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Abstract: In communication technologies such as digital watermarking, wireless sensor networks
(WSNs), and visual light communication (VLC), error-correcting codes are crucial. The Enhanced
Hadamard Error-Correcting Code (EHC), which is based on 2D Hadamard Basis Images, is a novel
error correction technique that is presented in this study. This technique is used to evaluate the effec-
tiveness of the video watermarking scheme. Even with highly sophisticated embedding techniques,
watermarks usually fail to resist such comprehensive attacks because of the extraordinarily high
compression rate of approximately 1:200 that is frequently employed in video dissemination. It can
only be used in conjunction with a sufficient error-correcting coding method. This study compares the
efficacy of the well-known Reed–Solomon Code with this novel technique, the Enhanced Hadamard
Error-Correcting Code (EHC), in maintaining watermarks in embedded videos. The main idea behind
this newly created multidimensional Enhanced Hadamard Error-Correcting Code is to use a 1D
Hadamard decoding approach on the 2D base pictures after they have been transformed into a
collection of one-dimensional rows. Following that, the image is rebuilt, allowing for a more effective
2D decoding procedure. Using this technique, it is possible to exceed the theoretical error-correcting
capacity threshold of ⌊ dmin−1

2 ⌋ bits, where dmin is the Hamming distance. It may be possible to achieve
better results by converting the 2D EHC into a 3D format. The new Enhanced Hadamard Code is
used in a video watermarking coding scheme to show its viability and efficacy. The original video
is broken down using a multi-level interframe wavelet transform during the video watermarking
embedding process. Low-pass filtering is applied to the video stream in order to extract a certain
frequency range. The watermark is subsequently incorporated using this filtered section. Either the
Reed–Solomon Correcting Code or the Enhanced Hadamard Code is used to protect the watermarks.
The experimental results show that EHC far outperforms the RS Code and is very resilient against
severe MPEG compression.

Keywords: Hadamard matrix; 2D Hadamard transform; basis images; Enhanced Hadamard Code;
Hamming distance; error-correcting capability; digital watermarking; visual light communication VLC

1. Introduction

In sensors applications such as wireless sensor networks (WSNs) or visible light com-
munications (VLCs) the error-correcting codes play a very important role. For example, in
wireless sensor networks, the data are transmitted from a field of distributed sensors, which
monitors different parameters of the environment, for example, temperature, humidity,
and wind, to the central sever, which collects and processes all these data. Signals can be
falsified during the transmission, by bad weather conditions or some other obstacles, like
a battery weakness of the sensors. Therefore, an efficient error-correcting code technique
is required to secure the correct recovery of sensor data at the central server. In some
publications, this problem has already been addressed [1–3]. The same problem occurs
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in visible light communications (VLCs), which is a part of optical communication. The
transmission of information is realized using a light-emitting diode (LED) on the encoder
side and a photodiode on the decoder side. By switching the light on and off, it is pos-
sible to transmit information. It is used mostly for short-distance communications, such
as in hospitals, offices, and buildings, everywhere where the light is already used. The
transmission of light should be flicker-free for human eyes and error-free and, therefore,
RLL codes are combined with error-correcting codes. Some sufficient work in this area has
been carried out in [4–6]. Generally, it can be said that error-correcting codes are a very
important component of all sensor applications. In this paper, a new error-correcting code,
the Enhanced Hadamard Code, is introduced, which could be sufficiently applied in the
field of WSNs and VLC and could be easily installed there. The principle is explained and
the efficiency in watermark technology is shown.

Many applications in the field of telecommunications use the Hadamard Error-Correcting
Code. In 1960, Plotkin [7] made the initial discovery of the Hadamard matrix error correc-
tion capabilities. Bose and Shrikhande [8] and Peterson [9] have also contributed signifi-
cantly. The Hadamard Error-Correcting Code construction algorithm was first developed
by Levenshstein [10]. The NASA space mission of the Mariner and Voyager spacecraft
in 1969 is the most well-known example of the use of the Hadamard Error-Correcting
Code. The strong error-correcting ability of this code allowed for the accurate decoding
of excellent images of Mars, Jupiter, Saturn, and Uranus [11]. The fundamentals of the
Hadamard Code as well as a novel multidimensional Hadamard Code type known as the
Enhanced Hadamard Error-Correcting Code (EHC) are presented in this study.

2. One-Dimensional Hadamard Error-Correcting Code

The Hadamard Error-Correcting Code was first introduced in 1969 by NASA in the
Mariner and Voyager space missions to Mars. It has a very good error correction rate and a
very simple decoding procedure. The Hadamard Code belongs to the special class of linear
block codes generated via the Reed–Muller Code of the form

[
2m, m + 1, 2m−1]. The 2m-bit

long Hadamard Code can encode m + 1 messages. The Hamming distance is dmin = 2m−1

and it can correct
⌊

2m−2 − 1
2

⌋
errors. The error correction capability t of the Hadamard

Code can also be calculated through the codeword length n. It is t =
⌊

n
4 − 1

2

⌋
.

During the Mars mission, the Marine 9 used the Hadamard Code [32, 6, 16] to transmit
black and white pictures to Earth, and it was able to correct 7 bits. To understand the
Hadamard Code in detail, the construction of the Hadamard matrices must be examined.

2.1. Hadamard Matrices

The Hadamard matrix Hn of order n is defined as an n × n matrix with elements 1
and −1. It fulfills the following equation:

Hn·HT
n = HT

n ·Hn = n·In (1)

where In is an identity matrix.
To construct this type of matrix there are several approaches. The Sylvester Construc-

tion Method will be discussed here. For alternative methods and more details please refer
to [12,13].

The Sylvester Construction Method is a recursive procedure for the generation of
Hadamard matrices of order 2n. The procedure starts with a matrix H1 = (1), and then
generates other matrices through the following recursive algorithm:

H2k =

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
(2)

where 2 ≤ k ∈ N.
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Here is an example of the generation of the Hadamard matrix H4:

H1 = (1)

H2 =

(
1 1
1 −1

)

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


It is important to mention here that there are other constructions of Hadamard ma-

trices, such as Walsh–Paley matrices, but these are not used in the Hadamard Error-
Correcting Code.

2.2. Generation of Hadamard Code

The n-bit one-dimensional Hadamard Code can be generated through the follow-
ing steps:

Step 1: Generate an n × n Hadamard matrix Hn;.
Step 2: With the Hadamard matrix Hn, build a new matrix C2n;

C2n =

(
Hn

−Hn

)
(3)

Step 3: The rows of the matrix C2n are the codewords of the Hadamard Code and are
denoted as {hi|h i = C2n(i, :)}i=2n

i=1 ; however, the −1 should be substituted with 0.
Example:
The generation of a Hadamard Code [8, 4, 4] is required. In the first step, a Hadamard

matrix H8 is generated:

H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 1 −1 −1
1 −1 1 −1 −1 −1 −1 1
1 1 −1 −1 −1 1 1 1
1 −1 −1 1 −1 −1 1 −1


(4)

In the second step is the construction of the matrix:

C16 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

−1 −1 −1 −1 −1 −1 −1 −1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 −1 1 1 −1
−1 −1 −1 −1 1 1 1 1
−1 1 −1 1 1 −1 1 −1
−1 −1 1 1 1 1 −1 −1
−1 1 1 −1 1 −1 −1 1



(5)
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Currently, the 16 rows of the matrix C16, each containing an 8-bit codeword, define the
Hadamard Code. The binary Hadamard Code [8,4,4] is displayed in Table 1, where 0 is
used in the place of −1.

Table 1. Code Book of [8,4,4] Hadamard Code.

Message Word Hadamard Vector

0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 −1 1 −1 1 −1 1 −1

0 0 1 0 1 1 −1 −1 1 1 −1 −1

0 0 1 1 1 −1 −1 1 1 −1 −1 1

0 1 0 0 1 1 1 1 −1 −1 −1 −1

0 1 0 1 1 −1 1 −1 −1 1 −1 1

0 1 1 0 1 1 −1 −1 −1 −1 1 1

0 1 1 1 1 −1 −1 1 −1 1 1 −1

1 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1

1 0 0 1 −1 1 −1 1 −1 1 −1 1

1 0 1 0 −1 −1 1 1 −1 −1 1 1

1 0 1 1 −1 1 1 −1 − 1 1 1 −1

1 1 0 0 −1 −1 −1 −1 1 1 1 1

1 1 0 1 −1 1 −1 1 1 −1 1 −1

1 1 1 0 −1 −1 1 1 1 1 −1 −1

1 1 1 1 −1 1 1 −1 1 −1 −1 1

2.3. Decoding of Hadamard Code

In order to comprehend the decoding process, it is necessary to examine the codewords
of the Hadamard Code. As previously stated, the rows of the Hadamard matrix C2n, which
are orthogonal to one another, are the codewords. A similar Hadamard spectrum can be
constructed, represented by the n-dimensional vector si by taking the i-th row, which is the
n-dimensional codeword vector hi.

si = hi·Hn (6)

Aside from component i, every element in this vector si is zero. As a result, matching
codewords can be decoded simply by looking at the received codewords’ Hadamard
spectrum. The codeword is represented by the component of the spectrum vector with the
highest value.

Take the following for instance:
Considering the Hadamard matrix C2n, namely the third row (message word: 0010),

h3 =
[
1 1 −1 −1 1 1 −1 −1

]
(7)

the vector of the Hadamard spectrum is

s3 =
[
1 1 −1 −1 1 1 −1 −1

]
·H8 =

[
0 0 8 0 0 0 0 0

]
(8)

The spectrum vector s3 only differs from zero in its third component, namely

s3(3) = 8, s3(i) = 0 f or all i ̸= 3. (9)
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This indicates that the row in the Code Book (Table 2) is determined via the position i3.
The message word [0 0 1 0] is associated with the decoded codeword, which is located in
the third row of the Hadamard matrix C2n.The inverse row to the third row is row number
eleven. The decoding process of this row delivers

s11 =
[
−1 −1 1 1 −1 −1 1 1

]
·H8 =

[
0 0 −8 0 0 0 0 0

]
Table 2. Code Book of [8,4,4] half-mode Hadamard Code.

Message Hadamard Vector Codeword

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 −1 1 −1 1 −1 1 −1 1 0 1 0 1 0 1 0

0 1 0 1 1 −1 −1 1 1 −1 −1 1 1 0 0 1 1 0 0

0 1 1 1 −1 −1 1 1 −1 −1 1 1 0 0 1 1 0 0 1

1 0 0 1 1 1 1 −1 −1 −1 −1 1 1 1 1 0 0 0 0

1 0 1 1 −1 1 −1 −1 1 −1 1 1 0 1 0 0 1 0 1

1 1 0 1 1 −1 −1 −1 −1 1 1 1 1 0 0 0 0 1 1

1 1 1 1 −1 −1 1 −1 1 1 −1 1 0 0 1 0 1 1 0

Also, in this case, the third component of the spectrum vector s11 is different from zero.
However, it is negative.

S11(3) = −8, s3(i) = 0 f or all i ̸= 3.

The decoding algorithm is defined as follows:
Step 1: Convert the codeword into the Hadamard vector by substituting the zeros

with −1.
Step 2: Build the Hadamard spectrum using the Hadamard vector.
Step 3: Find the component with the largest absolute value. This component number

defines the codeword.
Step 4: If the component value is negative, inverse the codeword.
In the example above, the third component has the largest absolute value

abs(s11(3)) = 8. The corresponding codeword is h3. However, the spectrum value is
negative ( s11 = −8), and, therefore, the codeword, h3, must be inversed, which then be-
comes the codeword h11.

If one error occurs inside the codeword h3, the third component of the spectrum vector
continues to have the highest value. Without restricting the generality, an error in the first
component of the vector h3 can be assumed:

h3 =
[
−1 1 −1 −1 1 1 −1 −1

]
(10)

The decoding procedure delivers

s3 =
[
−1 1 −1 −1 1 1 −1 −1

]
·H8 =

[
−2 −2 6 −2 −2 −2 −2 −2

]
(11)

The value of the third component of the Hadamard spectrum vector is still the greatest
one. Despite the one error that occurs, it is still possible to decode the message word.

If there are two errors, it becomes difficult to decode the codewords with complete
certainty. The following example illustrates this.
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Consider a codeword with two errors,

h3 =
[
1 1 −1 −1 1 1 1 1

]
(12)

The two last components of the vector h3 are flipped. The decoding procedure delivers

s3 =
[
1 1 −1 −1 1 1 1 1

]
·H8 =

[
4 0 4 0 −4 0 4 0

]
(13)

The components 1, 3, and 7 have the same value, namely

s3(1) = s3(3) = s3(7) = 4

Therefore, in this case (two errors), this codeword cannot be decoded unambiguously.
Generally, the error-correcting capability t of any code with the Hamming distance dmin,
can be calculated according to the formula

t =
⌊

dmin − 1
2

⌋
(14)

In the case of the Hadamard Code [8,4,4] the Hamming distance is dmin = 4 and,
therefore, t = 1. Another method for the calculation of the error-correcting capability of the
Hadamard Code is

t =
⌊

n
4
− 1

2

⌋
(15)

where n is the length of the codeword.
The following conclusions apply:

• The Hadamard Code [8,4,4] is 8-bit long and can transmit 16 different messages. Only
one error can be recovered unambiguously.

• General rule for the Hadamard Code: if the length of the Hadamard Code is n, then⌊
n
4 − 1

2

⌋
errors can be corrected. In the case of n = 8, only one error can be corrected.

2.4. One-Dimensional Half-Mode Hadamard Code

Interesting results concerning error correction abilities can be achieved if only one
Hadamard matrix generates the Hadamard Code.

Instead of using Equation (3) for the generation of the code, the following equation
is used:

Cn = Hn (16)

In this case, we encode only n messages instead of 2n (see Table 2), but the number of
correcting bits can be increased significantly. In addition to one error, now it is possible to
correct seven or eight errors in one codeword.

The following example shows the case of 8-bit errors. This means, for example,
that a Hadamard vector h3 =

[
1 1 −1 −1 1 1 −1 −1

]
is completely corrupted

and is received as h̀3 =
[
−1 −1 1 1 −1 −1 1 1

]
, and all bits are flipped (burst

error). The same decoding procedure as before is now applied by building the Hadamard
spectrum vector:

s3 =
[
−1 −1 1 1 −1 −1 1 1

]
·H8 =

[
0 0 −8 0 0 0 0 0

]
(17)

The component with the greatest absolute value defines the message word. In our
case, abs(s 3(3)) = 8. According to Table 2, the corresponding message word of the third
row is [0 1 0].
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Without restricting the generality, in the case of 7-bit errors, the original Hadamard vec-
tor h3 =

[
1 1 −1 −1 1 1 −1 −1

]
is corrupted and is received as

h̀3 =
[
−1 −1 1 1 −1 −1 1 −1

]
. The decoding procedure delivers

s3 =
[
−1 −1 1 1 −1 −1 1 1

]
·H8 =

[
−2 2 −6 −2 2 −2 −2 2

]
and the component with the greatest absolute value defines the message word. Here,
the third component has the greatest absolute value, abs(s 3(3)) = 6, which means that,
according to the Code Book in Table 2, the received message word is [0 1 0].

In contrast to the full mode, only the absolute values of components are considered.

3. Two-Dimensional Hadamard Error-Correcting Code

The so-called Hadamard basis images can be used to extend the Hadamard Code.
These basic images are utilized as codewords instead of Hadamard vectors.

By multiplying their columns and rows, the Hadamard matrix can be used to create
the orthogonal basis image functions. The general guideline for creating a basic image is

Alm = Hn(:, l)·Hn(m, :) (18)

For example, in the case of a 4 × 4 Hadamard matrix,

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (19)

A basis image A31 is

A31 =


1
1

−1
−1

·
(
1 1 1 1

)
=


1 1 1 1
1 1 1 1

−1 −1 −1 −1
−1 −1 −1 −1

 (20)

By replacing −1 with “black” and 1 with “white”, the basis image can be visualized,
as depicted in Figure 1.
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A Hadamard matrix H4 has thirty-two of these basis images. Figure 2 shows them
all, as determined using Equation (18). It consists of two sets of sixteen basis images of
Hadamard matrices, which are inverted versions of each other.
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The 2D Hadamard spectrum of such basis images, indicated with S, is required for the
decoding process. They can be computed using the formula

S = Hn·Alm·HT
n (21)

where Hn is an n × n Hadamard matrix, HT
n is the transposed one, and Alm are the basis

images. Since the transposed and the original matrices are equal, Hn = HT
n , the calculation

can be simplified.
The decoding process is identical to that of the one-dimensional scenario. The 2D spec-

trum, which is computed using Equation (21), is taken into consideration. The equivalent
basis image is represented via the one non-zero element in the spectrum. This process is
demonstrated in the example that follows. With basis image A31 from Equation (20), the
spectrum may be computed as follows:

S = H4·A31·H4 =


0 0 0 0
0 0 0 0

16 0 0 0
0 0 0 0

 (22)

The encoded basis image is defined by the location of the largest element in the
matrix. S(3,1) = 16 in this instance; the remaining elements are all zeros. It indicates that the
codeword is a basis image represented by a coefficient A31. An error-correcting code may be
built using the spectral coefficients to identify the basis images. According to Equation (21),
the codewords, which are patterns of basis images, may be definitively deciphered by
identifying the largest absolute coefficient value inside the Hadamard spectrum matrix.
In [14], Wassermann and Dziech first introduced the corresponding basis images. They are
mapped into a one-dimensional pulse stream by simply concatenating the image’s rows
in order to create the codewords. The Code Book for the 2D Hadamard Code, which was
created using 4 × 4 Hadamard matrix basis images, is displayed in Table 3. It is really a
Hadamard Code with codewords that are 16 bits long, possessing a Hamming distance
of dmin = 8 bits. Three mistakes can be fixed by it. Ultimately, we obtain a standard one-
dimensional Hadamard Code, but as we shall see later, the codewords can be interpreted
as pictures, providing a fresh perspective on the code.
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Table 3. Part of the Code Book for [16,5,8] with Basis Images (cf. [17,18]).

Message Basis Image Matrix Element Codeword

1 0 0 0 0
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S(3,2) 0101010110101010 

S(2,1) 0000111100001111
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S(1,2) 0101010101010101 
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S(2,3) 0011110000111100 
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as pictures, providing a fresh perspective on the code. 

Table 3. Part of the Code Book for [16,5,8] with Basis Images (cf. [17,18]). 

Message Basis Image Matrix Element Codeword 

1 0 0 0 0 
 

S(1,1) 0000000000000000 

1 0 0 0 1 
 

S(1,2) 0101010101010101 

1 0 0 1 0 
 

S(1,3) 0011001100110011 

1 0 0 1 1 
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S(2,2) 0101101001011010 

1 0 1 1 0 
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S(3,2) 0101010110101010 S(3,2) 0101010110101010

1 1 0 1 0
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S(4,1) 0000111111110000 

1 1 1 0 1 
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1 1 1 1 0 
 

S(4,3) 0011110011000011 
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S(4,4) 0110100110010110 

Any corruption on the codewords automatically produces corrupted basis images. 
The analysis of codeword errors could be shifted to an analysis of distorted basis images. 
Figure 3 presents such a corrupted basis image. Any distortion affecting the codewords is 
transferred into the corresponding corruption of basis images. 

 
Figure 3. Corrupted Basis Image 𝐴 . 

If the number of errors does not exceed three, it is possible to completely recover the 
original pattern. This can be better understood by examining the following distorted basis 
image. 

𝐴 = −1 −1   1  1   1    1    1   1−1 −1 −1 −1−1 −1 −1 −1  (23) 

The Hadamard spectrum, derived from Equation (21), is 

𝑆 = 𝐻 ∙ 𝐴 ∙ 𝐻 = −2   2 −2   2−6 −2 −6 −210 −2 −6 −2−2    2 −2    2  (24) 

The greatest spectrum component is S(3,1), which has an absolute value of 10. The 
associated message word may be read out from the Code Book and, according to Table 4, 
has the value (1 1 0 0 0). 

S(3,3) 0011001111001100

1 1 0 1 1
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The analysis of codeword errors could be shifted to an analysis of distorted basis images. 
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Figure 3. Corrupted Basis Image 𝐴 . 

If the number of errors does not exceed three, it is possible to completely recover the 
original pattern. This can be better understood by examining the following distorted basis 
image. 

𝐴 = −1 −1   1  1   1    1    1   1−1 −1 −1 −1−1 −1 −1 −1  (23) 

The Hadamard spectrum, derived from Equation (21), is 

𝑆 = 𝐻 ∙ 𝐴 ∙ 𝐻 = −2   2 −2   2−6 −2 −6 −210 −2 −6 −2−2    2 −2    2  (24) 

The greatest spectrum component is S(3,1), which has an absolute value of 10. The 
associated message word may be read out from the Code Book and, according to Table 4, 
has the value (1 1 0 0 0). 

S(3,4) 0110011010011001

1 1 1 0 0
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Any corruption on the codewords automatically produces corrupted basis images. 
The analysis of codeword errors could be shifted to an analysis of distorted basis images. 
Figure 3 presents such a corrupted basis image. Any distortion affecting the codewords is 
transferred into the corresponding corruption of basis images. 

 
Figure 3. Corrupted Basis Image 𝐴 . 

If the number of errors does not exceed three, it is possible to completely recover the 
original pattern. This can be better understood by examining the following distorted basis 
image. 

𝐴 = −1 −1   1  1   1    1    1   1−1 −1 −1 −1−1 −1 −1 −1  (23) 

The Hadamard spectrum, derived from Equation (21), is 

𝑆 = 𝐻 ∙ 𝐴 ∙ 𝐻 = −2   2 −2   2−6 −2 −6 −210 −2 −6 −2−2    2 −2    2  (24) 

The greatest spectrum component is S(3,1), which has an absolute value of 10. The 
associated message word may be read out from the Code Book and, according to Table 4, 
has the value (1 1 0 0 0). 

S(4,1) 0000111111110000

1 1 1 0 1
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Figure 3 presents such a corrupted basis image. Any distortion affecting the codewords is 
transferred into the corresponding corruption of basis images. 

 
Figure 3. Corrupted Basis Image 𝐴 . 

If the number of errors does not exceed three, it is possible to completely recover the 
original pattern. This can be better understood by examining the following distorted basis 
image. 

𝐴 = −1 −1   1  1   1    1    1   1−1 −1 −1 −1−1 −1 −1 −1  (23) 

The Hadamard spectrum, derived from Equation (21), is 

𝑆 = 𝐻 ∙ 𝐴 ∙ 𝐻 = −2   2 −2   2−6 −2 −6 −210 −2 −6 −2−2    2 −2    2  (24) 

The greatest spectrum component is S(3,1), which has an absolute value of 10. The 
associated message word may be read out from the Code Book and, according to Table 4, 
has the value (1 1 0 0 0). 

S(4,2) 0101101010100101

1 1 1 1 0
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Any corruption on the codewords automatically produces corrupted basis images.
The analysis of codeword errors could be shifted to an analysis of distorted basis images.
Figure 3 presents such a corrupted basis image. Any distortion affecting the codewords is
transferred into the corresponding corruption of basis images.
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∼
A31 =


−1 −1 1 1

1 1 1 1
−1 −1 −1 −1
−1 −1 −1 −1

 (23)

The Hadamard spectrum, derived from Equation (21), is

S = H4·
∼
A31·H4 =


−2 2 −2 2
−6 −2 −6 −2
10 −2 −6 −2
−2 2 −2 2

 (24)

The greatest spectrum component is S(3,1), which has an absolute value of 10. The
associated message word may be read out from the Code Book and, according to Table 4,
has the value (1 1 0 0 0).

Table 4. Results of watermark measurements.

Data Rate Compression
Ratio DWT Levels Delta QIM Extracted

Watermark
SSIM

Watermarking SSIM Video

6 Mbit/s 1:200 16 11
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The corresponding image is depicted in Figure 4. 

0.92 0.93

3 Mbit/s 1:400 16 11

Sensors 2024, 24, x FOR PEER REVIEW 10 of 19 
 

 

Table 4. Results of watermark measurements. 

Data 
Rate 

Compression 
Ratio 

DWT 
Levels 

Delta QIM Extracted 
Watermark 

SSIM Water-
marking 

SSIM 
Video 

6 Mbit/s 1:200 16 11 
 

1 0.95 

5 Mbit/s 1:240 16 11 
 

1 0.95 

4 Mbit/s 1:300 16 11 
 

0.92 0.93 

3 Mbit/s 1:400 16 11 
 

0.89 0.91 

2 Mbit/s 1:600 16 11 
 

0.56 0.90 

4. Enhanced Hadamard Code 
The Enhanced Hadamard Code provides the possibility to surpass the theoretical 

threshold of the error correction capacity of the Hadamard Code described in Equations 
(14) and (15). The first publication of this method was mentioned in [1]. This method was 
applied in video watermarking techniques. 

As discussed earlier, the error correction of a code is determined by Hamming dis-
tance 𝑑 , and the total number of errors that can be corrected is 𝑡 = 𝑑 − 12  (25) 

In the case of the Hadamard Code [16,5,8], an error-correcting capability of 𝑡 = 3 bit 
can be determined. With the Enhanced Hadamard Code, it is possible to correct more than 
three bits. 

The fundamental concept behind the improved Hadamard Code is the mapping of 
2D basis images into a set of 1D rows, which are then used in a 1D decoding process. 
Following this, the image is reassembled, making it possible to use the 2D decoding tech-
nique Equation (21) more effectively. 

To show the functionality of the Enhanced Hadamard Code, we consider a Hada-
mard Code [64,7,32]. The codewords are 64-bit-long and they can encode 2 = 128 dif-
ferent messages. The Hamming distance is 𝑑  = 32, which means that the code can cor-
rect 15 errors. These codewords can be interpreted via basis images of the size 8 × 8 of 
the 2D Hadamard transform. Without the restriction of any generality, we consider the 
basis image 𝐴  

𝐴 = 𝐻 (: ,7) ∙ 𝐻 (1, : ) =
⎝⎜
⎜⎜⎜
⎛   1    1    1    1    1    1    1   1   1    1    1    1    1    1    1    1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1   1    1    1    1    1    1    1    1   1    1    1    1    1    1    1    1⎠⎟

⎟⎟⎟
⎞

 (26) 

The corresponding image is depicted in Figure 4. 

0.89 0.91

2 Mbit/s 1:600 16 11

Sensors 2024, 24, x FOR PEER REVIEW 10 of 19 
 

 

Table 4. Results of watermark measurements. 

Data 
Rate 

Compression 
Ratio 

DWT 
Levels 

Delta QIM Extracted 
Watermark 

SSIM Water-
marking 

SSIM 
Video 

6 Mbit/s 1:200 16 11 
 

1 0.95 

5 Mbit/s 1:240 16 11 
 

1 0.95 

4 Mbit/s 1:300 16 11 
 

0.92 0.93 

3 Mbit/s 1:400 16 11 
 

0.89 0.91 

2 Mbit/s 1:600 16 11 
 

0.56 0.90 

4. Enhanced Hadamard Code 
The Enhanced Hadamard Code provides the possibility to surpass the theoretical 

threshold of the error correction capacity of the Hadamard Code described in Equations 
(14) and (15). The first publication of this method was mentioned in [1]. This method was 
applied in video watermarking techniques. 

As discussed earlier, the error correction of a code is determined by Hamming dis-
tance 𝑑 , and the total number of errors that can be corrected is 𝑡 = 𝑑 − 12  (25) 

In the case of the Hadamard Code [16,5,8], an error-correcting capability of 𝑡 = 3 bit 
can be determined. With the Enhanced Hadamard Code, it is possible to correct more than 
three bits. 

The fundamental concept behind the improved Hadamard Code is the mapping of 
2D basis images into a set of 1D rows, which are then used in a 1D decoding process. 
Following this, the image is reassembled, making it possible to use the 2D decoding tech-
nique Equation (21) more effectively. 

To show the functionality of the Enhanced Hadamard Code, we consider a Hada-
mard Code [64,7,32]. The codewords are 64-bit-long and they can encode 2 = 128 dif-
ferent messages. The Hamming distance is 𝑑  = 32, which means that the code can cor-
rect 15 errors. These codewords can be interpreted via basis images of the size 8 × 8 of 
the 2D Hadamard transform. Without the restriction of any generality, we consider the 
basis image 𝐴  

𝐴 = 𝐻 (: ,7) ∙ 𝐻 (1, : ) =
⎝⎜
⎜⎜⎜
⎛   1    1    1    1    1    1    1   1   1    1    1    1    1    1    1    1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1−1 −1 −1 −1 −1 −1 −1 −1   1    1    1    1    1    1    1    1   1    1    1    1    1    1    1    1⎠⎟

⎟⎟⎟
⎞

 (26) 

The corresponding image is depicted in Figure 4. 

0.56 0.90



Sensors 2024, 24, 3062 11 of 19

4. Enhanced Hadamard Code

The Enhanced Hadamard Code provides the possibility to surpass the theoretical
threshold of the error correction capacity of the Hadamard Code described in Equations (14)
and (15). The first publication of this method was mentioned in [1]. This method was
applied in video watermarking techniques.

As discussed earlier, the error correction of a code is determined by Hamming distance
dmin, and the total number of errors that can be corrected is

t =
⌊

dmin − 1
2

⌋
(25)

In the case of the Hadamard Code [16,5,8], an error-correcting capability of t = 3 bit
can be determined. With the Enhanced Hadamard Code, it is possible to correct more than
three bits.

The fundamental concept behind the improved Hadamard Code is the mapping of
2D basis images into a set of 1D rows, which are then used in a 1D decoding process.
Following this, the image is reassembled, making it possible to use the 2D decoding
technique Equation (21) more effectively.

To show the functionality of the Enhanced Hadamard Code, we consider a Hadamard
Code [64,7,32]. The codewords are 64-bit-long and they can encode 27 = 128 different
messages. The Hamming distance is dmin = 32, which means that the code can correct
15 errors. These codewords can be interpreted via basis images of the size 8 × 8 of the
2D Hadamard transform. Without the restriction of any generality, we consider the basis
image A71.

A71 = H8(:, 7)·H8(1, :) =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1


(26)

The corresponding image is depicted in Figure 4.
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Figure 6. Enhanced Hadamard Decoding Procedure on Error Mask and on Corrupted Basis Image.

The algorithm’s stages can be explained as follows:

◦ The tainted basis image (A) is broken down into its individual rows (B).
◦ The 1D Hadamard decoding process is executed to every row. Rows that contain only

one error are decoded error-free; all their errors are removed. In the example, these
are rows No. 6 and 8. In Part (C), these rows are depicted error-free.

◦ The rows are reassembled (D). There are 15 fewer mistakes in the updated pattern
than there were in the previous one.

◦ The Hadamard decoding procedure is applied according to Equation (21) and the
Code Book from Table 3. An error-free pattern is the end product: (E).

A simulation is conducted to evaluate the error correction capabilities of the improved
and standard Hadamard Error-Correcting Codes using codewords of length n = 64. Figure 7
illustrates the results. The x-axis represents the amount of bit mistakes, while the y-axis
represents the proportion of repaired codewords. The improved 2D Hadamard Code is
shown with a solid line, whereas the conventional 2D Hadamard Code is represented with
a dashed line. The standard Hadamard Error-Correcting Code, as explained in Section 2.1,
possesses the following characteristics: If the number of mistake bits falls between the
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range of [1, n/4 − 1] to [3n/4 + 1, n], this system is capable of completely correcting all
erroneous codewords of length n, achieving a 100% success rate. If n = 64, the conventional
Hadamard Code is capable of correcting mistakes when their quantity falls between the
ranges of 1 to 15 and 49 to 64. With the Enhanced Hadamard Correcting Code, errors that
exceed these limitations can be fixed. In the instance of 16 mistakes, 92% of all potential
error patterns inside the codeword can be corrected. Even with 17 faults, there is still a
possibility to rectify 83% of all error patterns. In the case of the Standard Hadamard Code,
no mistakes can be rectified when there are 48 errors. However, the Enhanced Hadamard
Code is capable of correcting faults in this scenario. It has the ability to rectify 92% of
mistake patterns.
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Figure 7. Comparison of error-correcting capabilities between the Standard Hadamard Code (shown
with the dashed line) and the 8 × 8 2D Enhanced Hadamard Code.

Enhanced 3D Hadamard Error-Correcting Code

Diluting the Enhanced Hadamard Code into three dimensions was first mentioned
in [14], and this can enhance the performance of the Hadamard Code. Instead of utilizing
basis images, basis cubes (extensions of basis images) might be employed to create a
comprehensive Code Book.

A Hadamard cube is created by extending a basis image into the third dimension by
the multiplication of the basis image pattern with Hadamard vectors.

Dmlk = Aml · Hk(:) (27)

The basis image is denoted as Aml , while Hk(:) represents the k Hadamard vector.
As an illustration, consider the pattern A41.

A41 =


1 −1 −1 1
1 −1 −1 1
1 −1 −1 1
1 −1 −1 1


With the help of the corresponding Hadamard vector H2 = [1 − 1 1 − 1], the genera-

tion of the cube D412 could be realized, as shown in Figure 8.
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Figure 8. Hadamard Cube D412.

The decoding process and the related error correction both function in a similar
manner to the correction process outlined in Section 2. Prior to application, the cube is
disassembled layer by layer starting from the front side. The upgraded 2D Hadamard
decoding algorithm is used on each layer. A simulation was conducted to evaluate and
compare the performance of the 3D Hadamard Code with the Standard Hadamard Code
of length n = 512. The cubes have dimensions of 8 units in length, 8 units in width, and
8 units in height. Figure 9 displays the results.
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5. Utilization of Enhanced Hadamard Code in Watermarking Technology
and Its Outcomes

Digital watermarking is a promising emerging technique that presents numerous
potential applications [15]. The issue of safeguarding intellectual property rights for
audiovisual data from unauthorized use or tampering can be effectively addressed with
the implementation of watermarking technology [16]. An essential element is an error-
correcting code. The error-correcting algorithm employed in the watermarking technique
is crucial for the survival of watermarks, particularly when watermarked video sequences
are subjected to intense compression. These strategies are chosen to demonstrate the
efficacy of an Enhanced Hadamard Error-Correcting Code (EHC). In order to highlight the
effectiveness of EHC, it was compared to the widely recognized Reed–Solomon Code [17],
itself employed in the identical watermarking scheme.
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5.1. Proposed Scheme for Embedding Watermarks

The suggested watermarking approach operates in the spectral domain and employs
an interframe discrete wavelet transform (DWT) on video sequences [14,18], together
with an intraframe discrete cosine transform (DCT) for the embedding process [19,20].
Figure 10 provides a comprehensive illustration of the entire encoding process. The original
video stream’s luminance channel is deconstructed using a multi-level interframe DWT
with the Haar wavelet, resulting in a raw format. The video stream is subjected to a
block-wise discrete cosine transform (DCT) after being filtered with a low-pass filter. The
DCT spectrum is utilized to determine specific coefficients that are then employed in the
embedding process with 3D Hadamard-coded watermarks. The embedding mechanism
itself is implemented using Quadrature Index Modulation (QIM) techniques [21,22].
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Figure 10. Watermarking Encoding Procedure.

The process of decoding is illustrated in Figure 11. During the decoding process, the
embedded video sequence passes through the same multi-level interframe discrete wavelet
transform (DWT) and intraframe discrete cosine transform (DCT) as it did during the
encoding process.
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Figure 11. Watermarking Decoding Process.

Once the appropriate DCT coefficients have been chosen, the inverse QIM (IQIM) is
implemented. The system transmits the deciphered codewords in the form of a pulse stream.
The original watermark is extracted using the Enhanced Hadamard Error-Correcting Code.

5.1.1. Multi-Level DWT

The method employed for delivering a low-pass filtered video involved the utilization
of a multi-level interframe discrete wavelet transform (DWT) with the Haar wavelet.
Figure 12 depicts the operational principle of this transformation. During the initial stage,
the two successive frames are combined by calculating their average. In the second level,
the frames from the first level are averaged, and this process continues for subsequent
levels. In this particular watermarking system, discrete wavelet transform (DWT) levels
ranging from 12 to 16 are employed.
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5.1.2. Choice of Embedded Coefficients

In order to carry out the embedding process, certain coefficients from the discrete
cosine transform (DCT) spectrum of the discrete wavelet transform (DWT)-filtered video
sequence need to be chosen. Figure 13 displays the coefficients that meet the criteria for
watermarking. Most of these items originate from the yellow region.
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5.2. Investigation of Robustness with 3D Enhanced Hadamard Error-Correcting Code

The experiment utilized an HDTV video sequence with a resolution of 1080 × 1920 and
a frame rate of 25 frames per second. The video was recorded with an AVCHD camera. The
watermarking procedure was exclusively carried out on the luminance channel, following
the conversion of RGB into the YCrCb color space. This choice was made due to the
superior resilience of the luminance channel against distortions compared to other channels.
An investigation was conducted to determine the number of embedded watermark bits that
remain intact after compression attacks, without generating noticeable degradation. The
deterioration of the watermarked output video was quantified using the SSIM (Structural
Similarity) index. SSIM relies on the visual perception of the human eye, making it more
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effective in expressing distortion compared to established approaches such as PSNR (Peak
Signal-to-Noise Ratio) or MSE (Mean Square Error) [23].

Here is the description of the coding procedure of watermarks for the luminance
channel of HDTV video with a resolution of 1080 × 1920.

The encoder procedure starts after DWT filtering and DCT. The following steps have
to be conducted:

1. Read 10 bits from the watermark. This determines the message word.
2. According to the Code Book, find the corresponding basic images and the associated

codeword. The codeword in this case has a length of 512 bits.
3. Select 512 coefficients from DCT blocks.
4. Embed the codeword into the selected coefficients through QIM (Quantization Index

Modulation).

The chosen error-correcting code is the Enhanced 3D Hadamard Code with dimensions
of 8 × 8 × 8, resulting in a codeword length of 512 bits. According to the explanations
in Chapter 2, the message code length is 10 bits. The Hadamard Code is denoted with
the expression [codeword, message word, Hamming distance] and can be expressed as[
2m, m + 1, 2m−1]. The size of each DCT block is 8 × 8, and a total of 16 coefficients are

taken from each block. Using this, it is simple to compute the total number of embedded
watermark bits for each frame.

E =
H·W

B2 ·M
L
·C =

1920·1080
82 · 10

512
·16 = 10125

Bit
Frame

(28)

The variables H and W represent the height and width of the frame, respectively. The
letter B represents the size of the block in the DCT transform. The letter M represents the
length of the message code. The letter W represents the length of the codeword in the 3D
Hadamard Code, and the letter C represents the number of selected spectral coefficients.

Table 4 displays the findings of the capacity and robustness assessments. The com-
pression assaults were executed using the H.264 codec, with various compression ratios.
The approach successfully operates on the unprocessed video, resulting in an original
data rate of 1.2 Gbit/s. A checkerboard pattern measuring 30 × 30 pixels was utilized as
a watermark.

The watermarks were sequentially put into the frames. The Delta Quantization
Index Modulation (QIM) determined the magnitude of the quantization intervals and was
adjusted to a value of 11. The Delta value typically indicates the level of noise distortion
present in the host video.

The video series was compressed using varying compression ratios. Even when
compressed to 5 Mbit/s, which has a compression ratio of 1:240, it is still possible to
recover all watermarks without any errors. The quality comparison between the originally
compressed video and the embedded and compressed version reveals only a minimal
change. The SSIM index for the video in this example is 98%.

5.3. An Analysis of the 3D Enhanced Hadamard Code Compared to the Reed–Solomon Code

A comparative analysis was conducted to demonstrate the efficacy of the Enhanced
Hadamard Code (EHC) by comparing it with the widely recognized Reed–Solomon Code.
The Reed–Solomon Code is widely recognized as an error-correcting code and is extensively
utilized in many consumer electronics applications such as CDs, DVDs, Blu-rays, QR Codes,
and data transmissions.

In order to achieve comparability between the Reed–Solomon Code and the Enhanced
Hadamard Code, it is necessary to provide two parameters: the symbol length and the
level of redundancy. The symbol length, also known as the block length, is equivalent to a
9-bit message. The 3D Enhanced Hadamard Code utilizes a Code Book in which each 9-bit
message is assigned a 512-bit codeword represented by a cube. The Reed–Solomon Code
utilizes a Code Book in which each 9-bit message is associated with a string of 4599 bits.
This string consists of 512 symbols, with each symbol being 9 bits in length. The Reed–
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Solomon Code was designed to have a redundancy that allows for nearly the same number
of correctable symbols as the Hadamard Code has correctable bits, which is n/2. The RS
Code obtained is [511, 255], with a codeword length of n = 511 symbols and a message
length of k = 255 symbols. Each symbol consists of 9 bits.

The performance of both algorithms is evaluated and documented in Table 5. With
a data rate of 5Mbit/s and a compression ratio of 1:240, the EHC Code can successfully
retrieve the complete watermark without any errors. In contrast, the RS Code exhibits a
recovered watermark with a 17% error rate, indicating successful restoration.

Table 5. Comparison of Enhanced Hadamard Code with Reed–Solomon Code.

Data Rate EHC Error % Reed–Solomon Error %
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When considering capacity, it is important to note that the EHC code is superior to 
the RS code. This is because the EHC codeword length is significantly shorter, at 512 bits, 
compared to the RS codeword length of 4599 bits. 

6. Conclusions 
This study presents a novel kind of multidimensional Hadamard Error-Correcting 

Code, referred to as Enhanced Hadamard Error-Correcting Code (EHC), and its applica-
tion in video watermarking. The implementation of this code in a video watermarking 
scheme provides compelling evidence of its efficacy. 

The Enhanced Hadamard Code is significantly more efficient than the popular Reed–
Solomon Code (RS Code). The watermarks of a video, which are safeguarded with EHC, 
have the ability to withstand a highly forceful compression attack, unlike with the RS 
Code. 
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At a transmission rate of 3 Mbit/s, the exceptional efficiency of EHC becomes even
more evident. The EHC watermark has a margin of error with a precision of 1.7%. In con-
trast, the RS watermark is barely noticeable and has an error rate of 27.6%.

When considering capacity, it is important to note that the EHC code is superior to
the RS code. This is because the EHC codeword length is significantly shorter, at 512 bits,
compared to the RS codeword length of 4599 bits.

6. Conclusions

This study presents a novel kind of multidimensional Hadamard Error-Correcting
Code, referred to as Enhanced Hadamard Error-Correcting Code (EHC), and its application
in video watermarking. The implementation of this code in a video watermarking scheme
provides compelling evidence of its efficacy.

The Enhanced Hadamard Code is significantly more efficient than the popular Reed–
Solomon Code (RS Code). The watermarks of a video, which are safeguarded with EHC,
have the ability to withstand a highly forceful compression attack, unlike with the RS Code.

Watermarks that are secured via EHC can be effortlessly retrieved without any errors
from a video that has a compression ratio of 1:240. This compression ratio corresponds to a
data rate of 5 Mbit/s.

If the embedding procedure utilizes the RS Code instead of EHC, it is not possible to
achieve an error-free recovery of the watermarks. The error margin is approximately 17.5%
and the watermark content is scarcely discernible.

The findings obtained are highly encouraging, demonstrating the significant potential
of the new Enhanced Hadamard Code in the field of video watermarking. The Enhanced
Hadamard Code (EHC) has the potential to boost the performance of light communica-
tion, particularly in the study field of wireless sensor network (WSN) and visible light
communication (VLC) applications.
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