented algorithms for a UAV’s
navigation (whether vision or AI-based), as well as for path planning, obstacle avoidance,
localization, target tracking, and payload deployment, need physical onboard systems
for treatment. In other words, the execution of such algorithms is performed through
computerized systems inside the UAV, serving as data processing, data logging, and
all forms of diagnostics. Additionally, the raw data provided by the onboard sensors,
and communication protocols with external parties, are also processed in the computing
subsystem. In this context, a UAV’s computing subsystem encompasses two main sets
including Single-Board Computers (SBCs) and System on Module (SoM).

(a) SBCs

As its name indicates, an SBC represents a complete computer that is built on a single
circuit board, including a Central Processing Unit (CPU), Random Access Memory (RAM),
storage, Input/Output (I/O) interfaces, and other features similar to a functional computer.
Because of the fact that SBCs have smaller form factors, they are found to be compact and
suitable for usage in space-restricted applications, such as in a UAV [197]. For UAV process
management, the most common SBCs are Raspberry Pi, Odroid XU4, and NVIDIA Jetson
(nano, TX2, Xavier).

Raspberry Pi

Beginning with Raspberry Pi 4, it represents a new Raspberry Pi-based SBC that is
increasingly involved in UAVs. This model is powered by a Broadcom BCM2711 quad-core
ARM Cortex-A72 processor, which can be clocked at up to 1.5 GHz. It is available with
up to 8 GB of Low Power Double Data Rate 4( LPDDR4) RAM, thus providing a stronger
ability to deal with a UAV’s multitasking applications. Featuring a VideoCore VI GPU,
supporting OpenGL ES 3.x, smoother graphics are rendered, hence better detecting objects
and avoiding obstacles in UAV’s path planning. Aside from Universal Serial Bus (USB)
and ethernet connectivity, Raspberry Pi 4 presents a built-in dual-band Wireless-Fidelity
(Wi-Fi) of 2.4 GHz and 5 GHz, in addition to Bluetooth 5.0, hence presenting flexible
communications with UAV remote parties. The storage capacity (e.g., used for video and
images records) can be expanded by means of microSD cards, where its 40-pin General
Purpose Input–Output (GPIO) facilitates connections to other computing platforms and
sensors [198]. In the field of UAV applications, maneuvering was improved when an open
source and MAVLink communication were encoded onto a Raspberry Pi 4 onboard SBC
with a Pixhawk Cube 2.1 flight controller. This integration is shown in Figure 4 [199].

Figure 4 shows how Raspberry Pi 4 can flexibly make decisions concerning a UAV’s
flight by dynamically adapting to different communication protocols with only a few
subsystems (e.g., sensors). The data recorded with Raspberry Pi 4, clearly indicates the
accuracy in UAV object detection [199]. For an object tracking-based UAV mission, when
the Patch Color Group Feature (PCGF) framework was embedded on a Raspberry Pi
4, it resulted in 17 FPS offering a good execution speed with low PCGF computational
complexities [200]. Older Raspberry Pi models, such as Raspberry Pi 2 B+, are effective in
illustrating the relationship between time constraints of real-time systems and the analysis
of temporary computational complexity [201], hence better managing failure possibilities
in real-time processes.
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Odroid XU4

As an alternative to Raspberry Pi as a UAV’s SBC, Odroid XU4 possesses a Samsung
Exynos 5422 octa-core processor, consisting of four ARM Cortex-A15 cores, clocked at
2 GHz. The remaining cores consist of ARM Cortex-A7 clocked at 1.4 GHz. This core’s com-
bination provides a trade-off between performance and energy efficiency. This SBC comes
loaded with 2 GB of LPDDR3 RAM, which is sufficient for multitasking and general UAV
processing applications. Graphics are featured via a Mali-T628 MP6 GPU, thus proving an
ability to withstand UAV-based decent graphics (i.e., taken through cameras). In addition
to USB and Ethernet communication modules, Odroid XU4 supports Wi-Fi communication
via an external USB adapter. Instead of a 40-pin GPIO, as in the case of Raspberry Pi,
Odroid XU4 presents a 30-pin GPIO header, hence reflecting lower accommodation with
external devices and sensors. One major drawback of this SBC compared with Raspberry
Pi is that it produces significant heat under heavy computational loads, hence implying the
need for a cooling utility (e.g., fan, heat sink, etc.) and posing more challenges in front of
space limitations [202]. The on-board processor shown in Figure 5a represents an Odroid
XU4 deployed to provide the motor control operations [203].
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For the Odroid XU4 used in the UAV in Figure 5, its docking mechanism (i.e., over a
tree branch, as in Figure 5b) is designed by means of a three-arm manipulator, thus allowing
for resting periods (for whatever reasons) during its flight. From a different perspective,
for visual-based detection as well as tracking cooperative UAVs, Odroid XU4 can embed
an algorithmic architecture based on YOLOv2. Computational time and false alarms can
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hence be reduced through navigation data exploitation from tracker-target UAVs. Over
90% of target line-of-sight were correctly detected and accurately estimated [204].

NVIDIA Jetson

NVIDIA Jetson is a series of SBCs designed specifically for embedded applications,
presenting a leading AI-compatible platform in a compact and energy efficient form factor.
An NVIDIA Jetson SBC includes a dedicated GPU, optimized for parallel computing, sensor
fusion, computer vision, etc. As a sub-model, Jetson TX2 represents a supercomputer-
on-module with up to 8 GB of LPDDR4 RAM and a dual-core NVIDIA Denver 2 CPU
with quad-core ARM Cortex-A57. The NVIDIA Pascal graphics processor with 256 cores
represents its GPU, thus allowing for higher visual resolutions [205]. In a drone-based
pedestrian tracking process [206], Jetson TX2 enables real-time tracking while effectively
addressing challenges relating to computing power limitations. Additionally, it achieves
the real-time processing of DL-based object tracking tasks. This is mainly performed with
assistance from both CPU as well as GPU integrated within Jetson TX2, showing high
efficiency in target tracking based on 4K video streams captured by the UAV at an elevation
of 50 m. Another model of NVIDIA Jetson SBCs, Jetson Nano, is found to be capable of
embedding an improved version of YOLOv4, the Fast-YOLOv4 [207]. Figure 6 elaborates
the conjunction of Jetson Nano with other components of the object detection system.
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The main role of the Jetson Nano in Figure 6 (i.e., 128-core CUDA Maxwell GPU, 4 GB
LPDDR4 RAM, quad-core ARM A57 1.43 GHz) is the real-time analysis of image data, in
addition to sending abnormal results to the workstation through Wi-Fi. The resulting mAP
reached 90.62% with a 54 FPS [207]. Table 5 provides a comparative assessment of the
different reviewed SBCs used in UAV processes.

(b) SoM

A SoM reflects an integrated computing platform encompassing the essential compo-
nent of a computer (e.g., CPU, RAM, storage, etc.) onto a single module, simplifying the
build of larger embedded systems. While both SBCs and SoM serve for similar purposes in
embedded systems (e.g., flight control of a UAV), they differ in terms of the form factor
and design architecture. On one hand, SBCs come packaged with all essential components,
which makes them standalone computing systems, thus neglecting any need for additional
hardware. A SoM, on the other hand, cannot directly connect to peripherals because it
typically does not have I/O sockets [208]. For UAV control, different SoMs can be used
such as NXP I.MX8M [209], Rockchip RK3399 [210], Qualcomm Snapdragon [211], and
STM32 [212]. Regarding the work in reference [213], NXP I.MX8M provides a custom
AI video-processing-focused hardware platform for the deployment of DL models. By
integrating a Neural Co-Processing Unit (NCU), it enables the process of 2.3 tera operations
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per second, hence considerably reducing the processing time for the implemented DL
models used in smart cities’ smart-camera-systems. Similarly, in [214], Rockchip RK3399
serves as the SoM for video data (recorded in real time by a UAV) processing, providing
more speed and prohibiting delays in video transmission in 5G networks. For the purpose
of UAV safety landing in a GPS-denied environment, the work in [215] utilized a “remote-
marker-based” tracking algorithm that is implemented on a Qualcomm Snapdragon SoM.
The developed CNN “LightDenseYolo” algorithm, by means of an embedded Qualcomm
Adreno 540 GPU, extracts features from an input image. This extraction can be used to
predict a marker’s location by a visible light camera sensor installed on the UAV. The
suggested methodology outperforms state-of-art UAV object trackers [215].

Table 5. Assessment of UAV SBCs.

SBC Processor RAM Communication
* GPU CPU Clock Pros Cons

Raspberry Pi 4 64-bit quad-core
ARM

4 GB
LPDDR4

Ethernet, USB,
HDMI,

Bluetooth,
Wi-Fi, I2C, SPI,

UART

Videocore VI 1.5 GHz Upgradable
RAM to 8 GB Overheating

Odroid XU4 Samsung Exynos
5422 octa-core

2 GB
LPDDR3

USB, Ethernet,
HDMI, I2C,
SPI, UART

Mali-T628
MP6 2 GHz

High
processor

performance

Incompatible
with 3.3 V

and 5 V
accessories

NVIDIA
Jetson

TX2

Dual-core
NVIDIA Denver

2 64-bit;
quad-core ARM

Cortex A57

8 GB
LPDDR4

Ethernet, USB,
HDMI, UART,
SPI, I2C, CAN

256-core
NVIDIA
Pascal

2 GHz GPU
acceleration

High power
consumption

Nano Quad-core ARM
Cortex A57

4 GB
LPDDR4

Ethernet, USB,
HDMI, SPI,
I2C, UART,

CAN

NVIDIA
Maxwell 1.43 GHz

Good
parallel

processing
Overheating

* HDMI: High-Definition Multimedia Interface; I2C: Inter-Integrated Circuit; SPI: Serial Peripheral Interface;
UART: Universal Asynchronous Receiver–Transmitter; CAN: Controller Area Network.

Concerning a different approach than in the previously mentioned works, the work
in [216] emphasized monitoring a mobile network (i.e., performing testing and measure-
ments) by means of a UAV through the Galilelo satellite network. The proposed software
runs on a Qualcomm Snapdragon SoM (embedded in a Xiaomi mi 10 lite), enabling ef-
fective and accurate remote extraction of mobile network data (e.g., signals levels, data
logging, information visualization, etc.). The authors of the reference [217] take a different
perspective, based on an improved algorithm involving greater immunity versus cyber
attacks in the Internet of Drones (IoD) on a Qualcomm Snapdragon SoM. Their results
indicate a stubborn protocol with good resistance in front of security attacks of a swarm of
drones used for smart city real-time data collection. Alternatively, in reference [218], the
aim is to rescue injured humans swiftly by means of mission choice-driven UAV swarm
cooperation. After the transfer of a suspected target’s location to a self-organizing network,
a bio-radar UAV rechecks for any survivors via a respiratory characteristic-based algorithm
that is processed by a STM32 SoM. The data packets sent by the STM32 eventually allow
the emergency supplied drop-off by means of a nearby emergency UAV according to the
location/vital signs of the target, showing good success and accuracy. Specifically, the
STM-based SoM finds various applications in UAV processes. For instance, aside from
injured human targeting and help, STM32 succeeds in the analysis of a quadcopter’s stabil-
ity, first, by reading data of angular velocity and acceleration. Then, by supplying Pulse
Width Modulation (PWM) signals to an Electronic Speed Control (ESC), the brushless DC
motors are correspondingly regulated, providing more controllability and a reduction in the
response time of the UAV [219]. These SoM also find use in human–UAV interactions based
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on machine learning in wearable gloves [220]. With one STM32, five flex sensors, and one
Inertial Measurement Unit (IMU) sensor installed in each glove, gestures are recognized
and equivalently translated in a control command for the UAV.

The variety of SoMs that can be employed in a UAV process, as can be concluded
from the small survey of the literature presented above, makes their selectivity criterion
challenging, especially since each comes with specific pros/cons. Therefore, for an optimal
SoM selection, a standard assessment must be conducted in which standard factors, such as
programming complexities, communication protocols, form factors, and, most importantly,
the UAV’s mission objectives, must be taken into consideration. This required assessment
is presented in Table 6. It is worth saying that after analyzing Table 6, it can be concluded
that some SoMs may excel in demanding less computational power, while others prioritize
power efficiency. For some UAV applications, mainly related to network monitoring, and
integration capabilities (i.e., ability to seamlessly communicate with remote parties, sensors,
etc.) Qualcomm Snapdragon would be prioritized the most.

Table 6. Assessment of different UAV SoMs.

SoM Brand

Criteria NXP I.MX8M Rockchip RK3399 Qualcomm
Snapdragon STM32 *

Processor ARM Cortex A53, A72 ARM Cortex A53, A72 ARM Qualcomm Kryo ARM Cortex-M4

RAM Up to 4 GB LPDDR4 Up to 4 GB LPDDR4 Up to 8 GB LPDDR4 Up to 640 kB SRAM

Main programming
languages

C, C#, C++, Python,
Java C, C++, Python, Java C, C#, C++, Kotlin, Java C, C++, MicroPython

Programming structure
Sequential, concurrent,

asynchronous,
real-time

Sequential, concurrent,
asynchronous,

real-time

Sequential, concurrent,
asynchronous,

real-time

Sequential, concurrent,
asynchronous,

real-time

Embedded wireless
communication Wi-Fi, Bluetooth Wi-Fi, Bluetooth Wi-Fi, Bluetooth -

Power consumption Low Moderate Moderate Very low

Supported temperature
range −40 ◦C to +105 ◦C −40 ◦C to +80 ◦C −40 ◦C to +105 ◦C −40 ◦C to +125 ◦C

Outperforms in Multimedia, industrial
IoT

Multimedia, industrial
IoT

AI, graphic processing,
5G

Real-time processing,
embedded applications

* SRAM = Static Random-Access Memory.

The assessment presented in Table 6 adds a straightforward approach to an optimal
selection of a SoM in a UAV process. For instance, when the selection is mainly based on
the UAV’s flight purpose, on one hand, for aerial surveillance, the Qualcomm Snapdragon
can be the best candidate because of its powerful GPU performance (i.e., high-definition
real-time video processing). Additionally, its support for 5G connectivity ensures fast
data transmission, as required for real-time surveillance. Other UAV missions can involve
package delivery, on the other hand. Aside from parcel delivery, emergency kits, medical
supplies, and packages can, for example, the payload consists of electrical sensors to be
deployed on the overhead electrical transmission lines. Accordingly, such applications
would require accurate navigation and good management of the payload’s weight. For
such particular applications, Rockchip RK3399 is found to be optimal, according to Table 6.
This is mainly because it offers a trade-off between high performance and economic power
consumption, hence achieving autonomous navigation while optimizing battery life. For
longer missions (e.g., crops assessment and agriculture) that require high real-time process-
ing capabilities, STM32 is found to be the best candidate among the others because its very
low power consumption extends the UAV flight’s time, along with its integrated ability for
high data collection.
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4.3. Communication

Between the UAV and external entities (e.g., Ground Control System (GCS)), a bidirec-
tional data exchange is enabled by means of the communication subsystem. For applications
involving a swarm of drones, it also enables mutual communication and data exchange
between each UAV, transmitting control commands, captured images, and other data. It
might be the case that the computing subsystem processes the data from sensors through
the communication subsystem; however, the focus in this paper took into consideration
only remote communication with external parties. Based on this approach, the communica-
tion modules/protocols were found to include Long Range (LoRa), Wi-Fi, Bluetooth Low
Energy (BLE), and Long-Term Evolution for Machine-Type Communication (LTE-M).

(a) LoRa

LoRa refers to long-range low-power wireless communication technology allowing
for telemetry between a UAV and an external party [221]. Its physical layer employs a
private Chirp Spread Spectrum (CSS), with LoRaWAN as its MAC layer [222]. Within the
framework of UAVs, the identifier of a UAV is transmitted with real-time status tracking
through LoRa [223], as well as other data concerning cases of environmental disasters [224].
From a different perspective, LoRa is utilized along with UAV-embedded IoT devices to
track merchandise and increase their location accuracy in [225], whereas in [226], LoRa was
employed to link a UAV with air pollution monitoring stations. Although LoRa presents
the capability to transmit for up to 15 Km in rural areas [227], over unlicensed bands at
frequencies ranging from 433 MHz to 923 MHz, it suffers from a low data rate, ranging
between 0.3 and 5.5 kilobytes per second (kbps) [228]. This communication technology can
be enabled inside a UAV through different modules, for example, SX1278 [229] supporting
the frequency range from 137 MHz to 525 MHz. Alternatively, RN2483 [230] can also enable
LoRa inside a UAV with a data rate of 300 kbps, similar to HOPERF RFM95W-868S2 [231],
which works on a frequency of 868 MHz.

(b) Wi-Fi

In lieu of LoRa, Wi-Fi enables remote control in UAVs, in addition to real-time data
transmission, telemetry with GCS, and communication with other UAVs [232]. Wi-Fi
communication in UAVs usually follows the Open System Interconnection (OSI) model,
consisting of seven layers [233]. Within the framework of UAVs, the wireless systems’ range
(i.e., coverage zone) is extended through an intel Galileo board installed in a UAV, where Wi-
Fi is configured in ad hoc mode [234]. A regional inspection and monitoring system based
on Wi-Fi is established in reference [235], in which the signal strength model based on the
Wi-Fi directional gain antenna is introduced. The leader–follower trajectory scheme in [236],
on the other hand, implements a Robot Operating System (ROS) based communication
system for a swarm of UAVs via Wi-Fi and MavLink serial forwarding. Tests result in fast
responses between workstation–leader and leader–follower communication (0.2 S and 0.42
S, respectively). Unlike LoRa, which is featured by a coverage zone in kilometers, Wi-Fi
technology has a limited range (maximum of 300 m outdoors). From another perspective,
Wi-Fi presents an elevated throughput data rate, which varies according to each protocol
(e.g., 802.11ax, 802.11ac wave2, 802.11ac wave1, 802.11n, 802.11g, 802.11a, 802.11b, [237]).
Different modules exist that enable Wi-Fi communication on a UAV, of which ESP8266 [238]
enables the SBC/SoM to connect to 2.4 GHz via the 802.11bgn. A better alternative to
ESP8266 is ESP32 [239], which presents a Bluetooth connectivity, also featuring a dual-
core processor allowing for better multitasking. CC3000 [240] can alternatively add Wi-Fi
functionality to a UAV, supporting the 802.11b/g protocol, but, on the other hand, it does
not support the AP mode.

(c) BLE

Representing an enhanced version of Bluetooth, BLE is designed for applications that
require short range demands with low power, having the same bit rate, frequency range
(i.e., from 2.4 GHz to 2.48 GHz), and range of traditional Bluetooth [241]. In combination
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with the Received Signal Strength Indicator (RSSI) technique, the BLE-RSSI combined
method presented a lack of precision in UAV positioning, which was overcome in [242].
With regard to UAV navigation in GNSS-denied environments, an indoor positioning
system for UAVs is set up through BLE beacons by analyzing the RSSI, where the final
position estimation is acquired by trilateration [243]. In the catapult launcher of small
UAVs in [244], BLE consisted of a positioning feedback system, providing a continuous
connection between the user and the control panel. BLE can be added to a UAV through
the nRF54H20 System-on-Chip (SoC) which presents multiple ARM Cortex-M33 processors
with a 1 MB of RAM, providing a long range with a 10 dBm of transmission power [245].
The nRF54LI5 SoC from the same series, on the other hand, comes with a single 128 MHz
Arm Cortex-M33 processor and 256 KB of RAM, with 8 dBm of transmission power [246].
Different from the nRF54-based series, CC2650 [247] represents another medium with
which BLE communication can be enabled in a UAV, and it comes equipped with a 20 kB of
RAM and up to 31 GPIO ports.

(d) LTE-M

A low-power, wide-area, cellular-technology-based communication supports machine-
to-machine interaction as well as IoT. LTE-M presents a high data rate and an increased
bandwidth and can be easily integrated with existing cellular networks [248]. By means
of LTE-M, the range of UAV operations can be extended by the supported Beyond Visual
Line of Sight (BVLOS) [249]. In [250], the performance of LTE-M was investigated with a
UAV for a distance of 450 feet, where 5G communication was found to have better signal
strength. To equip UAVs with LTE-M communication, Quectel BG95-M3 LGA [251], on the
one hand, presents a good solution featured by an ultra-low power consumption as well
as multiple frequency band support. Telit ME310G1-WW [252], on the other hand, adopts
another low-power operation by adapting a specific wakeup–transmit–sleep mechanism,
also supporting various LTE bands and GNSS technologies.

According to the different surveyed communication technologies that can be employed
in a UAV, the choice for a specific module based on communication theory/protocol can be
challenging. It is true that all methods share the wireless connectivity criterion, but still,
many other factors must be taken into consideration when embedding a communication
module in a UAV. Firstly, the range of communication (i.e., coverage zone) reflects a great
impact factor, and it can be noticed between LoRa and BLE. Environmental constraints
(e.g., signal degradation, deterioration, and complete loss) are another key factor for the
choice of the surveyed modules. How to program each module is another topic, since the
programming requirement is another decisive factor. LoRa-based modules can cover wide
zones with a high bitrate, but their supported frequencies may not intersect with those
received in the ground/remote station. LTE-M based modules, on the other hand, possess
the greatest bitrate (i.e., optimum for high data exchange) but are heavily dependent on
network coverage. Table 7 provides a standardized assessment of each physical module in
each of the four main communication sets surveyed (i.e., as much as applicable since some
differ intrinsically).

4.4. Sensory

Sensors in UAVs represent the data source for each of the previous main subsets.
In other terms, the physical data acquired from different sensors are computed in the
decision-making control subsystem and communicated (i.e., when necessary) with other
internal/external parties. The level of autonomy in a UAV’s application (i.e., fully au-
tonomous [253], semi-autonomous [254], or human-controlled [255]) majorly depends on
the type/number of sensors. For instance, autonomous UAVs are found to be capable of
executing missions without human intervention, which is related to their installed wide
array of sensors, thus allowing a better understanding of the surrounding environment.
Additionally, a popular case is sensor fusion in autonomous UAVs, where combined data
improve perception and self-decision-making [256]. Manually controlled UAVs, on the
other hand, have minimal sensor payloads since they follow a human-determined path
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where their embedded sensors are mainly for emergency cases (i.e., electric power dropouts,
etc.). Here, the surveyed sensors that can be installed onboard UAVs are mainly classified
as either environmental, vision, or position sensors, as shown in Figure 7.

Table 7. Assessment of different UAV’s communication modules.

Characteristics

Range *

Communication
Technology Module Power

Consumption
Indoor
[km]

Outdoor
[km]

Supported
Frequency

Ranges [Hz]

Max Data Rate
(kbps) RAM (Bytes) Transmission

Power [dBm]

LoRa
SX1278 Low 5–10 20 137–1020 MHz 300 256–512 20
RN2483 Low 5–10 20 433;868;915 MHz 300 32 k 18

HOPERF
RFM95W-86852 Low 5–10 20 860–1020 MHz 300 256–512 20

Wi-Fi
ESP8266 Moderate 0.05–0.1 0.3 2.4 GHz 72 96–160 19
ESP32 Moderate 0.05–0.1 0.3 2.4;5 GHz 150 520–320 k 19–20

CC3000 Moderate 0.03 0.1 2.4 GHz 10 8 k 14

BLE
nRF54H20 Low 0.05–0.15 0.2–0.4 2.4 GHz 2 192–256 −40 to +8
nRF54LI5 Low 0.05–0.15 0.2–0.4 2.4 GHz 2 192–256 −40 to +8
CC2650 Low 0.05–0.15 0.2–0.4 2.4 GHz 2 20–80 k −40 to +5

LTE-M
Quectel

BG95-M3LGA Low - - LTE-M/NB-
IoT/GSM/GPRS 588 32–64 M 23

Telit
ME310G1-WW Low - - LTE-M/NB-IoT 588 64 M 23

* The range of the LTE-M modules is dependent on network coverage. Other ranges are taken as the most probable
averages.
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Environmental sensors

(a) Pressure sensors

A UAV’s flight control and navigation are affected by the data provided by the environ-
mental sensors, such as temperature, humidity, and pressure. For instance, safe flight levels
are maintained via the altitude information provided by the pressure sensors. Altitude
measurements are generally challenging to obtain, especially because of vibrations and
fast-changing environmental conditions. In [257], these challenges were first addressed by
focusing on the UAV’s vertical movement measurements. The altitude was finally deter-
mined via the data obtained from the barometric pressure sensor MS5611, fused with other
data from an ultrasonic sensor. MS5611 is a high-resolution barometric pressure sensor
(24-bit Analog to Digital Conversion (ADC)), with a pressure accuracy of ±1.5 mbar and an
operating range from 10 to 1200 mbar [258]. Another digital pressure sensor, BMP388, can
also be UAV-embedded with a less sensitive operation range between 300 and 1250 mbar
and has a typical relative accuracy of ±0.08 mbar [259]. This BMP388 finds application in
UAV automative radar for earth/land monitoring processes [260].
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(b) Temperature sensors

Apart from pressure sensors, temperature sensors help in the monitoring processes
of ambient conditions. Thus, they ensure an optimal performance of onboard electronics
as well as propulsion systems by declaring fault signals in the case of over-/underheating
conditions. On the one hand, DHT11 (combined temperature and humidity sensor) collects
corresponding environmental data from a specific location, which is dedicated to being
sent to a webserver for remote monitoring [261]. Other temperature sensors, such as the
one in reference [262], are used for calibrating the grey in the photos taken from thermal
cameras. In [263], on the other hand, temperature sensors were found to be (in addition to
other sensors) effective in soil monitoring and the proper management of crops.

(c) Humidity sensors

Similar to the work in [261], the combined temperature–humidity DHT11 sensor was
used in [264,265] to create an efficient IoT-based weather station. As an alternative to
DHT11, SHT75 [266], representing a digital pin-type humidity sensor with ±1.8% typical
relative humidity accuracy, was used in [267] to measure air humidity for the purpose
of constructing an intelligent weather station. From a different point of view, SHT40
in [268] participated in the construction of pressure–temperature–humidity probes for
distributed atmospheric monitoring via a UAV. Lastly, a relative humidity sensor was
employed in [269] as a sub-component from a massive project aimed at monitoring the
temperature and humidity in Antarctica.

It can be generally deduced that humidity sensors help to ensure a stable UAV flight
by preventing condensation-related problems. The synergistic operation of the three
environmental sensors enhances a UAV’s situational awareness, hence allowing a dynamic
accommodability to changing environmental conditions. Additionally, environmental
sensors can have external duties that are not related to UAV navigation and flight safety,
mainly as contributions to effective weather stations, as stated in the survey of the literature
stated above.

Vision sensors

Different from environmental sensors, vision-based sensors provide a visual percep-
tion of a UAV’s surrounding environment by generating an image of the captured scene.
The processed image is then forwarded to its relevant computing subsystem in order to
make a decision based on it in the control subsystem. For example, the raw version of
the obtained image can be processed through any of the SBCs (e.g., Odroid XU4, NVIDIA
Jetson), where, by means of the YOLOvx navigation control algorithm, targets can be
efficiently tracked while obstacles avoided. Two of the most used vision-based sensors in
UAVs are RGB-D and thermal cameras.

(a) RGB-D Cameras

An RGB-D camera provides a perception (i.e., closely related to human visual percep-
tion) of a UAV’s surroundings in the form of RedGreenBlue (RGB) images. As previously
mentioned, targets can be tracked, and the UAV’s localization can be acknowledged upon
the processing of RGB images to computer vision algorithms through SBCs/SoM. Spatial
distances of targets can also be calculated via the RGB images’ depth information, thus
providing better collision avoidance strategies. Overall, such a camera’s quality is assessed
from its frame rate, aperture, and shutter type [270]. One type of RGB-D camera is the
Intel Realsense D435 [271], which was found to be ideal for fast moving applications in
low light and a wide field of view. It has an RGB frame rate of 30 FPS and an RGB frame
resolution of 1920 x 1080. Intel Realsense D435 was used in reference [272] to collect depth
measurements in order to identify the parameters of the depth camera noise model, thus
enabling more accurate SLAM algorithm execution. RGB-D cameras can also be involved
in 3D mapping to describe a UAV’s surroundings after SLAM fusion with a UAV [273].
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(b) Thermal Cameras

A thermal camera is an equipment that captures and detects Infrared Radiation (IR)
emitted by surrounding objects. This type of camera allows for imaging based on heat,
which can be used for aerial surveillance, environment monitoring, and search–rescue
processes [274]. Thermal cameras find applications in different UAV processes, such as the
bridge infrastructure assessment shown in Figure 8.
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As shown in Figure 8, a bridge’s infrastructure non-destructive testing by means of
a UAV saves time and gives more accurate and faster results than visual inspection. The
actual captured image of the bridge (Figure 8, bottom left) is reflected in an equivalent
thermal image (Figure 8, bottom right), revealing the cohesion between different parts of
the bridge.

Position sensors

UAV movements are detected via position sensors, where the latter provide spatial
information with respect to a defined reference. Such sensors are generally used in UAVs
to pinpoint their precise location in order to later share it with the user/control operator
(for cases of semi-autonomous and human-controlled UAVs) or to compute it in the naviga-
tion control (for cases of autonomous UAVs). Therefore, position sensors determine the
orientation of a UAV in addition to providing odometric information about it [276]. In this
paper, position sensors are mainly classified according to their purpose of usage/outcome,
characterized as either tracking/localization or proximity/radar.

(a) Tracking/localization

The localization-based navigation strategy as well as the target tracking scheme under
the control section obtain their inputs from sensors such as GPS, IMU, and Ultra-Wide
Band (UWB) [277]. On one hand, GPS sensors provide accurate time–space information for
UAVs. Specifically, the Real-Time Kinematic (RTK) GPS technique provides positioning
updates with high frequency and is thus able to withstand a UAV’s swift velocities and
high maneuverability [278]. For instance, a high-precision RTK GPS was used in [279]
for the purpose of determining the locations of a ground control target. In addition to
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localization, GPS modules embedded in UAVs provide temporal information, which can
also be used for stabilization. The u-blox NEO-M8N [280] representing a low-power
compact form GPS receiver, was used in [281] to solve the problem of wind gusts with
their adverse effects on UAV steering while inspecting transmission lines. On the other
hand, IMUs are most probably found in UAVs in the form of accelerometers, gyroscopes,
and magnetometers [282]. Along with GPS modules, IMUs form INS, which is responsible
for localizing, stabilizing, and tracking a UAV. In the work [283], with its UAV shown in
Figure 9, the corresponding IMU (i.e., GPS antenna, magnetometer) had the function of
attitude determination, localization, and navigation of a UAV.
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In addition to the GPS and IMU modules, UWB sensors utilize pulses of short-range
radio frequency to determine the location of nearby objects. The location of a target is
known when the UWB receiver receives (according to a specific frequency spectrum) the
corresponding pulses sent by the UWB transmitter [284]. For positioning, UWB utilizes
either the time difference of arrival approach [285] or the two-way ranging method [286].
DWM1000 [287] is a commonly used UWB transceiver module, supporting four radio
frequencies from 3.5 GHz to 6.5 GHz, with a data rate up to 6.8 Mbps. In the work [288],
the DWM1000 orchestrated ranging measurements between a UAV and fixed anchor nodes,
eventually localizing the UAV precisely. This suggests how UWB can help in positioning
UAVs in GPS-challenging environments.

(b) Proximity/radar

In short, proximity sensors provide spatial information with respect to objects existing
nearby in their field (i.e., detecting objects in short ranges via IR and other ultrasonic
technologies). Radar sensors, on the other hand, use radio waves to detect objects located at
greater distances than those in the previous case. Concerning ultrasonic proximity sensors,
HC-SR04 [289] provides from 2 cm to 400 cm of non-contact distance measurements with
an accuracy of ±3 mm. Such a sensor was used in reference [290] to detect nearby objects
of an indoor UAV. As an alternative, MaxSonar MB1222 [291], with a higher range in object-
detection than the previously mentioned sensor (i.e., 20 cm to 765 cm), finds application
in indoor localization of micro-UAV, with accurate performance [292]. From a different
perspective, mmWave radar sensors provide accurate target range and velocity information,
surpassing the other alternatives under extreme weather conditions [293]. One example
is IWR6843, which provides a range of detection of 180 m and an ±120 elevation field of
view [294]. At the final destination, and although LiDAR mainly aims at generating 3D
maps of the environment (via analysis of the reflect light from emitted laser pulses), it can
as well be utilized for UAV positioning (e.g., providing precise measurements of a UAV’s
altitude above ground level [295]). For instance, Livox-avia [296] represents a LiDAR sensor
with a 450 m maximum detection range. This sensor was used in reference [297], in which a
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UAV’s real-time positions were identified based on the utilization of it with RGB-D cameras
(i.e., visual-LiDAR fusion).

Amongst the different reviewed UAV sensor types, environmental sensors (i.e., mea-
suring temperature, humidity, and pressure) possess an additional role (to data sharing) in
ensuring flight safety. For example, a UAV flight can be urgently terminated or have its
span-reduced under excessive rain or humidity. On the other hand, vision-based sensors
serve primarily for data extraction. The captured visual information aids in navigation
tasks by detecting objects and avoiding collision with them. Regarding a UAV’s position
sensors, they directly enable accurate control via the information about the UAV’s position,
velocity, and orientation. Regardless of the sensor type, the more embedded sensors are
within a UAV, the better its accuracy in maintaining a safe autonomous flight.

4.5. Power

As can be seen in Figure 1, the power subsystem is the most critical amongst all the
others, representing the operating fuel for every SBCs, SoM, communication, and each
sensory module. A UAV’s flight pace and duration are mainly dictated by the offered
energy level from the power subsystem. In order to successfully overcome limited flight
endurance, the power system must be carefully chosen, mainly based on the UAV’s purpose
of flight. For example, a search-and-rescue UAV requires more power than the one used to
assess public infrastructure since the first often interacts with spontaneous incidences of
high risks. Generally, the power source of a UAV must be chosen according to its durability,
it must have a good energy to weight ratio and create as minimum noise and vibrations as
possible, and it must be easily replaced. Conventionally, UAVs are powered with batteries,
battery hybrids with proton membrane fuel cell, gasoline engines, hydrogen fuel cells
hybrid with Lithium-Ion batteries (Li-I), and solar power.

Beginning with the work in [298], a 14 kg UAV had a power of 960 W supplied from a
hybrid system, which was composed of a proton-exchange membrane fuel cell (as the main
supply) and a Li-I (as a backup). This power-source mixture took advantage of the fuel
cells fast refueling and ability to supply power for long distance ranges, in addition to the
Li-I high acceleration and fast response to load variations. Such a power scheme, however,
may present concerns regarding its longevity under frequent charging/discharging of the
Li-I. An alternative way to overcome the UAV’s battery capacity issue and the need for
its frequent charging is Droneport [299]. It consists of a landing platform, over which the
UAV can have its battery exchanged and charged outside of its frame. As an alternative
to hybridization with other-than-battery power sources, Droneport represents a complete
electromechanical system, as shown in Figure 10, enriching the capabilities of UAVs with
existing batteries power sources.

Unlike the study in [298], the work in [300] suggested a hybridization between gasoline
and electric motors: two gasoline motors supplied the majority of the power needed for
the lift force, with four electric motors utilized to stabilize the drone. Since the propellers
consume the majority of the power within a UAV, the suggested gasoline–electric hybrid
method prolongs a UAV’s flight time. Apart from gasoline, electric, and hybrid power
sources, UAVs can be solar powered. In reference [301], a 2 m wingspan UAV was powered
through a combination of solar PhotoVoltaic (PV)-based power and a battery. Under fair
weather conditions, the solar–battery hybrid system saved up to 22.5% of the battery
stored capacity.

Solar-based power supplies for UAVs are generally inconsistent since they mainly
depend on solar irradiance, which can be very fluctuant. Even during sunny days, cloud-
induced Partial Shading Conditions (PSCs) [302] impose great challenges in extracting the
maximum available power from PV modules. Gasoline-based power strategies, on the
other hand, induce fire hazards and higher maintenance requirements, regardless of the
extended flight capabilities. Modern research in Li-I optimization would constitute an opti-
mum alternative for traditional as well as hybrid UAV power sources, concerning weight
restrictions, explosiveness, extended Depth of Discharge (DoD), and other factors [303].
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5. Discussion

This complete review consisted concretely of 202 total references (since some references
are only exemplary/explanatory) of which there were 101 references (50%) for the control
subsystem, 41 references (20.3%) for sensory, 32 references (15.84%) for the communication
subsystem, 24 references (11.88%) for the computing subsystem, and 4 references (1.98%)
for the power subsystem. Under the control subsystem, there were 39 references for strategy
techniques (38.62% of the total references, particularly within this set), 9 references (8.91%)
for path planning/obstacles avoidance, 14 references (13.86%) for localization schemes,
28 references (27.72%) for target tracking, and 11 references (10.89%) for payload integra-
tion and control. Concerning the computing subsystem, 11 references (45.83% of the total,
particularly within this set) were dedicated to SBCs, whereas 13 references (54.17%) were
for SoM. For the communication subsystem, 11 references (34.37% of total references, partic-
ularly within this set) were for LoRa, 9 references (28.13%) for Wi-Fi, 7 references (21.87%)
for BLE, and 5 references (15.63%) for LTE-M. In the sensory subsystem, 13 references
(31.70% of total references, particularly within this set) were for environmental sensors,
6 references (14.64%) for vision sensors, and 22 references (53.66%) for position sensors.
Lastly, four different power sources were classified in the final power subsystem, with each
referring to a single reference (25% of total references, particularly within this set). This
information is shown in Figure 11.

Most of the reviewed references refer to different control strategies, since such criteria
are directly linked to overall flight stability and success. The employed algorithms for
navigation, target tracking, localization, and obstacle avoidance represent the backbone
that output modules (i.e., actuators) rely on, in relation with the data acquired through
the sensors. Beginning with the vision-based navigation strategies, they pose a challenge
on the computing subsystem, specifically concerning the GPU, in order to fully extract
the graphical potential behind such strategies (i.e., high-resolution images with precise
BRF), an SBC with high GPU capability (e.g., NVIDIA Jetson series) must be employed.
In addition to financial burdens, the processing of image-based data incorporates extra
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programming complexities that are also naturally accumulated by AI-based techniques.
The good part of the latter is that they allow for more autonomous UAV processes.
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In the context of target tracking, the YOLO algorithm with its relative successors
(i.e., up to YOLOv8), have shown popularity in adaptation for computing an object’s correl-
ative and class probabilities. With every new version of YOLO comes major improvements
in terms of knowledge accuracy with respect to its predecessors. For the part of the com-
puting subsystem, the Qualcomm Snapdragon showed superiority with respect to all other
SoM/SBCs, mainly regarding its RAM size, integrated GPU, built-in connectivity modules,
and ability to be programmed in different languages. From another perspective, according
to the data presented in Table 7, LoRa technology is the optimum selection for UAV flights
requiring long range of communication (up to 20 km outdoors), with the highest data rate
(up to 300 kbps). However, a trade-off must be made between its RAM size and transmis-
sion power to better fit an application (i.e., the 32 kB of RN2483 imposes a loss of 2 dBm in
the transmission power). The golden rule concerning the sensory part corresponds to the
following: the more sensors installed in a UAV, the better its environmental/internal aware-
ness, and the more burden is then created on the level of the computing subsystem. Some
sensors, such as temperature sensors, are unavoidable since their output data is highly in-
fluential on flight safety and stability. Sensors can also be fused together (i.e., sensor fusion)
to provide better decision-making in the control subsystem, as a result of the data-dense
outputs. Regardless of the different available power sources for UAVs, as surveyed in this
paper, classic batteries are still the best form. For instance, Droneport is an innovative
idea, but it lacks experimental validation under severe operating conditions, and it serves
only in recharging/replacing a UAV’s existing battery. With the stated unreliability of PV
supplies and dangers of gasoline motors, the optimum UAV power supply is an optimized
Li-I battery [304]. In comparison with other UAV reviews, the contributions of this paper
are shown in Table 8.
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Table 8. Assessment of this paper in regards with other similar publications.

Ref. Criteria

Control Computing Communication Sensory Power

Navigation Target
Tracking

Payload
Integration SBCs SoM LoRa Wi-Fi BLE LTE-M Environmental Vision Position Battery PV–Batt Gasoline–Batt

This work ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

[305] ✔ ✔ ✔ X X X X X X X X X X X X

[306] X X X X X X X X X X ✔ ✔ X X X

[307] ✔ ✔ ✔ X X X X X X X ✔ X X X X

[308] X X X X X X X X ✔ X X X X X X

[309] X X X X X ✔ ✔ ✔ ✔ X X X X X X

[310] ✔ ✔ ✔ X X X X X X ✔ ✔ X X X X
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In addition to the compared literature presented in Table 8, more narrow reviews
exist in the field, but they are denser in the sense of the exploited UAV aspects. For
example, the dedicated review in reference [311] focuses mainly on the control of hybrid
and convertible UAVs. With a technical modus operandi, emphasizing around vertical
takeoff and landing (VTOL) UAVs, the presented review investigates commonalities and
differences in guidance, modeling, and control allocation for each type (e.g., Tail-sitter,
Tiltrotor, etc.) of hybrid VTOL UAVs. Unlike the methodology presented in this work
concerning the control assessment, the work in [311] outlined four main components of a
successful flight control system for VTOL UAVs, depicted by a physical model, generation
of reference trajectories, flight controllers, and allocation of actuator control. Additionally,
the work in reference [312] outlines a UAV-type addressed review, with a core focus on
flight modeling techniques, along with flight control strategies. The review began by
assessing the flight’s success for different miniature UAVs based on the control techniques.
Moreover, further analyses were conducted based on the mechanical structure of the UAV
and its corresponding control feature (e.g., tail-sitters with hovering control). As a major
observation, the work conducted in [311,312] sheds light on the differences between their
control sets and the one held in this paper. Accordingly, it can be said that despite the
various contributions made by this paper, it still lacks many criteria in the domain of UAVs.
The popularity of this trend, and its daily considerations and improvements, makes it
impractical to grasp the required avionics information in one single paper. For this reason,
and in order to remain within this paper’s maximum limits (in word counts as well in page
numbers), this study did not survey any related manuscripts about the UAV mission field of
application (i.e., no thorough investigations about surveillance, crop assessment, delivery,
and other UAV’s missions). In addition, when reviewing the different aspects in this paper,
it can be noted that a discussion was not provided on UAV type. Additionally, although
this paper presents a wide variety of data processors (i.e., SBCs, SoM), no microcontrollers
(e.g., Arduino, PIC, etc.) were involved in the analysis since not all missions require heavy
computational facilities. For the sensors, this paper did not present any single mechanical
or electrical sensor, which are heavily required and employed in UAVs; instead, the focus
was merely on environmental, vision, and position sensors. Again, this was mainly because
of the paper’s length restrictions and to maintain a readable review format.

6. Future Work

In accordance with the review conducted in this manuscript, the Digitalisierte, rechtssichere
und emissionsarme flugmobile Inspektion und Netzdatenerfassung mit automatisierten
Drohnen (DNeD) project reflects an actual project that coincides with the concluded infor-
mation [313]. DNeD aims to design an autonomous UAV that is able to inspect overhead
Transmission Lines (TL) automatically and maneuver around them at a safe distance. The
UAV should independently plan and execute the approach of flight/landing under prevail-
ing conditions (e.g., cable routing). The UAV’s mission is to deploy its embedded sensor
box on the transmission line. The sensor box in turn (i.e., payload) should allow for the
remote monitoring of the electrical measurements (i.e., current and voltage) of the line. The
data acquired from the TL, non-invasively by means of the deployed sensor box shown in
Figure 12, should be intelligently able to be processed and visualized by a human operator
at any time.

With the provided DNeD project’s description, this review serves as a straightforward
informative background, allowing for the full realization of such a project. According
to the investigated information in this paper, the DNeD can be decomposed into two
major objects of research as follows: first, the drone with its relative avionics (SBCs/SoM
with the correspondent sensors, communication/power modules, and algorithms for data
processing). Second, the sensor box, constituting the payload with its total weight and
architecture, as shown in Figure 12, and how it can affect the UAV’s flight path. The
UAV’s full autonomy and obstacle (i.e., in this case, the TL) avoidance can be covered by
the control subsystem reviewed in this manuscript: it is worthwhile to try the YOLOv8
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algorithm in a powerful GPU-embedded SBC (e.g., NVIDIA Jetson) in order to detect
the presence of a TL such that the UAV’s localization can be achieved through a set of
georeferenced images, captured via an embedded camera. The entire UAV can be Li-I
powered, with LoRa-enabled communication modules installed, mainly because of signals
degradation near TL. In this case, the payload will be the sensor box, which is far from
regular applications such as package delivery or military applications. This payload will
have its boundaries set with an appropriate material type (i.e., electromagnetic permeability,
rigidness, etc.) to ensure the stable remote monitoring of TL. Overall, the execution of
the DNeD project with respect to the information provided in this manuscript is a worthy
future project.
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7. Conclusions

UAVs are complex electromechanical systems, rapidly evolving, and applicable in
various fields. They represent a closed-loop interactive platform with five major subsystems
(as concluded by this paper). For a stable UAV mission, each of the reviewed subsystems
must be carefully engineered to fit at best compatibility with other subsystems. The overall
findings can be compressed into one sequential mechanism: the control subsystem is the
main decision-maker concerning the flight path (i.e., navigation), flight safety (i.e., collision
avoidance), and flight mission (i.e., payload integration). The data input for the control
subsystem is fed through the UAV-installed sensors (i.e., environmental, vision, position),
and processed via the computing subsystem (i.e., SBCs, SoM). When needed, data can
be externally communicated via single/multi communication modules (i.e., LoRa, BLE,
Wi-Fi, LTE-M). The power subsystem eventually supplies the required energy of each of
the subsystems. The choice of physical devices in each of the subsystems is a real challenge,
which is mainly dependent on a UAV’s flight purpose.

Specifically concerning TL monitoring applications (e.g., the DNeD project), with an
electrical sensor as the payload, the SBC is at best NVIDIA Jetson series-based (i.e., powerful
GPU for TL identification/detection). LoRa-based communication modules, on the other
hand (e.g., RN2483), would provide a good signal transmission with regard to electri-
cal/magnetic noise emitted around the TL. An optimized Li-I would represent an optimum



Sensors 2024, 24, 3064 31 of 42

trade-off between safety and flight endurance. The sensor box itself is the required sensing
equipment for TL monitoring/non-invasive measurements.

Eventually, the presented concrete lists of reviewed UAV’s avionics (i.e., ARM-based
SoM, ARM/Samsung-based SBCs, LoRa modules (SX1278, HOPERF RFM95W-86852, etc.),
BLE modules (nRF54H20, CC2650, etc.), sensors, power supplies, etc., make this review a
handy tool for the hardware design of any other UAV mission purposes.
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