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Abstract: In response to the numerous challenges faced by traditional human pose recognition
methods in practical applications, such as dense targets, severe edge occlusion, limited application
scenarios, complex backgrounds, and poor recognition accuracy when targets are occluded, this paper
proposes a YOLO-Pose algorithm for human pose estimation. The specific improvements are divided
into four parts. Firstly, in the Backbone section of the YOLO-Pose model, lightweight GhostNet
modules are introduced to reduce the model’s parameter count and computational requirements,
making it suitable for deployment on unmanned aerial vehicles (UAVs). Secondly, the ACmix
attention mechanism is integrated into the Neck section to improve detection speed during object
judgment and localization. Furthermore, in the Head section, key points are optimized using
coordinate attention mechanisms, significantly enhancing key point localization accuracy. Lastly,
the paper improves the loss function and confidence function to enhance the model’s robustness.
Experimental results demonstrate that the improved model achieves a 95.58% improvement in mAP50
and a 69.54% improvement in mAP50-95 compared to the original model, with a reduction of 14.6 M
parameters. The model achieves a detection speed of 19.9 ms per image, optimized by 30% and 39.5%
compared to the original model. Comparisons with other algorithms such as Faster R-CNN, SSD,
YOLOv4, and YOLOv7 demonstrate varying degrees of performance improvement.

Keywords: deep learning; target detection; YOLO-Pose; human posture; drones

1. Background

The study of human posture is of great significance for understanding movement
mechanisms, improving motor skills, and optimizing training programs. China has always
been committed to improving the health of its people, and has emphasized adherence
to the principle of prevention as the mainstay, optimization of the health service system,
and enhancement of the non-medical health service model. The healthy growth of the
body has a profound impact on the overall health of college students and is an important
manifestation of the country’s comprehensive strength, as well as a key resource for the
country’s sustainable development. Health education in colleges and universities, as an
important component for the implementation of such a program, has the responsibility to
promote correct health concepts and methods.

The main cause of poor body posture is an abnormal change in the alignment of
the bones, which affects range of motion and places abnormal stress on muscles, joints,
ligaments, and other tissues. In such unbalanced postures, the rest of the body “compen-
sates” for the imbalance, but the balance is fragile and gradually leads to discomfort and
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pain. With increased awareness of the importance of managing body shape and health,
the “pre-intervention” model of correction and rehabilitation is becoming more widely
recognized, and effective methods such as exercise are being used to address the problem
proactively, thereby reducing the risk of disease associated with poor posture.

Human posture estimation is an important computer vision task aimed at detecting
human posture from images or videos, including the body’s joint positions and relative
angles. This task is of great significance. Traditional 2D human pose estimation methods
are mainly classified as bottom-up and top-down. Top-down methods first detect all
human positions in the image and then estimate the pose information and size for each
detected person independently. Bottom-up methods, on the other hand, first utilize a
convolutional neural network (CNN) or its variants to extract features from the input image
and then use a dense key point detector to detect all relevant key points and combine the
human pose information based on the relationship between them. Human body posture
estimation must judge and locate the target and interpret the target’s rotation angle in
three-dimensional space. In traditional two-dimensional image recognition in the process
of practical application, there are low light intensity, dense targets, serious edge occlusion,
single application scenes, complex background of the target object, the target is occluded,
recognition accuracy is poor, etc. All of these problems in human body posture estimation
algorithms’ recognition speed and accuracy are challenging.

2. Introduction
2.1. Research Work by Relevant Scholars

With the advancement of deep learning and the increase in computational power,
significant progress has been made in human pose estimation network models. Zheng
et al. [1] (2021) proposed a purely Transformer-based method called PoseFormer for 3D
human pose estimation in videos. This method comprehensively models the intra-frame
human joint relationships and inter-frame temporal correlations to output accurate 3D
human poses for the central frame. Liu et al. [2] (2021) introduced a novel multi-frame
human pose estimation framework that leverages rich temporal cues between video frames
to enhance key point detection. This method encodes the spatiotemporal context of key
points through pose–time merging to generate an effective search range and computes
bidirectional weighted pose residuals through a pose residual fusion module, effectively
improving pose estimation. Li et al. [3] (2021) proposed an efficient and effective regression-
based approach utilizing maximum likelihood estimation (MLE) for developing human
pose estimation, modeling the output distribution using likelihood heatmaps. Zhang
et al. [4] (2021) proposed a method that utilizes the YOLOv3 model to create a human
pose estimation network, combining the squeeze-and-excitation network structure in High-
resolution network (HRNet) residual architecture and improving the HRNet algorithm’s
output of human key points. They designed a pose classification algorithm based on
support vector machines (SVMs) to classify human poses in a classroom setting.

Li et al. [5] (2022) proposed a strided Transformer architecture to efficiently convert a
long sequence of 2D joint positions into a single 3D pose. This method combines single-frame
supervision and applies additional temporal smoothness constraints to generate smoother and
more accurate 3D poses. Liu et al. [6] (2022) introduced an anisotropic Gaussian coordinate
encoding method to describe the skeletal orientation cues between adjacent key points. This
is the first time skeletal orientation cues have been incorporated into heat map encoding for
human pose estimation (HPE) tasks. They also introduced multiple loss functions to constrain
the output and prevent overfitting. They use Kullback–Leibler divergence to measure the
difference between predicted labels and ground truth labels. This method demonstrates
significant advantages over existing state-of-the-art models for human pose estimation, but
it suffers from algorithmic complexity and poor robustness, making it difficult to apply in
real-life scenarios. Yuan et al. [7] (2022) proposed a video-based fall detection and orientation
estimation method based on human pose estimation. They predict the coordinates of key
points for each person using a pose estimation network and then use an SVM classifier
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to detect falls. This approach can effectively be applied to fall detection and orientation
estimation in videos. Lee et al. [8] (2022) proposed an OpenPose network and applied the
DeepSort algorithm for multi-person tracking. This algorithm can identify the poses of each
individual based on the single-frame joints obtained from OpenPose. However, the algorithm
exhibits poor robustness and struggles to cope with the challenges of complex human pose
estimation in current scenarios.

Su et al. [9] (2022) proposed a motion pose estimation algorithm based on OpenPose
and trained it using the COCO dataset. Through comparison with standard poses, the
study demonstrated the algorithm’s ability to accurately recognize various badminton
action poses, with a recognition rate of up to 94%. Amadi et al. [10] (2023) introduced a
novel and fully differentiable pose consistency loss method. This method is unaffected
by camera direction and has shown improvements in single-view human pose estimators
trained using limited labeled 3D pose data. Manesco et al. [11] (2023) proposed a novel
approach called the domain unified method, aiming to address pose misalignment in
cross-dataset scenarios through a combination of three modules on top of a pose estimator,
including a pose transformer, uncertainty estimator, and domain classifier. Li et al. [12]
(2023) presented a hybrid model that combines convolution and transformation models to
address the inconsistency between the performances of key point localization with higher
accuracy and overall performance.

2.2. Contribution of This Article

Building on the academic research of the aforementioned scholars and the practical
engineering applications, this paper proposes a novel approach to address the challenges of
severe occlusion at the edges, complex background, and low recognition accuracy caused
by target occlusion in human pose estimation. The aim is to improve the detection speed,
accuracy, and robustness of the model.

Regarding the YOLOv5 model, which is currently a milestone in the industrial world,
its lightweight and precision improvement give full play to its simplicity, ease of use, and
high efficiency [13] and lay the foundation for its wide application in actual production,
life, and industrial engineering. The summary diagram of this work is shown in Figure 1.
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The main contributions of the research presented in this paper are as follows:

(1) The Backbone section introduces a lightweight GhostNet module to complete the
generation of redundant features with a more economical linear transformation,
thus greatly reducing the computational cost of convolution to lower the number of
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parameters of the model and reduce the arithmetic demand, making it more suitable
for deployment on UAVs.

(2) The Neck part introduces the ACmix attention mechanism, which captures local
features by convolution in the task of judgement and localization of the target by the
model, so that it focuses on judging the human body’s bounding box convolution of
local features to improve the detection speed.

(3) The key points in the Head part and the decoupling information of key points are
optimized through the coordinate attention mechanism in order to solve the problems
of complex target background and poor target occlusion detection accuracy and to
improve the positioning accuracy of key points.

(4) The loss function and confidence function are improved to guarantee the robustness
of the projection of the bounding box (BBox) for human pose estimation in complex
scenes in order to improve the robustness of the model and prevent the occurrence of
lagging, frame dropping, and video blurring problems [14].

3. Experimental Data

The resources for this experimental study consist of three components: the study
object, the data collection and dataset, and the A800 deep learning GPU arithmetic server.

3.1. Research Object

A total of 227 undergraduate female students from Gansu Agricultural University, who
were enrolled in the academic year of 2022, were randomly selected as the subjects of this
study. Initially, a questionnaire survey was conducted to collect basic information regarding
their height, weight, body fat percentage, daily routines, medical history, pain history,
allergy history, lifestyle habits, and self-perception of body posture. It is worth noting that
students diagnosed with definite spinal disorders, thoracic deformities, developmental
abnormalities, as well as those exempt from physical education classes due to medical
reasons, were not included in the scope of this research.

3.2. Data Collection and Dataset

The sample dataset collected in this study is derived from the daily learning and
living scenarios of students at Gansu Agricultural University in Lanzhou, China. To
ensure the diversity of images in the dataset, the experiment collected various complex
scenarios including classroom learning, campus strolls, physical exercise, and labora-
tory activities. The methods of image collection in the dataset include the use of mobile
devices and drones. The mobile devices utilize the Sony IMX866 large sensor camera,
which significantly enhances color performance and image quality, with a resolution of
1279 × 1706 pixels, and a total of 600 images were collected. The unmanned aerial vehicle
employs the Mavic 3 Cine model, equipped with a one-inch sensor and 20 million pixels,
capable of capturing high-dynamic-range images, and possessing outstanding stability and
endurance performance. The image resolution is 5280 × 2970 pixels, and 600 images were
also collected. Both datasets, totaling 1200 images, were divided into training, testing, and
validation sets in an 8:1:1 ratio.

In this study, we annotated human body pose key points using the Labelme software
(version 1.8.6) and employed the COCO format for data annotation. The annotation was
specifically performed on instances of the class “Person”. A total of 17 key points on the
human body were annotated, including the nose, left eye, right eye, left ear, right ear, left
shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left hip, right hip, left
knee, right knee, left ankle, and right ankle [15]. Each key point (C1, C2, C3) is stored in a
JSON data format. Specifically, C1 and C2 represent 2D plane coordinate data of the human
body pose estimation key points, while C3 serves as a decision identifier, indicating the
presence or absence of the key point in the image. The annotated key points are illustrated
in Figure 2.



Sensors 2024, 24, 3036 5 of 20

Sensors 2024, 24, x FOR PEER REVIEW 5 of 21 
 

 

human body pose estimation key points, while C3 serves as a decision identifier, indicat-

ing the presence or absence of the key point in the image. The annotated key points are 

illustrated in Figure 2. 

 
(a) (b) (c) 

Figure 2. The schematic diagram of human pose key point annotation. (a) Laboratory; (b) Drone; (c) 

Physical Education Class. 

3.3. Details of the A800 Deep Learning GPU Computing Power Server 

The computational resource employed in this study was the A800 deep learning GPU 

server at the Intelligent Sensing and Control Laboratory of Shandong University of Petro-

leum and Chemical Technology in China. The server utilized for this purpose is the Wave 

Computing’s AI Server NF548M6. Its hardware configuration includes an Intel® Xeon(R) 

Silver 4314 CPU @ 2.4 GHz × 64 as the CPU processor, equipped with 8 NVIDIA A100 

GPUs. Graphical rendering utilized llvmpipe (LLVM 7.0, 256 bits), while the operating 

system was CentOS Linux 7 (3.28.2), with 128 GB of memory capacity and 2.048 TB of disk 

storage space. Python version 3.8 was employed, setting the learning rate for the neural 

network to 0.01, and using a batch size of 16 for image training. All computational exper-

iments were conducted on this powerful computing platform. 

4. YOLO-Pose Human Posture Estimation Algorithm 

The YOLO-Pose network structure, as illustrated in Figure 3, is built upon the foun-

dation of the YOLOv5 network structure. The YOLOv5 network structure comprises three 

main components: Backbone, Neck, and Head [16], with the detailed flowchart depicted 

in Figure 3. The significance of YOLOv5 lies in its concise, user-friendly, and efficient char-

acteristics, which have swiftly established its position in the industrial sector and enabled 

its widespread application in practical production fields. The scenario of this study in-

volves conducting human pose detection tasks on unmanned aerial vehicles (UAVs), 

hence the utilization of the lightweight and low-computational-resource YOLOv5s. 

Figure 2. The schematic diagram of human pose key point annotation. (a) Laboratory; (b) Drone;
(c) Physical Education Class.

3.3. Details of the A800 Deep Learning GPU Computing Power Server

The computational resource employed in this study was the A800 deep learning
GPU server at the Intelligent Sensing and Control Laboratory of Shandong University of
Petroleum and Chemical Technology in China. The server utilized for this purpose is the
Wave Computing’s AI Server NF548M6. Its hardware configuration includes an Intel®

(Santa Clara, CA, USA) Xeon(R) Silver 4314 CPU @ 2.4 GHz × 64 as the CPU processor,
equipped with 8 NVIDIA A100 GPUs. Graphical rendering utilized llvmpipe (LLVM 7.0,
256 bits), while the operating system was CentOS Linux 7 (3.28.2), with 128 GB of memory
capacity and 2.048 TB of disk storage space. Python version 3.8 was employed, setting the
learning rate for the neural network to 0.01, and using a batch size of 16 for image training.
All computational experiments were conducted on this powerful computing platform.

4. YOLO-Pose Human Posture Estimation Algorithm

The YOLO-Pose network structure, as illustrated in Figure 3, is built upon the founda-
tion of the YOLOv5 network structure. The YOLOv5 network structure comprises three
main components: Backbone, Neck, and Head [16], with the detailed flowchart depicted
in Figure 3. The significance of YOLOv5 lies in its concise, user-friendly, and efficient
characteristics, which have swiftly established its position in the industrial sector and
enabled its widespread application in practical production fields. The scenario of this study
involves conducting human pose detection tasks on unmanned aerial vehicles (UAVs),
hence the utilization of the lightweight and low-computational-resource YOLOv5s.

In the Backbone, 4 C3_1s and 5 CBSs are utilized, with SPPF incorporated into the
Backbone. The stride of all five CBSs is 2, resulting in a halving of both the height and
width of the image after passing through the CBS. As shown in Figure 4, a CBS consists
of a 2D convolutional layer, a BN layer, and a SiLU activation function. The distinction
between BottleNeck2 and BottleNeck1 lies in the removal of the connection from input
to output. Additionally, the difference between C3_1_X and C3_2_X lies in the use of
BottleNeck1 in C3_1_X and BottleNeck2 in C3_2_X. C3_1 and C3_2 are collectively referred
to as the C3 module, each employing three CBSs. Compared to CSPX, C3_X entails a smaller
computational load. In YOLOv5, the authors transformed the BottleneckCSP module into
the C3 module, which serves as the primary module for residual feature learning. It is
composed of two structures: one acting on the Backbone main network and the other on
the Neck module branch.

The spatial pyramid pooling (SPP) consists of SPP and SPPF, both of which are funda-
mentally similar modules that perform multi-scale transformations and fusion on feature
maps. However, they differ slightly in structure. In SPPF, the input first passes through
a CBS, followed by three layers of MaxPool, and eventually four output channels are
merged to produce the final output through another CBS. It should be noted that, as op-
posed to SPP’s three pooling operations using window sizes of 5 × 5, 9 × 9, and 13 × 13,
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SPPF’s input for each pooling layer is derived from the previous layer’s output, with all
three layers utilizing a 5 × 5 pooling window. Experimental results demonstrate that the
computational load of the SPPF model is significantly smaller, leading to a substantial
speed improvement.
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Figure 4. The Composition Structure of the Modules in the YOLOv5 Network Model.

The Neck section consists of 4 C3_1s, 4 CBSs, 4 Concts, and 2 UpSample modules.
In the fusion pathways from top to bottom on the left side, there are two CBSs and two
C3_2 modules; while in the fusion pathways from bottom to top on the right side, there
are also two CBSs and one C3_2 module. This bidirectional feature fusion pathway is
referred to as PAnet. As shown in Figure 5, PAnet merges high-dimensional features into
low-dimensional features from top to bottom on the left side. Compared to the feature
pyramid network (FPN), the bidirectional fusion structure of PAnet is more conducive to



Sensors 2024, 24, 3036 7 of 20

comprehensive feature integration. The Concat module is used for dimension concatena-
tion, integrating feature maps with high dimensions lacking semantic information and
low dimensions lacking detailed information. The UpSample module is used for upsam-
pling, which effectively detects small objects and details. In the Head section, only one
Conv module is retained, primarily to adapt the number of channels, uniformly trans-
form dimensional information, and parse the channel information of the feature map into
corresponding detection boxes and categories.
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5. Improvement of YOLO-Pose Human Pose Estimation Algorithm
5.1. Backbone Section Introduces Lightweight GhostNet Module

In practical application scenarios, standard convolution modules may generate a large
number of approximate features, resulting in significant computational resource consump-
tion. This becomes particularly problematic when deploying the model on unmanned
aerial vehicles (UAVs) for human pose estimation tasks, as mobile devices on UAVs often
have limited computational power, which can lead to stuttering and unsmooth model
performance. To address this issue, we introduce the GhostNet module into the YOLO-
Pose model. By utilizing more cost-effective linear transformations to generate redundant
features, we greatly reduce the computational cost of convolution. Initially, we employ
standard convolutions to generate m layers of original features, as illustrated in Figure 6a
and computed using Equation (1).

γ′ = X ∗ f + b (1)
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In the formula, γ′ ∈ Rh′×ω′×m represents the output feature map, b represents the
bias term [17], * signifies the convolution operation, and subsequently, γ′ undergoes an
inexpensive mapping. As shown in Formula (2), y′i ∈ Y′ and φi,j denote the j-th linear
transformation of the source feature i. The schematic diagram is depicted in Figure 6b,
where it is evident that φi,j generates multiple corresponding Ghost features yij .

yij = φi,j
(
y′
)
, ∀i, . . . , m, j = 1, . . . , s (2)

The standard convolution floating-point operation is denoted as n× h′× ω′ × c× k× k,
wherein c represents the number of input channels. In contrast, the Ghost convolution
combines m(s − 1) = n/s+ (s − 1) linear computations [18] with the standard convolution.
The linear transformation convolves the kernel of size d × d. Hence, the computational
ratio between the two can be expressed as Formula (3).

R =
nh′ω′ckk

(n/s)h′ω′ckk + (s − 1)(n/s)h′ω′dd
=

ckk
s−1ckk + ((s − 1)/s)dd

=
sc

s + c − 1
≈ s (3)

The Ghost convolution, compared to the standard convolution, increases the theo-
retical number of operations by a factor of c given d × d = k × k and s ≪ c. Leveraging
the performance advantages of the Ghost module, two Ghost modules are combined to
construct a new Ghost module structure, as illustrated in Figure 6c. The Backbone is formed
by concatenating two Ghost modules in series. The role of the first module is to increase the
feature dimension and expand the number of channels. The second Ghost module reduces
the number of channels to match the number of input channels [19] and connects with the
input through a shortcut to obtain the final output. Thus, the input and output dimensions
of the new Ghost structure are the same, facilitating its integration into neural networks.
When the stride is 2, a DWConv convolution layer with a stride of 2 is added between
the two Ghost modules of the Backbone, which reduces the output feature map size to
half of the input feature map size [20]. Two types of stride handling innovations provide
greater flexibility for models to adapt to tasks of varying sizes and complexities. This
study reconstructs the entire fusion network using the novel lightweight Ghost module
to reduce model parameters and decrease computational requirements, making it more
suitable for deployment on mobile devices, significantly enhancing the model’s usability
and portability.

5.2. Neck Partially Introduces the ACmix Attention Mechanism

After introducing the lightweight Ghost module, the YOLO-Pose algorithm for hu-
man pose estimation has targeted detection and localization tasks. To further enhance
performance, this study has also introduced the ACmix attention mechanism, which allows
the network model to focus on feature information that is crucial for model performance,
while ignoring irrelevant information and facilitating effective information exchange and
propagation with other modules. The ACmix attention mechanism is a hybrid model that
combines the advantages of self-attention and convolutional operations [21]. The core
concept of this attention mechanism is to utilize 1 × 1 convolutions to perform most of the
computations for both self-attention and convolutional operations, thereby enabling both
global perception capability and the capture of local features through convolution.

According to Figure 7, the processing of the feature maps with a size of H × W × C
is first performed through three 1 × 1 convolution projections, resulting in three sets of
feature maps with sizes of 3 × N. Subsequently, convolution and self-attention operations
are separately applied to these feature maps [22]. The convolution operation can be divided
into two stages, namely Stage 1 represented by Equation (4) and Stage 2 represented by
Equations (5) and (6).

g∼(p,g)
ij = Kp,q fij (4)
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gij = ∑
p,q

g(p,q)
i,j (5)

g(p,q)
i,j = Shi f t

(
g∼(p,g)

ij , p − ⌊k/2⌋, q − ⌊k/2⌋
)

(6)
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In the above equations, fij represents the feature vector of the input pixel, ⌊ ⌋ denotes the

positional operation, k represents the kernel size, g(p,q)
i,j represents the feature map before projec-

tion, g(p,q)
i,j represents the feature map after projection, Shift represents the shift transformation,

p, g represent the linear projection, Kp,q represents the linear projection on each position, and gij
represents the total sum of the feature obtained after the aggregation operation.

The first stage involves projecting the input features onto different coordinate positions
(p, q) according to the weight K. In the second stage, the projected mappings undergo
horizontal and vertical shift operations separately based on Kp,q, and finally, all the mapped
feature information is aggregated together [23].

Similarly, the self-attention operation can also be divided into 2 stages. The first stage
is represented by Equation (7), and the second stage is represented by Equation (8).

q(l)ij = W(l)
k fij

k(l)ij = W(l)
k fij

v(l)ij = W(l)
k fij

(7)

gij =
N
∥

I = 1
( ∑

a,b∈Nk(i,j)
A
(

q(l)i,j , k(l)ab

)
vl

ab) (8)

In the aforementioned equation, W(l)
q represents the input feature map matrix of the

query at pixel (i, j), W(l)
k represents the input feature map matrix of the key at pixel (i, j), and

W(l)
v represents the input feature map matrix of the value at pixel (i, j) [24]. k(l)i,j is the feature

mapping after key projection, v(l)i,j is the feature mapping after value projection, q(l)i,j is the
feature mapping after query projection, and ∥ is the cascade of N attention head outputs.
Nk(i, j) denotes the region centered at pixel (i, j) with spatial width k, and A

(
q(l)i,j , k(l)ab

)
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denotes the corresponding weights in region Nk(i, j). The feature mapping after the first
stage of projection through three 1 × 1 convolutions is noted as query, key, and value, and
finally the paths of the two operations are merged and summed to output as:

Fout = αFconv + βFatt (9)

In Formula (9), Fout represents the final output of the path [25], Fconv represents the
output of the convolutional attention branch, and Fatt represents the output of the self-
attention branch, which is used to measure the output weights. In order to achieve a
balance between global and local feature information in the convolution and self-attention
operations, this paper sets the models of α and β to 1, thereby enhancing the aggregation
capability of intermediate mapping information for both modes and making the network
more suitable for detecting small target information.

5.3. Optimizing the Head Section Key Points

Key point detection is a task that is highly sensitive to position information, while human
pose estimation is often affected by external factors such as lighting, resulting in missed
and false detections of key points. In the original YOLOv5 network, the design of the key
point decoupling head involves independent two-dimensional convolutional operations, as
shown in Figure 8, predicting at three different scales (80 × 80, 40 × 40, 20 × 20). Each scale
corresponds to three anchors, which in turn predict feature boxes at different scales of 80 × 80,
40 × 40, and 20 × 20. Therefore, the entire network predicts a total of 25,200 feature boxes.
This design enables the network to more accurately identify and decode key point information.
However, the large number of 25,200 feature boxes greatly wastes computational resources.
For tasks involving human pose estimation by drones, computational resources are already
scarce, thus non-maximum suppression (NMS) must be applied to filter out low-accuracy
detection boxes, retaining only high-accuracy ones.
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Each feature point in the sample images captured by drones has 8 feature channels,
which include parameters representing the detection box, confidence (conf), 2D screen
coordinates (C1 and C2) of the key points for human pose estimation, and an identification
indicator for the existence of key points (C3). The detection box has 4 parameters, namely
the center point (bx, by), width (bw), and height (bh), where the center point of the detection
box falls within the grid at the center of the feature map [26]. During the computation
process, the center point coordinates of the detection box are first calculated, with girdi
representing the i-th column and girdj representing the j-th row. YOLOv3, YOLOv4, and
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YOLOv5 all employ anchor-based methods to compute the position of the detection box,
although the formulas for calculating the center point coordinates (bx, by) as well as the
width (bw) and height (bh) may differ slightly.

This study further introduces the coordinate attention mechanism to optimize the de-
coupling of key point information and improve the accuracy of key point localization. The
schematic diagram of the coordinate attention structure is shown in Figure 9, where H, W, and
C represent the height, width, and channel number of the feature map [27], respectively.
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The coordinate attention mechanism encodes the horizontal and vertical positional [28]
information into channel attention, enabling the network to capture not only inter-channel
information but also directional perception and position-sensitive information. Specifically,
this mechanism consists of two steps: coordinate position embedding and coordinate
attention generation. Firstly, we apply global average pooling with pooling kernels of
size [H, 1] and [1, W] to transform the feature map from a matrix of size [H, W, C] into a
vector of size [1, 1, C]. Following the global average pooling layer, we utilize 1D 1 × 1
convolutions to acquire inter-channel mutual information, with the size of the convolution
kernels adjusted by an adaptive function. This adaptive function allows layers with more
channels to engage in more inter-channel interactions. The specific adaptive function is
described in Formula (10).

k =
∣∣∣ log2(c)

γ + β
γ

∣∣∣ (10)

The channel adaptation performs optimally when γ = 2 and β = 1. We apply the
adaptive function to the 1D 1 × 1 convolutions to obtain the weights for each channel in
the feature pattern. Finally, by multiplying the normalized weights with the initial input
feature pattern channels, we obtain the feature output Zh

c (h) and Zh
c (w) for the c-th channel

at height h and width w. 
Zh

c (h) =
1

W ∑
0≤i<W

xc(h, j)

Zh
c (w) = 1

H ∑
0≤j<H

xc(j, w)
(11)

In Equation (11), xc represents the input for channel c. The feature map obtained from
Equation (11) is subjected to dimension concatenation and transformed into intermediate
feature maps through operations like 1 × 1 convolution, batch normalization, and non-
linear activation functions. This process yields intermediate feature mappings as shown in
Equation (12).

f = δ
(

F1

([
Zh, Zw

]))
(12)

In the equation, f ϵRC/r×(H+W) represents the intermediate feature containing both
horizontal and vertical spatial information. φ represents the non-linear activation function.
Zh and Zw represent the outputs of the concatenated feature map in terms of height and
width, respectively. r denotes the reduction factor, R represents the set of real numbers, C
represents the number of channels in the feature map, and F1 represents the convolution op-
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eration with a kernel size of 1. Subsequently, the feature tensor f is split into two independent
tensors, f ϵRC/r×(r+H) and f ϵRC/r×(r+W), along the height and width dimensions. Addition-
ally, two 1 × 1 convolutions are employed to transform f ϵRC/r×(r+H) and f ϵRC/r×(r+W) into
Fh and Fw, respectively, ensuring that f h and f w have the same number of channels as the
input feature tensor X. Afterward, the sigmoid activation function, σ, is separately applied to
gh and gw to obtain attention weights along the height and width dimensions, as depicted in
Equation (13): {

gh = σ
(

Fh

(
f h
))

gw = σ(Fw( f w))
(13)

Finally, the input feature map X is weighted by the attention weights gh and gw

through a multiplication operation, resulting in the output of the coordinate attention
module, denoted as Y ∈ RC×H×W , as shown in the following equation.

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (14)

In Equation (14), gh
c and gw

c represent the attention weights of the feature map along
the height and width dimensions, respectively, in the c-th channel. In this study, we have
incorporated the coordinate attention mechanism into the conventional 2D convolution
key point decoupling head. This mechanism enhances the sensitivity to the position of key
points during the feature enhancement and prediction processes. It effectively addresses the
challenges of accurate recognition and prediction in scenarios with complex backgrounds
and occluded objects. Ultimately, it improves the accuracy of recognition and prediction.

5.4. Introduction of New Loss Function and Confidence Function

The YOLO-Pose network model outputs information including target class probabili-
ties, coordinates of 17 key points, and confidence scores. In this study, the network training
is conducted using the following loss function.

L = λptLpt + λcon f Lcon f + λidLid (15)

In Equation (15), L represents the loss function, Lpt is the coordinate loss, Lconf is the
confidence loss, and Lid is the class loss. λpt is the weight for the coordinate loss function,
λconf is the weight for the confidence loss function, and λid is the weight for the class
loss function. The loss function, L, is composed of three components: the coordinate loss
function, Lpt, the confidence loss function, Lconf, and the class loss function, Lid [29]. The
coordinate loss and confidence loss are computed using the mean square error function,
while the class loss function is computed using the cross-entropy function.

In the early stages of training the network model, the precision of confidence prediction
is low. At the beginning, it is necessary to set λconf as 0 and gradually increase it for the
units containing the target objects as training progresses. When dealing with units that
do not contain the target object class, λconf is set to 0.1. The weight for the coordinate loss
function, λpt, is set as 1, and the weight for the class loss function, λid, is also set as 1.

When training the network with the aforementioned loss functions, it has been demon-
strated through empirical evidence that computing the IoU for calculating the loss function
is extremely time-consuming. Therefore, this network proposes Equation (16) as a substitute
for approximating the computation of IoU.

c(x) =

 ea
(

1− DT (x)
dth

)
−1

ea−1 , D(x) < dth
0, otherwise

(16)

where dth represents the predicted distance of key points from the ground truth distance,
D(x) represents the average error of key points in various bounding boxes (BBox) for human
pose estimation, a denotes the hyperparameter scale factor for the current target, and C(x)
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represents the approximate IoU for the bounding box and predicted box. This approximation
calculation greatly reduces the time consumption while mostly not sacrificing accuracy.

Building upon this foundation, the proposed model incorporates the calculation of
variance for the error of each key point to ensure the robustness of the bounding box
(BBox) projection for human pose estimation in complex scenes. The calculation formula is
as follows:

c′(x) =
c(x) + ∑9

i=1

(
di − d

)2

0, otherwise
, D(x) < dth (17)

In our network model prediction, filtering is performed based on the confidence score
and intersection-over-union (IoU) of the objects [30]. Similarly, in the three-dimensional
space, it is necessary to analyze the confidence of the target objects. This network model
employs the confidence function f(x) based on Euclidean distance to evaluate the deviation
distance between the predicted pose of the target object and the ground truth pose. The
updated formula is as follows:

f (x) =

c(x) +
9
∑

i=1

(
di − d

)2

0, otherwise
, D(x) < dth (18)

5.5. Improved YOLO-Pose Model

The improved YOLO-Pose model consists of four components: Input, Backbone, Neck,
and Prediction [31], as shown in Figure 10. The Input component includes adaptive scaling,
mosaic data augmentation, and anchor box calculation, where the adaptive image size
is set as the default size of 640 × 640. YOLOv5 computes the optimal anchor box values
for different training iterations. The mosaic data augmentation utilizes four images and
combines them through random scaling, cropping, and arrangement. The purpose of
anchor box calculation is to adjust the size and position of the correct targets in object
detection. The Backbone component incorporates the GhostNet module, the Neck com-
ponent introduces the ACmix attention mechanism to optimize the key point prediction
in the Head component, and new loss functions and confidence functions are introduced.
Through improvements in each module, the new YOLO-Pose model is formed.
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6. Experimental Methods and Results
6.1. Network Training

This study adopts the stochastic gradient descent (SGD) as the core algorithm for
network optimization. To maintain the stability of the deep layers in the model, a warm-up
strategy is implemented during the training process. The initial learning rate is set to 0.0001
for predictive training, and it is decayed by a factor of 0.1 after every 150 epochs. The
weight decay is set to 0.01. The transfer learning technique is employed, utilizing models
trained on the ImageNet-1K and COCO datasets as pre-trained models. The gradient
accumulation strategy is employed, with a batch size step of 4 and parameter updates
performed every 16 steps. The training is conducted for 500 epochs, and loss and accuracy
are sampled every 5 min per epoch.

6.2. Evaluation Indicators

In order to validate the speed, accuracy, and robustness of the improved YOLO-Pose
model, the human pose estimation algorithm adopts the average precision based on the
object key point similarity Loks, as defined by the official MS COCO evaluation criteria.
Specifically, Loks refers to:

Loks =
∑i exp

(−
d2

i
2s2k2

i
)
δ(vi > 0)

∑i δ(vi > 0)
(19)

In Equation (19), i represents the annotated key point index, d2
i represents the squared

Euclidean distance between the detected key point position and the ground truth key point
position, s2 represents the area occupied by the detected human body in the image, ki
represents the decay constant used to control the key point category i. δ is the impulse
function, indicating that the Loks value is only computed for visible relationship points in
the ground truth annotations. vi represents the visibility of the i key point, where 0 signifies
unannotated, 1 signifies annotated but occluded, and 2 signifies annotated and visible.

The evaluation of the algorithm’s object recognition accuracy for object category detec-
tion is conducted using precision (P), recall (R), and mean average precision (mAP) [32].
Precision (P) represents the proportion of correctly predicted samples among samples
predicted as positive, as shown in Equation (20).

P =
TP

TP + FP
× 100% (20)

The recall (R) represents the proportion of correctly predicted samples among the
actual positive samples, as shown in Equation (21).

R =
TP

TP + FN
× 100% (21)

The average precision (AP) is the area under the precision–recall curve, as indicated
in Equation (12). The mean average precision (mAP) is defined as the average of AP
values [33].

mAP =
∑N

i=1
∫ 1

0 P(R)dr
N

× 100% (22)

In the aforementioned equation, TP represents the number of samples correctly de-
tected as the target class in the image, FP represents the number of falsely detected samples
in the image, and FN represents the number of samples in the image where the target class
was not correctly detected. The similarity losses of the target key points in the training
and validation datasets, as well as the accuracy curves of various indicators in the training
dataset, are shown in Figure 11. From the figure, we can observe that when the model is
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iterated 500 times, all the losses tend to stabilize and reach their minimum. At this point,
all the accuracy metrics achieve their optimal values.
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In key point detection, we adopt mAP50 and mAP50-95 as evaluation metrics. Here,
mAP50 represents the evaluation metric for single-object class detection accuracy when
the threshold Loks is ≥0.5. mAP50-95 represents the average detection accuracy over
10 different thresholds, including 0.5, 0.55, . . ., 0.90, and 0.95, when using Loks as the
threshold. Based on the results shown in Figure 12, the accuracy rates of both mAP50 and
mAP50-95 steadily increase within the first 100 iterations, from 0.5 to 0.8 and from 0.2 to
0.5, respectively. After the 100th iteration, the model’s accuracy stabilizes, reaching around
0.8 for mAP50 and around 0.5 for mAP50-95. Precision and Recall stabilize around 0.94
and 0.85, respectively.
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6.3. Ablation Experiment

In this study, the YOLOv5 network model was utilized, where improvements [34]
were made by introducing the GhostNet module in the Backbone section and the ACmix
attention mechanism in the Neck section, optimizing the key point prediction in the Head
section, and incorporating new loss and confidence functions. To evaluate the impact
of these improvements on the overall model performance, ablation experiments were
designed. These experiments involved applying different modules to the original network
to assess the effects of each component on the model’s performance enhancements.

Table 1 presents the improved YOLO-Pose algorithm for human pose estimation,
which exhibits enhanced performance compared to the original model across various met-
rics. In terms of object detection, the improved model achieves an accuracy of 94.58% and
a recall rate of 86.54%, representing improvements of 4.87% and 4.11% respectively, as
compared to the original model. For key point detection, the improved model achieves
mAP50 and mAP50-95 of 93.58% and 69.54% respectively, which demonstrate improve-
ments of 5.24 and 5.05 percentage points over the original model. The improved model has
a parameter size of 22.3 M. Furthermore, the detection time for a single image is 19.9 ms,
showing respective optimization improvements of 30% and 39.5% compared to the original
model, thereby meeting the requirements for real-time detection.
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Table 1. Network ablation test.

Module1 Module2 Module3 Module4 mAP50/% mAP50-95/% Params/M Detection Time/ms

— — — — 88.34 64.49 36.9 28.64√
— — — 88.62 63.45 26.88 23.84

—
√

— — 89.81 65.69 28.96 24.5
— —

√
— 88.59 66.98 30.11 26.6

— — —
√

90.83 64.32 29.56 25.9√ √ √ √
93.58 69.54 22.3 19.9

Notes: Module1 represents the introduction of the GhostNet module, Module2 represents the introduction of the
ACmix module, Module3 represents the optimization of the Head part of the key point prediction, and Module4
represents the introduction of the new loss function and confidence function.

According to the graph, the training curves of Module1 GhostNet [35] and Module2
ACmix [36] are shown in Figure 13. It can be observed that the mAP50 performance of all
four configurations shows a significant upward trend in the first 50 epochs. This indicates
that the model quickly learns the patterns in the dataset during the early learning stages.
Subsequently, the growth rate of the four curves begins to slow down and gradually enters
a relatively stable state, indicating that the model starts to converge.
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Throughout the entire training process, the configuration of YOLO-Pose + GhostNet +
ACmix typically demonstrates the best performance (90.29%), followed by YOLO-Pose +
ACmix (89.81%), YOLO-Pose + GhostNet (88.62%), and finally the baseline model YOLO-
Pose (88.34%). This performance ranking suggests that combining GhostNet and ACmix
effectively improves the model’s mAP50 performance.

6.4. Model Comparison

In order to further verify the effect of this paper’s algorithm after the improvement
of light weight, speed, accuracy, and robustness, this paper’s algorithm is compared with
other algorithms horizontally. As shown in Table 2, it is tabulated with classical target
detection algorithms such as Faster R-CNN, SSD, YOLOv4, YOLOv7, etc., and the evaluated
metrics are mAP50, mAP50-95, number of parameters, and detection time, respectively.

According to Table 2, the two-stage detection algorithm, Faster R-CNN [37], has the
best detection accuracy and outperforms models such as SSD, YOLOv4, and YOLOv7.
However, its detection speed lags far behind that of the one-stage detection algorithms.
The SSD algorithm falls behind the YOLO algorithms, specifically YOLOv5 and YOLOv7,
in both mAP50 and mAP50-95 metrics. YOLOv7 exhibits improvements of 0.92% and
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1.54% in mAP50 and mAP50-95 metrics, respectively, compared to YOLOv4. Additionally,
it reduces the detection time by 3.29 ms, but experiences an increase of 3.3 M in terms
of parameters.

Table 2. Comparison of test results of different algorithms.

mAP50/% mAP50-95/% Params/M Detection Time/ms

Faster R-CNN 91.49 68.87 27.6 35.56
SSD 87.6 62.60 27.8 28.83

YOLOv4 90.64 64.94 25.9 28.64
YOLOv7 91.56 66.48 29.2 25.35

YOLO-Pose 93.58 69.54 22.3 19.99

The YOLO-Pose algorithm proposed in this study achieves a higher detection accuracy
than the Faster R-CNN algorithm by 2.09% in terms of the mAP50 metric. However, it
lags behind by 0.67% in the mAP50-95 metric. This is because the two-stage detection
algorithm introduces a CNN for feature extraction, enabling end-to-end training and
utilizing bounding box regression to fine-tune the positions of human pose key points.
Furthermore, our algorithm outperforms in terms of the Params metric by 5.3 M and
in the detection time metric by 15.57 m/s. Overall, our algorithm strives to achieve an
optimal balance among detection accuracy, parameter count, and detection time, taking
into consideration the aforementioned characteristics.

6.5. Detection Effect

The visual results of the improved YOLO-Pose algorithm for human pose estimation
proposed in this study are shown in Figure 14. We conducted detection for three different
human poses, including standing, sitting, and participating in sports activities. It can be
observed that the human key points are largely detected, even in scenarios involving small
targets and complex sports poses. The algorithm demonstrates satisfactory performance in
these challenging situations.
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Figure 14. Visualization effect image 1 of YOLO-Pose model.

After deploying the YOLO-Pose model on an unmanned aerial vehicle (UAV), we
conducted human pose detection in a different scenario. As shown in Figure 15, despite
the challenges posed by the high number of targets and their small areas, the model was
able to successfully accomplish the task of estimating human poses. Even when confronted
with smaller target areas and more complex detection scenes, the model demonstrated its
capability to largely complete the task, as depicted in Figure 16.
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7. Conclusions

(1) Human pose estimation is a significant computer vision task; however, practical appli-
cations are often hindered by challenges such as low lighting conditions, dense target
presence, severe edge occlusion, limited application scenarios, complex backgrounds,
and poor recognition accuracy when targets are occluded. In this paper, we propose a
YOLO-Pose model that leverages the lightweight and precision-enhanced features of
the YOLOv5 object detection model, enabling its effective deployment on unmanned
aerial vehicles (UAVs).

(2) Additionally, we employ transfer learning techniques by utilizing pre-trained models
trained on the ImageNet-1K and COCO datasets to train our local dataset. In the
YOLO-Pose model, we integrate lightweight GhostNet modules into the Backbone
section to reduce the model’s parameter count and computational requirements,
making it more suitable for deployment on unmanned aerial vehicles (UAVs) to
accomplish specific human pose detection tasks. In the Neck section, we introduce the
ACmix attention mechanism to enhance detection speed during object judgment and



Sensors 2024, 24, 3036 19 of 20

localization. Furthermore, we optimize the Head section’s key points by incorporating
coordinate attention mechanisms to improve key point localization accuracy. We also
enhance the loss function and confidence function to enhance the model’s robustness.

(3) The improved model demonstrates a reduction of 14.6 M parameters, an 8.47 ms
decrease in detection time, a 5.24% improvement in mAP50, and a 5.05% improvement
in mAP50-95. Notably, the parameter count and detection speed have been optimized
by 30% and 39.5%, respectively, resulting in a detection speed of 19.9 ms per image.
These enhancements enable the model to possess concise, user-friendly, and efficient
features, making it suitable for monitoring students’ movement poses and assessing
their body posture. The model provides valuable technical support by identifying
and evaluating various types and levels of poor posture and offering low-cost and
easily implementable intervention strategies for physical activities.

Author Contributions: Conceptualization, S.N.; Methodology, Z.N. and J.D.; Project administration, J.D.
and W.Z.; Software, S.N.; Supervision, Z.N.; Validation, J.D.; Visualization, W.Z.; Writing—original draft,
S.N. and Z.N.; Writing—review and editing, Z.N. All authors have read and agreed to the published
version of the manuscript.
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