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Abstract: The IEEE 802.11ah standard is introduced to address the growing scale of internet of
things (IoT) applications. To reduce contention and enhance energy efficiency in the system, the
restricted access window (RAW) mechanism is introduced in the medium access control (MAC) layer
to manage the significant number of stations accessing the network. However, to achieve optimized
network performance, it is necessary to appropriately determine the RAW parameters, including
the number of RAW groups, the number of slots in each RAW, and the duration of each slot. In this
paper, we optimize the configuration of RAW parameters in the uplink IEEE 802.11ah-based IoT
network. To improve network throughput, we analyze and establish a RAW parameters optimization
problem. To effectively cope with the complex and dynamic network conditions, we propose a deep
reinforcement learning (DRL) approach to determine the preferable RAW parameters to optimize
network throughput. To enhance learning efficiency and stability, we employ the proximal policy
optimization (PPO) algorithm. We construct network environments with periodic and random traffic
in an NS-3 simulator to validate the performance of the proposed PPO-based RAW parameters
optimization algorithm. The simulation results reveal that using the PPO-based DRL algorithm,
optimized RAW parameters can be obtained under different network conditions, and network
throughput can be improved significantly.

Keywords: IEEE 802.11ah; restricted access window (RAW); deep reinforcement learning (DRL)

1. Introduction

With the rapid development of internet of things (IoT) applications and technologies,
IoT has emerged as a pivotal enabler bridging the physical and digital realms. IoT has been
widely used in industry, agriculture, healthcare, and other fields. Statistics show that IoT
connected devices are expected to exceed 30 billion units by 2025, more than doubling from
13.8 billion in 2021 [1]. With the expanding scope of applications, IoT has its own set of
requirements: very low power, longer-range connections, and support for a greater number
of client devices per access point (AP) [2]. The fulfillment of these requirements relies on
the selection of wireless communication technologies.

To meet the key requirements of IoT applications, the Wi-Fi Alliance has introduced
Wi-Fi HaLow technology [3], which is based on the IEEE 802.11ah standard [4], operat-
ing in the unlicensed sub-1 GHz radio frequency spectrum band and utilizing narrower
channels. IEEE 802.11ah is built upon the IEEE 802.11 standards with modifications for
IoT applications. The physical (PHY) layer of IEEE 802.11ah is designed for long-range
communication. At the medium access control (MAC) layer, novel channel access control
mechanisms are introduced to facilitate access for a large number (up to 8191) of stations
(STAs) and to support low power consumption. Leveraging the novel features at the PHY
and MAC layers, IEEE 802.11ah offers up to 100 times longer range compared to other
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IoT technologies, with a data rate ranging from approximately 150 kbps to a maximum of
around 86.7 Mbps [4]. As shown in Figure 1, IEEE 802.11ah-based Wi-Fi HaLow technology
provides a well-balanced combination of data rate, coverage range, and energy efficiency,
outperforming low-power IoT technologies such as LoRa, NB-IoT, and Zigbee [3]. Wi-Fi
HaLow also features easier deployment and integration into IP networks compared to
other technologies, with scalability similar to LoRa. Therefore, Wi-Fi HaLow is well-suited
to meet the key requirements of IoT applications.

Date rate

Range

Energy efficiencyScalability

Ease of deployment and
IP network integration

LoRa NB-IoT Zigbee Wi-Fi HaLow

Figure 1. Comparison of the IEEE 802.11ah-based Wi-Fi HaLow technology with other low-power
IoT technologies in terms of key aspects.

In the MAC layer, the restricted access window (RAW) mechanism is introduced to
manage the significant number of STAs accessing the network [4]. The idea of RAW is to
divide the channel time into one or more access windows, where only some of the STAs
can access the channel in the designated access windows, while the others are restricted
from random access. As shown in Figure 2, for STAs with certain traffic patterns, the AP
divides them into one or more RAW groups during a traffic indication map (TIM) beacon
interval. On the arrival of each RAW, the STAs assigned to the current RAW have the right
to access the channel for data transmission, while the other STAs remain dormant and
cache non-urgent data until the arrival of their corresponding RAW. To further alleviate
contention, each RAW is subdivided into multiple time slots with equal duration. The STAs
are uniformly distributed among these slots by default. During each slot, only the STAs
assigned to the current slot are permitted to contend for data transmission, ensuring that
STAs restricted in different slots do not conflict with each other.

slot 1 slot 2 slot 3 ··· slot K

TIM beacon interval

···RAW 1 RAW 2

Figure 2. A simple demonstration of RAW.

The operation of RAW mainly consists of two parts. One is the division of STAs
into different RAW groups. The other is the configuration of RAW-related parameters,
including the number of RAW groups, the number of slots in each RAW, the duration of
each RAW, and the number of STAs in each RAW group. Different RAW parameters can
change the users’ transmission strategies and thus influence the network performance, such
as network throughput, latency, and energy efficiency [5,6]. However, details about RAW
parameters setting and RAW grouping are not specified in the IEEE 802.11ah standard. This
allows researchers the flexibility to customize the RAW configuration to meet the specific
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requirements of different application scenarios. Moreover, the performance of RAW can be
validated in an NS-3 simulator. In [5], the authors constructed simulation environments
for IEEE 802.11ah sensor networks in an NS-3 simulator that closely resembled real-world
network conditions. Through simulations, detailed analyses of the impacts of RAW pa-
rameters (i.e., number of RAW groups, RAW group duration, and station division) on
network throughput, transmission delay, and energy consumption have been conducted
in the literature. The experiments in [6] also revealed that network performance largely
depends on these RAW parameters settings.

Based on this observation, some studies have focused on finding the optimal RAW
parameters to improve network performance. Researchers have conducted complicated
mathematical models and have proposed heuristic methods to determine the optimal
RAW parameters or grouping scheme [7–9]. However, most of the analytical models
fail to consider the complexities and dynamic changes of network conditions, leading
to discrepancies between the results derived by analytical models and those obtained
from an NS-3 simulator. Moreover, heuristic methods for optimizing RAW parameters are
often constrained by specific assumptions, such as fixed network topologies and known
traffic patterns. The applicability of these methods in various scenarios requires further
validation. Therefore, this paper aims to propose a flexible model-free learning method for
finding the optimal RAW parameters, which is scalable, robust, lightweight, and capable of
generalizing across different scenarios.

Due to high efficiency and strong generalization capabilities, artificial intelligence (AI)
methods have found broad applications in wireless networks in recent years. There is a
growing number of studies employing AI methods to solve RAW parameters optimization
and grouping problems. Researchers in [10] used neural networks to decide the optimal
number of RAW groups and the number of slots in each RAW for given network conditions.
Moreover, machine learning (ML) methods such as K-means have been used to solve
grouping problems [11]. It is noteworthy that deep reinforcement learning (DRL) inte-
grates deep learning (DL) and reinforcement learning (RL) by using deep neural networks
(DNNs) to approximate value functions or optimal policies, thereby enabling the handling
of high-dimensional and complex state and action spaces. DRL’s strong performance in
dealing with complex and dynamic environments endows it with powerful generaliza-
tion capability, making it widely applied in wireless networks for solving parameterized
optimization problems such as resource allocation and scheduling [12,13]. Therefore, it is
feasible to employ the DRL approach to solve RAW parameters and network performance
optimization problems.

In this paper, we propose a DRL method referring to the proximal policy optimization
(PPO) algorithm to optimize the configuration of RAW parameters including the number of
RAW groups, the number of slots in each RAW, and the duration of each slot, in the uplink
IEEE 802.11ah-based IoT network. To improve the AP’s data collection, we aim to enhance
the throughput for the overall network. Note that the proposed model-free PPO-based
DRL algorithm is flexible and capable of generalizing across different scenarios. It can
be easily extended to other RAW parameter optimization problems that aim to enhance
other performance metrics, such as latency and energy efficiency. Specifically, we propose
an efficient DRL algorithm to optimize RAW parameters to enhance network throughput.
We construct different network environments using an NS-3 simulator and evaluate the
learning performance of the proposed PPO-based algorithm in different scenarios. To the
best of our knowledge, there are limited prior studies on RAW mechanism optimization
using DRL-based approaches. Our study can serve as a reference for applying DRL to
the RAW mechanism and further extensions for optimizing other mechanisms of IEEE
802.11ah. We summarize our contributions as follows:

• Performance modeling for RAW parameters optimization: The impact of RAW param-
eters on network throughput in the uplink IEEE 802.11ah-based IoT network is studied.
To optimize network throughput, a performance analytical model is established, and
a RAW parameter optimization problem is formulated.
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• Guiding PPO-based DRL with NS-3 simulated network environments: An efficient
learning framework is proposed to interact with different network environments
constructed in an NS-3 simulator. The PPO-based DRL algorithm is designed to
find the preferable RAW parameters to improve network throughput. The NS-3
simulator adeptly replicates real-world network scenarios, facilitating the training of
the DRL agent. Simulation results demonstrate the effectiveness of the PPO-based DRL
algorithm, with significant improvements in network throughput of 80% compared to
that of the default settings schemes.

The remainder of this paper is organized as follows. Prior studies on RAW-based
network performance optimization and related works using AI-based methods for the RAW
mechanism are presented in Section 2. In Section 3, the network model considered in this
paper and the operation of RAW are elaborated, throughput modeling with respect to RAW
parameters is presented, and the RAW parameters optimization problem is established.
The problem is reformulated as a Markov decision process (MDP), and a PPO-based DRL
algorithm for RAW parameters optimization is proposed in Section 4. In Section 5, the
performance of the proposed DRL algorithm is evaluated in simulation environments built
in an NS-3 simulator. Conclusions are drawn and future studies are discussed in Section 6.

2. Related Work
2.1. Analytical Modeling for RAW Mechanism

To investigate the impact of the RAW mechanism on network performance, researchers
have developed several evaluation models for the RAW-based channel access process.
Typically, researchers introduce characteristics of RAW into the analytical model of the
distributed coordination function (DCF) of IEEE 802.11 standards [14]. Given the known
number of STAs in the network, researchers analyze the transmission and collision prob-
abilities in a single RAW slot. The analysis is then extended to one or multiple RAWs to
derive formulas for calculating network performance metrics such as throughput, delay,
and energy consumption [7,15,16]. These analytical models are validated by comparing
the results with those obtained from an NS-3 simulator. However, they require a series of
assumptions, including saturated network traffic, ideal channel conditions, and packet loss
solely caused by collisions. To obtain more accurate models, researchers have further taken
unsaturated traffic, heterogeneous networks, signal capture, and other network conditions
into account [6,17,18].

Moreover, researchers have investigated the impact of different RAW parameters on
network performance based on analytical models or simulation results. The authors in [19]
pointed out that dividing more RAWs in a beacon interval period can reduce collision
probability as the total number of competing STAs in each RAW group decreases. However,
this also leads to increased delay, as larger RAW segmentations increase the probability of
packet buffering. Similarly, the authors in [18] stated that the more slots divided in each
RAW, the fewer number of STAs competing for channel access in a single slot, thereby
reducing the probability of collisions. However, the time overhead increases due to the non-
cross-slot-boundary setting. The authors in [5] emphasized that a longer RAW duration
generally results in better throughput. However, excessively long RAW durations perform
worse in terms of latency. Moreover, the duration of a RAW should be determined based
on the traffic load in each RAW group. The critical impact of RAW duration on network
performance was further discussed in [6].

2.2. Optimization in RAW Mechanism

Given the critical impact of RAW parameters on network performance, an important
issue in optimizing the RAW mechanism is the optimization of RAW parameters. RAW
parameters include the number of RAW groups, the number of slots in each RAW, the
duration of each RAW (which can be calculated given the slot count and slot duration),
and the number of STAs in each RAW group (which can be calculated given the number
of RAW groups and STAs in the network). It has been validated that the optimization of
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RAW parameters depends on various network variables, such as number of STAs, traffic
load, and traffic patterns [5]. Most of the studies are network performance optimization-
oriented, in which the authors formulate RAW parameters optimization problems and
obtain one or more optimal RAW parameters using various optimization methods. To
jointly maximize uplink energy efficiency and delay, the authors in [7] proposed an energy-
delay-aware-window control algorithm based on the gradient descent method, enabling
adaptive adjustment of slot count and slot duration according to the number of STAs in
each RAW group. Similarly, the authors in [20] proposed a group-size-adaptive algorithm
to determine the duration of each RAW. To cope with dynamic changes in the network size
and heterogeneous traffic conditions in sensor networks with uplink traffic, the authors
in [21] proposed TAROA, which can adaptively adjust RAW parameters according to the
current (or estimated) traffic conditions and assign STAs to different RAW groups based on
the estimated transmission frequency. TAROA has been further refined in [22]. Oriented
towards delay-sensitive emergency alarm sensor networks and closed-loop communication
scenarios, the authors in [23] proposed a RAW parameters selecting algorithm to minimize
channel time-sharing consumption. Additionally, in [8], the authors formulated the optimal
RAW scheduling problem as an integer nonlinear programming problem with the objective
of minimizing channel time at key STAs and designed a heuristic algorithm to find the
optimal RAW configurations.

Moreover, some studies have focused on RAW grouping, which allocates STAs to
different RAW groups based on the various characteristics of the STAs. According to the
priority level of the STAs, the authors in [24] proposed a QoS-aware priority grouping
and scheduling algorithm. Considering the traffic characteristics (e.g., traffic demand,
multi-rate) of STAs in heterogeneous networks, the authors in [25] proposed MoROA,
which employs mathematical methods to solve the grouping problem and to determine the
optimal RAW configurations. To achieve fairness in inter-group throughput and channel
utilization the authors in [9,26] proposed heuristic grouping algorithms. Furthermore,
in [27,28], the authors introduced grouping strategies based on greedy algorithms and on
genetic algorithms, respectively.

2.3. AI-based Methods for RAW Mechanism

It is noteworthy that in recent years there has been a growing number of studies
employing AI methods to solve RAW parameter optimization and grouping problems.
The authors in [29] proposed a surrogate model for RAW performance in realistic IoT
scenarios by integrating ML methods such as support vector machine and artificial neural
networks (ANNs). This model accurately predicts network performance for given RAW
configurations in heterogeneous networks. The predicted values can serve as inputs
for real-time RAW parameters optimization algorithms, thereby enhancing algorithm
accuracy. In [10], the authors used ANNs to find the optimal number of RAW groups
given the network size, data rate, and RAW duration. Using ML methods such as K-
means, the authors implemented traffic classification and grouping schemes that can
dynamically adapt to various network conditions (e.g., received signal strength, multiple
rates, traffic load, and traffic arrival interval) [11,30–32]. In a recent study [33], the authors
employed a recurrent neural network based on gated recurrent units to estimate the optimal
number of RAW slots, enhancing the performance in dense IEEE 802.11ah IoT network. To
the best of our knowledge, there are limited prior studies using DRL methods for RAW
mechanism optimization.

3. RAW Mechanism in Wireless IoT Networks

In this paper, we consider uplink data transmissions in a wireless IoT network employ-
ing the RAW mechanism. As shown in Figure 3, the network consists of one center-located
AP and N randomly distributed STAs within a coverage range of several hundred meters.
The STAs transmit sensory data to the AP using a specific channel access control protocol.
The network traffic includes periodically generated data, as well as randomly generated
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data following a certain probability distribution. Since the IEEE 802.11ah standard is an
ideal choice for low-power IoT networks, we employ the IEEE 802.11ah-based RAW mech-
anism for multiple STAs access. We further describe the RAW mechanism operating in the
IoT network.
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Figure 3. The IEEE 802.11ah-based IoT network model with RAW operations.

3.1. Operation of the RAW Mechanism

In Section 1, we briefly introduced the idea of RAW. In this section, we elaborate on
the RAW parameter set involved in RAW configuration and the channel access process
based on RAW in a beacon interval. We aim to explain how key RAW parameters influence
network performance at the mechanism principle level.

3.1.1. Structure of the RAW Parameter Set

The IEEE 802.11ah standard defines an information element field in the beacon frame
for group-based restricted channel access, known as the RAW parameter set (RPS) [4]. In
general, the operation of RAW is mainly implemented through the definition of the RPS
in a TIM beacon, the slot allocation scheme, cross slot restrictions, and other necessary
mechanisms. In IEEE 802.11ah networks, once the STAs join the network and are assigned
their association identifier (AID) they listen for TIM beacon frames that carry the RPS
elements, which are periodically broadcast by the AP. Consequently, the STAs in the
network can know exactly the status of RAW and and their membership in a RAW group,
enabling them to perform channel access and data transmission accordingly.

Specifically, RPS primarily consists of one or more RAW assignment subfields. Each
RAW assignment subfield contains necessary RAW control subfields, RAW slot definition
subfields, and RAW grouping subfields, for performing restricted channel access to one or
multiple STAs in a RAW. According to specific requirements, elements such as RAW start
time, channel indication, and periodic operation parameters subfields are conditionally
present. The RAW slot definition subfield further defines the slot duration, slot count, and
access restrictions between slots. As beacon frames are broadcast by the AP, STAs can learn
from the related subfields of the RPS element which RAW group they belong to, as well
as the number of RAW groups in a beacon interval, the number of slots in each RAW, and
the duration of a single slot in each RAW. The specific rules for calculation are described
as follows.

(1) Slot duration and slot count: The formula for calculating the duration of a single slot
in a RAW is as follows [4]:

Tslot = 500us + C× 120us. (1)

Let the length of the slot duration count field be y. According to the IEEE 802.11ah standard,
when y = 11 bits, C = 211 − 1 = 2047, the maximum duration of a slot is Tmax

slot = 246.14 ms
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and the maximum number of slots in a RAW is Kmax = 214−y = 7. When y = 8 bits,
C = 28 − 1 = 255, Tmax

slot = 31.1 ms, Kmax = 214−y = 63. The selection of y depends on the
number of STAs in each RAW. Apparently, the duration of a RAW can be calculated as
TRAW = K · Tslot.

(2) Slot assignment: A mapping method for allocating STAs into the corresponding
slots in a RAW is defined in the IEEE 802.11ah standard [4]. It is implemented by defining
a mapping function,

i = f (x) = (x + No f f set) mod K, (2)

where x is the AID of the STA in a RAW group, No f f set is the allocation offset, which means
that the first STA in the group will be allocated to the No f f set − th time slot, and K is the
number of slots in a RAW.

We provide an illustration of slot allocation in a RAW as shown in Figure 3. We assume
that a RAW group division scheme configured in the RPS divides a beacon interval into
NRAW RAW groups, with potentially different numbers of STAs, slots, and slot durations
in each group. Based on the RPS settings, STAs with AIDs 1 to 8 are assigned to RAW-1 in
order, with the first STA in RAW-2 being AID-9, and so on. In the RAW groups, STAs are
sequentially assigned to different slots according to the mapping function. We assume the
mapping offset No f f set = 1 and the number of slots K = 1. Consequently, in RAW-1, two
STAs (with AID-3 and AID-6) are assigned to Slot-1, three STAs (with AID-1, AID-4, and
AID-7) are assigned to Slot-2, and four STAs (with AID-2, AID-5, and AID-8) are assigned
to Slot-3. The mapping function ensures a uniform distribution of STAs across slots.

(3) Cross slot boundary: The IEEE 802.11ah standard defines restrictions on channel
access across slot boundaries. STAs can access the channel either in a cross-slot-boundary
way or in a non-cross-slot-boundary (NCSB) way [4]. To alleviate the hidden nodes problem
and facilitate performance analysis, it is generally advisable to employs the non-cross-slot-
boundary mechanism [16]. Therefore, the holding time is defined to be TH ≥ TTXOP, where
TTXOP is the time required for one successful data transmission, and its expectation can be
obtained through statistical analysis. With this constraint, it can be ensured that the last
data transmission in the current slot has been completed by the end of slot. If the time
remaining in the current slot is not sufficient for one data transmission, the STAs cache
their data and wait for the arrival of the next slot to which they belong.

3.1.2. RAW-Based Channel Access and Data Transmission

The channel access and data transmission process of STAs in an IEEE 802.11ah network
with a RAW mechanism can be summarized as follows and is shown in Figure 3.

1. The STAs listen to the beacon frames broadcast by the AP, request association and
authentication, and receive their AID. The AP periodically broadcasts beacon frames
carrying the RPS element and informs the STAs of information including their RAW
group, the slot count in a RAW, and the slot duration. The STAs are then assigned to
different slots based on the mapping function (2).

2. The STAs contend for channel access following the enhanced distributed channel
access (EDCA) mechanism when their slot arrives: the STAs perform carrier listening
for a distributed inter-frame spacing (DIFS) time before initiating channel access. Once
the channel is sensed to be idle, the STAs start decreasing their backoff counter, and
they initiate channel access when their backoff counter reaches zero. If STAa’s backoff
counter decreases to zero before STAb’s, STAa initiates channel access, while STAb
suspends its backoff counter until the channel is sensed to be idle again.

3. If the backoff counters of two or more STAs in the network decrease to zero simulta-
neously, these STAs attempt to access the channel at the same time, which may result
in collisions. Upon encountering a collision, the STAs increase and reset their backoff
counter until they reach the maximum retry limit, at which point packet loss occurs.

4. STAs that successfully access the channel will transmit their data after waiting for a
short inter-frame spacing (SIFS) time. A received acknowledgment (ACK) frame from
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the AP indicates the completion of data transmission. The time taken for one data
transmission is denoted as TTXOP.

The operation of the RAW mechanism elaborated above can provide a preliminary
explanation at the mechanism level for the significant impact of RAW parameters on
network performance: Firstly, when the number of STAs in the network is given, the
number of RAW groups and the number of slots in each RAW jointly determine the number
of STAs contending for channel access in a slot. Constrained by the DCF mechanism, a
large number of STAs contending for channel access in a slot will intensify collisions among
STAs, thereby affecting system throughput. Moreover, the duration of a slot determines the
maximum number of data transmissions that can occur in each slot. When the network size
increases, inadequate slot duration will limit the amount of data that STAs can transmit
per slot, consequently reducing overall throughput. Due to the limitation of the NCSB
mechanism, an excessive number of slots can result in frequent slot boundary switches,
which in turn increases the holding time overheard and the data buffering. In general,
RAW parameters, including the number of RAW groups, the number of slots per RAW, and
the duration of each slot in a RAW, significantly influence network throughput. In the next
subsection, we will analyze the impact of RAW parameters on network throughput at the
mathematical analysis level.

3.2. Performance Modeling for RAW Parameters Optimization

We assume that the number of RAW groups is denoted as NRAW , the number of slots
in each RAW group is represented by ki, and the duration of a slot in each RAW group
is denoted as ti, where i ∈ [1, NRAW ]. Thus, the set of the number of STAs in each RAW
group, the set of the number of slots in each RAW, and the set of slot durations for RAW
groups are represented as NSTA = {n1, . . . , ni, . . . , nNRAW}, KRAW = {k1, . . . , ki, . . . , kNRAW},
and TRAW = {t1, . . . , ti, . . . , tNRAW}, respectively.

The correlation between RAW parameters and network throughput can be derived
based on the analytical model proposed in [14]. Given that the STAs are uniformly dis-
tributed among slots in a RAW, the number of STAs in each slot can be approximated as
xi =

ni
ki

, and the intensity of contention in each slot is considered to be the same. Conse-
quently, for the STAs in each slot of the i-th RAW, the probability of STAs suspending their
backoff counter is defined as p f ,i(τi, xi, ti), indicating that the suspending probability is
related to the transmission probability τi, the number of STAs in each slot xi, and the slot
duration ti. The collision probability is denoted as pc,i.

The backoff process of an STA’s backoff counter can be analyzed using a two-dimensional
Markov chain [14]. Each state during the backoff process can be represented as a probability, and
the steady-state probability of each state can be further determined. According to the normaliza-
tion formula, a closed-form expression for the steady-state probability of the backoff counter
decreasing to zero can be obtained as bi,0(p f , pc, CWmin, m), indicating that the steady-state
probability at state-0 is dependent on the suspending probability p f ,i, the collision probability pc,
the given minimum size of the contention window CWmin, and the retry limit m. Subsequently,
the transmission probability can be computed as

τi =
1− (pc,i)

m+1

1− pc,i
bi,0. (3)

The collision probability is given by pc,i = 1− (1− τi)
xi−1, and the probability that at

least one STA transmits data in a slot is denoted as Ptr,i = 1− (1− τi)
xi . Furthermore, the

successful transmission probability can be represented as

Psuc,i =
xiτi(1− τi)

xi−1

Ptr,i
. (4)
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The normalized slot throughput can be calculated as

ui =
Ptr,iPsuc,iE(D)

(1− Ptr,i)σ + Psuc,iTsuc + pc,iTc
, (5)

where E(D) represents the average payload size of a data frame and σ is the time of a
mini-slot in the contention window. The time for a successful data transmission and the
time spent due to collision are denoted as Tsuc and Tc, respectively, and are calculated
in [14]. The effective time for data transmissions in a slot is t

′
i = ti − TH . Finally, the

normalized throughput of the network can be denoted by

U =
NRAW

∑
i=1

uikit
′
i

TBI
, (6)

where the duration of the beacon interval TBI is dependent on the total duration of RAWs
in one beacon interval.

According to (6), network throughput is related to successful transmission probability,
which in turn depends on collision probability and transmission probability. These proba-
bilities are influenced by the number of STAs in a slot and the slot duration. Moreover, the
number of RAW groups and the number of slots in a RAW jointly determine the number of
STAs in a slot. Intuitively, the increasing number of RAW groups and slot divisions reduces
the number of STAs per slot, thereby decreasing the collision probability. Increasing the
slot duration, on the other hand, allows more time for data transmission in a slot, thereby
reducing data buffering. Therefore, increasing the number of RAW groups, dividing more
slots in a RAW, and extending the slot duration can greatly enhance network throughput.
However, excessive RAW divisions may cause more STAs to remain idle, leading to data
buffering. Similarly, an excessively long slot duration may result in wasted time in net-
works with low traffic loads. There is a trade-off in adjusting the RAW parameters. Hence,
by jointly optimizing the number of RAW groups NRAW , RAW slot counts ki ∈ KRAW , and
slot durations ti ∈ TRAW with i ∈ [1, NRAW ], we can formulate the network throughput
maximization problem as follows:

max
NRAW , KRAW , TRAW

U

s.t. (1), (3), (4), (5), and (6)

∑
i

kiti ≤ TBI .
(7)

The existing studies prefer to construct complicated analytical models of RAW, and
they further propose optimization methods to find the optimal RAW parameters to im-
prove network throughput. However, solving RAW parameters optimization problems
based on analytical models may lead to a high level of computational complexity or even
impracticality in dynamic networks. On the one hand, these analytical models require a
series of assumptions, including saturated network traffic, ideal channel conditions, and
packet loss solely caused by collisions. Moreover, the analytical models do not comprehen-
sively consider details about the RAW mechanism and channel conditions. Although some
studies have refined the analytical models and taken more complex network conditions
into account, this has made the analysis process more cumbersome. On the other hand,
because the mathematical or heuristic methods often involve complex rules and have not
been validated in different network scenarios, their generalization ability in complex and
dynamic network conditions needs to be improved.

To investigate practical network states, the IEEE 802.11ah network simulation environ-
ment was developed based on a widely used network simulator called NS-3 [5]. NS-3 is
used to create simulation environments that closely resemble real-world network environ-
ments. The partial mechanisms of the PHY and MAC layers including the RAW mechanism
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are also implemented. While analytical results serve as references for optimizing RAW
parameters, the simulation environment implemented by NS-3 undoubtedly provides
more accurate results and can serve as a benchmark for validating these analytical results.
Additionally, with the capability of handling complex and dynamic environments, DRL-
based methods are well-suited for addressing RAW parameters optimization problems and
demonstrate strong generalization ability across various scenarios.

To determine the preferable RAW parameters that improve network throughput in
complex network environments resembling real-world scenarios, we construct network
environments using an NS-3 simulator, and employ the DRL-based method to optimize
the RAW parameters for enhanced network throughput. The specific methodology will be
elaborated in the following section.

4. DRL for RAW Parameters Optimization

In this section, we propose a learning framework for optimizing RAW parameters.
As depicted in Figure 4, we set up network simulation environments in NS-3 and execute
agent training in the DRL environment. The PPO algorithm [34] is employed as the specific
implementation algorithm in the DRL framework for optimizing RAW parameters in NS-3,
achieving enhanced learning efficiency and policy update stability. During training, the
DRL agent receives network observations from the NS-3 simulation environment, serving
as inputs to the DNNs. Each learned action (i.e., the RAW parameters) is then applied
as the configuration parameters for the RAW mechanism in NS-3, and a new simulation
is executed to obtain an updated reward (i.e., the network throughput). The DRL agent
continues to receive observations from the network environment for a new training episode.
Interactions between the DRL agent and the NS-3 environment continue until the DRL
agent learns the preferable RAW parameters and achieves enhanced network throughput.
To utilize PPO for optimizing the RAW parameters to maximize network throughput, we
first reformulate problem (7) as an MDP.

PPO AgentNetwork Simulation Environment

RAW 
Parameters

State and Reward 
(e.g. Throughput)

Store transition
(��, ��, ��, ��+1)

�� w.r.t. ��(��)

Experience
replay 

buffer ℛ

(��, ��, ��, ��+1)
∈ ℛ

Mini-batch

Behavior policy ��

Target policy �� 

Actor

�� ← �

Importance weight

 �� =
��
��

PPO loss clipped
 ����(��, 1 − �, 1 + �)

Avantage function
 ���

��(�)

Policy
gradient

Online network ��

Target network ��′ 

Critic

�� �′ ← �

Loss
gradient

…

…

…
…

…

…

…

RAW-2

RAW-i

RAW-����

RAW-�

TIM beacon

Data

Figure 4. DRL framework for optimizing RAW parameters in NS-3.

4.1. MDP Reformulation

Given the network conditions, we aim to optimize the RAW parameters (i.e., the
number of RAW groups, the number of slots in each RAW, and the slot duration in each
RAW) to reduce contentions among the STAs and consequently improve the network
throughput. To facilitate the problem formulation, the following assumptions are made for
the IoT network:

1. The AP collects information about the network (e.g., network size N and traffic
arrival of the STAs) through management frames. Based on received packets from
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the STAs, the network performance, such as throughput and packet loss ratio, can be
statistically determined.

2. To alleviate hidden nodes issues and collisions, the STAs obey the NCSB mechanism
when accessing the channel among slots.

In RL, the interaction between the agent and the environment is typically modeled as
an MDP, which can be represented by a tuple (S, A, P, r, γ), where S represents the state
space, A represents the action space, the transition probability function P(s

′ |s, a) represents
the probability of transitioning from state s to state s

′
when action a is taken, the reward

function r(s, a) represents the reward obtained after taking action a in state s, and γ ∈ [0, 1]
is a constant discount factor. Specifically, the definitions of state, actions, reward, and
observations are given as follows:

1. State: The state at the current time step is defined as the throughput obtained from
the current simulation statistics, denoted as st = Ut. During the simulation, the AP
collects the number of packets received and the payload size of each packet at the
current time step to calculate the network throughput at the end of the current step.

2. Action: The actions in the MDP are defined as the RAW parameters, including the
number of RAW groups, the number of slots in each RAW group, and the slot duration
in each RAW group. Thus, the action at step t is denoted as at = (NRAW , KRAW , TRAW).

3. Reward: According to the optimization objective, the reward is defined as the through-
put obtained at each time step, represented as rt = Ut.

4. Observation: The observation set is defined as the network information observable
by the AP, including network size N, the set of traffic loads D, and the set of traffic
intervals I, which can be represented as ot = (N, D, I).

In the following subsection, we elaborate on the PPO algorithm for RAW parame-
ters optimization.

4.2. PPO for Optimizing RAW Parameters

Given a policy approximator πθ(a|s) with parameters θ, policy-based policy gradient
(PG) algorithms find the optimal θ to maximize the reward or value function [35]. For a
given input state st, the policy network directly outputs either the action or the probability
associated with the action. It then selects the appropriate action based on the probability,
allowing the output action to be a continuous value. The expected value function in PG
algorithms can be represented in terms of the policy parameters as

J(θ) = ∑
s

dπθ (s)Vπθ (s) = ∑
s

dπθ (s)∑
a

πθ(s, a)Qπθ (s, a), (8)

where dπθ is the stationary distribution of the Markov chain for πθ , and Qπθ (s, a) denotes
the Q-value of the state–action pair (s, a) following the policy πθ . The goal of PG is to find
parameters θ that maximize J(θ) by ascending the gradient of the policy. The evaluation of
the policy gradient ∇θ J(θ) can be simplified as [36]

∇θ J(θ) = Eπ [Qπ(s, a)∇θ ln πθ(a|s))] = Eπ [
T

∑
t=1

Qπ(st, at)∇θ ln πθ(at|st))], (9)

where the expectation is taken over all possible state–action pairs following the same policy
πθ . The policy gradient ∇θ J(θ) can be evaluated by sampling historical decision-making
trajectories.

For each episode, all the (s, a, r, s
′
) tuples acquired by the agent can be collectively repre-

sented as a state–action trajectory resulting from the agent’s interaction with the environment
over the current episode, which is denoted as τ = (s0, a0, r1, s1, . . . , sT−1, aT−1, rT−1, sT) ∼
(πθ , P(st+1|st, at)). Let Gt = ∑T

k=t r(sk, ak) be the reward for a trajectory τ, and estimate
the Q-value Qπ(st, at) in (9) by Gt. Therefore, the policy gradient in each time step can be
approximated by randomly sampling Gt∇θ ln πθ(at|st)), and the policy parameters can be
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updated as θ ← θ + α∇θ J(θ) , where α denotes the step size for the gradient update. To
reduce prediction variability and improve learning efficiency, the value function Vπ(s) can
be used as the baseline, and the advantage function Aπ(s, a) ≜ Qπ(s, a)−Vπ(s) is further
introduced to replace Gt.

To address high-dimensional state and action spaces while stabilizing the learning
process, actor–critic (AC)-based DRL algorithms introduce a DNN with weight parameters
ω to approximate the Q value. AC algorithms update both the policy network and the
Q-value network. Specifically, at each learning step t, the actor updates the policy network
by updating the policy parameters θ ← θ + αθQω(s, a)∇θ ln πθ(a|s)), while the critic
updates the Q network by minimizing a loss function and updates the parameters ω ←
ω + αωδt∇ωQω(s, a) by gradient ascent, where δt = rt + γQω(s

′
, a
′
)− Qω(s, a) denotes

the TD error. To further stabilize the training process, the deep deterministic gradient
policy (DDPG) algorithm [36] utilizes two DNNs with different parameters, i.e., the online
Q-network Qω(s, a) and the target Q-network Q

ω
′ (s, a). The TD error is rewritten as

δt = rt + γQ
ω
′ (s
′
, a
′
)−Qω(s, a).

To facilitate the agent’s utilization of past experiences and improve sample efficiency,
PG can be transformed into off-policy learning through the utilization of importance
sampling [37]. Sample collections can be conducted under a behavior policy πo(s, a)
distinct from the target policy πθ(a|s).

To mitigate the effects of improper step size in policy optimization on training stability,
the off-policy trust region policy optimization (TRPO) algorithm imposes an additional
constraint on the gradient update [37], ensuring that the old and new policies do not
diverge significantly. Let ρtheta = πθ(s,a)

πo(s,a) denote the probability ratio of the divergence
between the old and new policies. TRPO maximizes the objective by applying conservative
policy iteration without limiting the probability ratio to an appropriate range. This could
lead to an excessively large policy update. Intuitively, a smaller deviation between the
behavior policy and the target policy is better. Hence, the PPO algorithm [34] modifies the
objective by constraining ρθ in a region [1− ϵ, 1 + ϵ] and penalizing changes to the policy
that move ρθ away from 1. The objective in PPOCLIP is

max
θ

LCLIP(θ) = J̃(θ) = Eπo [min{ρθ Âπo , clip(ρθ , 1− ϵ, 1 + ϵ)Âπo}]

s.t. DKL(πo, πθ) ≤ δKL,
(10)

where DKL(P1, P2) ≜
∫ ∞

∞ P1(x) log(P1(x)/P2(x)) dx denotes a distance measure in terms
of the Kullback–Leibler (KL) divergence between two different probability distributions.
The advantage function Aπo in the objective of problem (10) is the approximation of the
actual advantage Aπθ

corresponding to the target policy πθ . PPO constrains the parameters
search within a region by introducing the inequality constraint in problem (10), which
ensures that the KL convergence between πθ and πo is bounded by δKL. The clip function
returns ρθ ∈ [1− ϵ, 1 + ϵ] and the hyper-parameter ϵ = 0.2 by default.

During the training of the DNNs, PPO employs fixed-length (e.g., T time steps) trajec-
tory segments. A truncated advantage estimation is computed to replace the advantage
function in problem (10) as

Âπo
t = δt + γδt+1 + · · ·+ γT−t+1δT−1, (11)

where δt = rt + γV(st+1)−V(st). The loss function of PPO is

Lt(θ) = Et[LCLIP
t (θ)− c1LVF

t (θ) + c2S[πθ ](st)], (12)

where LVF = Vθ(st)−Vtarget
t is the mean squared error loss, c1, c2 are coefficients, and S is

an entropy bonus.
The PPO algorithm for optimizing RAW parameters in networks built in NS-3 is

summarized in Algorithm 1. PPO utilizes two DNNs to approximate the policy networks.
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In each learning episode, the PPO agent runs the old/behavior policy πθo (i.e., RAW
parameters), observes network throughput obtained from the NS-3 network simulations
environment for T time steps, and stores T transition tuples (st, at, rt, st+1), t ∈ T in the
experience replay buffer. Then, it samples mini-batches of transition tuples from the
replay buffer and computes advantage estimates Âπo

1 , · · · , Âπo
T . Subsequently, the weight

parameters of the target policy network πθ are updated by using mini-batches randomly
sampled from the replay buffer through importance sampling and by optimizing the
surrogate loss in (12). The weight parameters of the behavior policy network are updated
by θo ← θ. Limiting the probability ratio of the two policies ρθ ∈ [1− ϵ, 1+ ϵ] ensures that the
probability distribution of the output actions from the two policy networks remains similar.

Algorithm 1 PPO for RAW parameters optimization

Initialize target policy πθ and behavior policy πo
Initialize online critic Qω and target critic Q

ω
′

Initialize clipping threshold ϵs
for episode= 1, . . . , M do

while t ̸= T do
Observe the system state st from NS-3
Select an action at according to behavior policy πo(st)
Execute action at = (NRAW , KNRAW , TNRAW ) in NS-3, obtain network throughput
reward rt = Ut, evaluate Vθ(st) and next state st+1
Store transition tuple (st, at, rt, st+1) and Vθ(st, at) in R
t← t + 1

end while
Sample mini-batch of transitions (si, ai, Vθ(si, ai), si+1) from R
Estimate advantage Âπo using advantage according to (11)
Update target policy by solving problem (10)
Update behavior policy πθo ← (1− ϵ)πθo + ϵπθ

Update online and target critic by minimizing the value loss in (12) using gradient
descent

end for

The uniform grouping scheme has been verified to perform better in homogeneous
networks [38]. Considering the networks with periodic and random traffic in this paper,
we employ the uniform grouping scheme, where STAs are evenly distributed in each RAW.
Consequently, the slot duration and number of slots in each RAW group are considered
to be equal. As a result, the actions of the MDP can be further simplified to the number
of RAW groups, the number of slots in one RAW group, and the slot duration in one
RAW group.

5. DRL-Guided NS-3 Simulation

In this section, we investigate the performance of the proposed PPO-based DRL
algorithm for RAW parameters optimization in networks with periodic or random traffic,
which are set up in the NS-3 simulator. We firstly demonstrate the learning performance of
the PPO algorithm on finding preferable RAW parameters to enhance network throughput.
Then, we investigate the adaptive capability of RAW parameters under dynamic network
conditions such as traffic load and network size. Finally, we compare the performance of
the PPO-based slot-division scheme with the equal-slot-division scheme (i.e., one STA per
slot) and no-slot-division scheme (i.e., only one ’slot’ in a RAW).

5.1. Simulation Setup

We set up the training environment for DRL on the Linux operating system. Specifi-
cally, we set up the DRL agent in a Python environment based on the PyTorch framework,
and set up the network topology in the NS-3 simulator as depicted in Figure 3. Network
conditions and simulation results are input into the PPO agent as environment states. The
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RAW parameters are configured based on the actions learned by the PPO agent and used
for subsequent simulations in the NS-3 simulator. Throughout the training process, the
PPO agent interacts numerous times with the simulated network environment set up in the
NS-3 simulator.

For the two different network environments established in NS-3, the two scenarios
are primarily differentiated based on the network size, the traffic load of the STAs, and the
traffic interval of the STAs, and are denoted as N, D = {d1, . . . , dN}, and I = {i1, . . . , iN},
respectively. These serve as the main environmental characteristics in the observations of
the MDP established in Section 4.1.

The environment settings in the periodic traffic networks are summarized in Table 1.
Specifically, we set small network sizes (N < 100). Each STA has the same traffic load,
e.g., d = 0.005 Mbps. During data transmission, the packet transmission interval of
each STA follows a fixed time interval, such as i = 0.001 ms. Parameters settings for
the PPO agent are shown in Table 2. For analytical and simulation design purposes,
we define the time step t as each fixed-duration simulation iteration performed in NS-3,
where each episode consists of only one step. When performing simulations, we collect
statistical information regarding network performance after every simulation iteration with
a duration of 10 s. Note that the number of slots KRAW is in the range of [1, 63] according to
the restriction in (1). When KRAW ∈ [1, 7], the maximum slot duration is 246.14 ms, and
when KRAW ∈ [8, 63], the maximum slot duration is 31.1 ms. This can serve as a constraint
for the agent during learning.

Table 1. Parameter settings in periodic traffic networks.

Parameters Settings

Wi-Fi channel configuration MCS 0, 2 MHz

coverage radius 300 m

data rate 650 kbit/s

traffic type UDP

payload size 100 bytes

network size N small, 60 (basic setting)

number of RAW group 1 (basic setting)

traffic load of the STAs same

set of traffic loads D d1 = . . . = dN

packet transmit interval of the STAs periodic (same)

set of traffic intervals I i1 = . . . = iN

5.2. Learning Performance in Periodic Traffic Networks

We first consider the RAW parameters optimization in networks with periodic traf-
fic, where all STAs are assigned to one RAW group. The action of the MDP is at =
(KNRAW=1 , TNRAW=1). In each iteration during the training process, the PPO agent observes
throughput st and other information ot from the wireless environment and employs policy
π to determine the RAW parameters setting at for the next time step. The effectiveness of
the RAW parameters is evaluated at the subsequent time step with the reward obtained
from NS-3, and the RAW parameters for the following time step are determined accord-
ingly. The PPO agent is trained through numerous interactions with network simulation
environments built in NS-3.
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Table 2. Parameter settings for DRL training.

Parameters Settings

state dimension 1

action dimension 100 × 63 × 2047

discount factor 0.99

generalized advantage estimation factor 0.95

PPO clip rate 0.2

PPO update times/epochs 10

max training episodes 1 × 104 (default)

hidden net width 256

learning rate of actor 3 × 10−4

learning rate of critic 3 × 10−4

L2 regularization coefficient for critic 1 × 10−3

types of probability distribution of actor beta

length of sliced trajectory of actor 64

length of sliced trajectory of critic 64

entropy coefficient of actor 0

decay rate of entropy coefficient of actor 0.9998

5.2.1. Convergence to the Preferable RAW Parameters

We first validate the convergence performance of the PPO algorithm on a basic network
topology. In the periodic traffic network, the traffic interval of all STAs is fixed (e.g., 0.1 ms).
We train the PPO agent though numerous interactions with the network environment
built in NS-3. The convergence performance of the PPO algorithm is shown in Figure 5,
and Figure 6 demonstrates the convergence process of the PPO agent interacting with the
network simulation environment in the NS-3 simulator. As the training iteration proceeds,
the PPO agent learned better actions, leading to significantly increased normalized rewards
obtained from interacting with the NS-3 simulation environment. After 10,000 training
episodes, the reward stabilized at its maximum value. This indicates that the PPO agent
has learned the preferable RAW parameters by the end of training and has achieved the
optimized network throughput in the periodic traffic network.
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PPO-based algorithm
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Figure 5. Convergence performance of the PPO-based algorithm compared with the DQN-based
algorithm and the random selection scheme.
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We also observe the improvement of network throughput with the NS-3 simulator
during the PPO agent’s training process. It can be seen in Figure 6 that the network
throughput is ascending when the training process proceeds. Compared to the network
throughput obtained with default settings (KRAW = 1, TBI = 100 ms), the network
throughput with the preferable RAW parameters obtained by the PPO agent is improved by
about 70%. It is evident that employing the DRL method for optimizing RAW parameters
is feasible, and that the RAW parameters derived from learning lead to a significant
enhancement in network throughput compared to default settings.
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Figure 6. Throughput ascending in NS-3 simulation environment during training episodes.

To further validate the effectiveness of the proposed PPO-based algorithm, we com-
pare it with the value-based Deep Q-Network(DQN) algorithm and the random RAW
parameters selection scheme. DQN is suitable for discrete action learning but struggles
with high-dimensional action spaces like RAW parameters. Therefore, we apply interval
sampling to reduce the action space. As shown in Figure 5, compared to random selection,
both DQN and PPO can converge to stable rewards through training, outperforming the
random selection scheme. This observation highlights the ability of DRL methods to opti-
mize RAW parameters and improve network throughput. Moreover, reducing the action
space accelerates the convergence of DQN, requiring 50% fewer training episodes than
PPO. However, this also leads to DQN’s inferior performance, with a 20% lower stabilized
reward than PPO.

Additionally, we depict the convergence performance of the slot count within a RAW
and the slot duration with different numbers of STAs in the network. To provide a more
straightforward demonstration, we calculate the approximate duration of a beacon interval
as TBI = NRAW · K · Tslot, and we use beacon interval dynamics to represent variations in
slot duration in the following subsections. As shown in Figures 7 and 8, both parameters
converge to stable values for different network sizes, further validating the algorithm’s
convergence. As the network size is relatively small, the number of slots is similar when the
number of STAs in the network is 40, 50, and 60, respectively. The duration of the beacon
interval increases by about 40% when the number of STAs in the network increases from 40
to 60, indicating that the slot duration is adaptively adjusting to the network size with DRL.

5.2.2. Throughput Performance with Different Traffic Loads

In this section, we analyze the adaptive adjustment of RAW parameters obtained
through the PPO method with different network loads. We assume a homogeneous traffic
load of 0.05 Mbps for each STA. Therefore, the traffic load in the network increases as the
number of STAs in the network increases. We observe the adaptive adjustments of RAW
parameters and changes in network throughput as the number of STAs increases from 30
(10) to 90.
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Figure 7. Convergence performance of KRAW .
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Figure 8. Convergence performance of TBI (w.r.t. Tslot).

As shown in Figure 9, both the slot count and slot duration increase with the growing
number of STAs and the traffic load in the network. The number of slots in a RAW increases
stepwise with the network size and traffic load. Specifically, the slot count remains constant
when the number of STAs is between 50–70 and 80–90. This is attributed to the fact that
dividing fewer slots in a RAW significantly reduces contentions when the network size is
small. Overall, the RAW mechanism ensures that the number of STAs in each RAW slot is
not excessive. When the number of STAs in the network is less than 50, the slot duration
increases significantly from 10 ms to about 50 ms, approximately 4 times longer, with the
increasing network size and traffic load.

This trend is consistent with the changes in network throughput depicted in Figure 10.
When the number of STAs in the network is less than 40, the network throughput remains
unsaturated with few STAs and low traffic load in the network. As the number of STAs
increases from 10 to 40, along with the ascending network traffic load, the network through-
put obtained by PPO subsequently increases from 0.076 Mbps to 0.248 Mbps, approximately
4 times larger. At a certain point, with the number of STAs = 40, the network traffic load
reaches its maximum capacity, leading to saturated network throughput under current
network conditions. As the number of STAs in the network continues to increase from
40 to 90, contentions intensify, leading to a higher probability of transmission collisions.
Meanwhile, when the network traffic load exceeds its capacity, constrained by the data
transmission rate and the duration of a single slot, the AP cannot handle all the traffic from
the STAs, resulting in a slight decrease by about 7% in network throughput. This trend
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is consistent with the variation of throughput with the number of STAs in IEEE 802.11ah
networks [39].
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Figure 9. Adaptive adjustment of RAW parameters with varying network traffic loads.
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Figure 10. Network throughput obtained by the PPO-based algorithm with varying network traffic
loads compared with the DQN-based and DDPG-based algorithms.

We have also compared the PPO-based algorithm with DQN-based and DDPG-based
algorithms. As shown in Figure 10, when the number of STAs exceeds 40, the network
throughput becomes saturated. Given 90 STAs, PPO obtains 11.2% and 3.1% higher network
throughput compared to DQN and DDPG, respectively. Additionally, PPO and DDPG
outperform DQN in small-size networks with periodic traffic. This is because DQN is
designed for discrete actions, while PPO and DDPG are for continuous actions that perform
better in high action spaces.

5.3. Learning Performance in Random Traffic Networks

To further validate the generalization ability of the proposed DRL algorithm, in this
section, we modify the network conditions. While in the previous subsection, packets are
transmitted at identical intervals, we now adjust the packet transmission intervals for each
STA in the network.

The environment settings are shown in Table 3. In the random traffic network, the
network size is set larger (Nmax ≈ 300) to emulate real-world network scales. The traffic
load of each STA is random, following a normal distribution with mean µ and standard
deviation σ, e.g., µ = 50, σ = 0.1. As depicted in Figure 11, during data transmission
the packet transmission interval of each STA follows a Poisson distribution with mean λ,
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e.g., λ = 100. Additionally, we increase the maximum training iterations of the PPO agent
to 20,000.

Table 3. Parameter settings in random traffic network.

Parameters Settings

Wi-Fi channel configuration MCS 0, 2 MHz

coverage radius 300 m

data rate 650 Kbit/s

traffic type UDP

payload size 100 bytes

network size N large, 150 (basic setting)

traffic load of the STAs random

set of traffic loads D dn ∼ N (µ, σ2), n ∈ [1, N]

packet transmission interval of the STAs random

set of traffic intervals I in ∼ π(λ), n ∈ [1, N]
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Figure 11. Illustration of the packet transmission interval distribution of STAs in random
traffic networks.

5.3.1. Convergence to the Preferable RAW Parameters

We first validate the convergence performance of the PPO algorithm in the new
network conditions. In the random traffic network implemented in NS-3, all the STAs
transmit packets at random intervals following a Poisson distribution. Additionally, the
network size is larger than that in the periodic traffic network, necessitating the division of
STAs into more RAW groups. Therefore, the RAW parameters to be learned include RAW
group count, slot count in one RAW, and slot duration in one RAW.

As shown in Figure 12, the normalized reward obtained by the PPO agent from
interacting with the NS-3 simulation environment increases significantly as the training
iterations progress, stabilizing at its maximum value after 17,000 training episodes. This
indicates that the PPO agent can still learn the preferable RAW parameters and achieve
optimized network throughput in the new network environment, i.e., the random traffic
network. We also observe that as the network conditions become more complex, such
as an increase in network size and random traffic arrivals, the PPO agent requires more
interactions with the network simulation environment set up in NS-3. It needs to learn
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the optimal action selection strategy over twice as many training iterations in the random
traffic network compared to the periodic traffic network.
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Figure 12. Convergence performance of the PPO algorithm in random traffic networks.

As depicted in Figures 13–15, when the number of STAs in the network is 150, both
the number of RAW groups and the slot duration significantly increase compared to those
in a small network size, while the number of slots remains small. This implies that the PPO
agent tends to divide more RAW groups rather than more slots at this network size. The
convergence performance to the preferable RAW parameters obtained by the PPO agent
further demonstrates the generalization ability of the proposed DRL algorithm in complex
networks environment with random traffic.
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Figure 13. Convergence performance of RAW group count NRAW .
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Figure 14. Convergence performance of slot count KRAW .
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Figure 15. Convergence performance of BI duration TBI w.r.t. Tslot.

5.3.2. Throughput Performance with Different Network Sizes

In this subsection, we validate and analyze the adaptive adjustment of RAW parame-
ters and the network throughput obtained using the PPO algorithm under different network
sizes, which is reflected by changes in the number of STAs. We increase the number of STAs
from 150 to 300, a sufficiently large number to achieve saturated or oversaturated traffic
load, which is suitable for validating the adjustment capability of RAW parameters and the
network throughput of the proposed DRL framework. We observe the adaptive changes in
the RAW parameters learned by the PPO agent and the network throughput obtained from
the NS-3 simulation environment as the number of STAs increases. As shown in Figure 16,
given that traffic load reaches saturation in large-scale networks, with the number of STAs
in the network increasing from 150 to 300, the network throughput decreases by about 13%.
It is evident that the increasing network size leads to intensified contention and collisions,
thereby resulting in a significant decline in network throughput.
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Figure 16. Network throughput obtained by the DRL algorithm with varying network sizes.

We also provide figures to show how the RAW parameters are adjusted to maintain
certain network throughput in different network sizes with over-saturated traffic loads,
emphasizing the importance of adjusting preferable RAW parameters to enhance network
throughput with varying network sizes. As shown in Figure 17, we observe that when the
number of STAs ranges from 150 to 200, the PPO agent tends to divide STAs into roughly
3 times more RAW groups. However, when the number of STAs increases to 250–300, the
agent leans towards dividing more slots (from 1 to 5) in each RAW group. We analyze that
within a certain range of network sizes, simply dividing RAW groups is capable of handling
the current traffic load and mitigating contention. However, as the network size grows, it
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becomes necessary to both divide RAW groups and more slots within each RAW group. The
adaptive adjustment strategy learned by the PPO agent reduces the contention among STAs
per slot, thus ensuring network throughput. Additionally, as the network size increases,
the agent prefers to shorten the slot duration, consequently reducing the beacon interval
duration by about 10%. We analyze that shortening the beacons broadcasting period
allows the AP to schedule STAs more frequently for uplink data transmissions, thereby
maintaining network throughput in intensified network conditions. We also notice that as
the number of STAs increases from 60 to 150, the BI duration obtained by DRL increases
from 60 ms to 100 ms, approximately by 66%, and the slot count increases significantly by
about 3 times compared to the network size in the periodic traffic network. It is evident
that as the network size scales up, contentions between STAs in the network intensify. To
alleviate collisions and ensure network throughput, the PPO agent tends to dividing more
slots, leading to an overall increase in the BI duration.
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Figure 17. Adaptive adjustment of RAW parameters with varying network sizes.

5.4. Throughput Comparison of Different Slot Division Schemes

To further demonstrate the improvement in network performance achieved by the
PPO-based algorithm, we compare the network throughput obtained from the PPO-based
slot division scheme with two baseline slot division schemes. In the no-slot division
scheme, all STAs contend for channel access in the same RAW group without slot division.
Conversely, in the equal-slot division scheme, each STA is allocated one slot in every RAW
group, ensuring non-contention-based access where only one STA can access the channel
in a slot.

The overall BI durations are the same among different slot division schemes, as
determined by the BI duration learned by the PPO agent. In this case, the slot durations
vary among different schemes due to different slot division methods. As depicted in
Figure 18, the throughput performance obtained from the NS-3 simulation environment
with the RAW slot division scheme learned by the PPO agent significantly outperforms the
two basic schemes, as the number of RAW slots and slot duration are adaptively adjusted
according to the network size. In the worst case, where the number of STAs in the network
is 300, the network throughput obtained from the PPO-based slot division scheme is still
improved by about 80% and 1.3 times, respectively, compared to the two slot division
schemes. This further illustrates the effective adjustments made by PPO in Figure 17,
emphasizing that the optimization of RAW parameters can significantly improve network
throughput, highlighting the necessity of RAW parameters optimization.
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Figure 18. Comparison of network throughput between the PPO-based slot division scheme and the
baseline slot division schemes.

It can be observed that as the network size increases, contentions and collisions among
STAs in the network intensify, leading to a decrease in network throughput for all three slot
division schemes. However, when the number of STAs in the network is between 150 and
250, the decrease in network throughput obtained from the PPO-based slot division scheme
in the NS3 simulation environment is much smaller than that of the other two schemes. This
indicates that the learning-based RAW slot division scheme can maintain better network
throughput than the basic slot division schemes in deteriorating network conditions. It can
be validated that the PPO agent can learn the preferable RAW parameters and effectively
improve the network throughput, especially in scenarios with high contention. We also
observe that as the network size increases, the network performance obtained by the
division scheme that allocates one slot to each STA is significantly better than that of the
scheme that does not divide slots within a RAW. This further validates the necessity of
using the RAW grouping mechanism in large-scale networks and its improvement on
network performance.

6. Conclusions

In this paper, we have proposed a PPO-based DRL algorithm for optimizing RAW
parameters in the IEEE 802.11ah-based IoT network. Necessary analysis was first provided
to emphasize the significant impact of RAW parameters on network throughput, and the
RAW parameters optimization problem was formulated. A DRL framework interacting
with the NS-3 simulator was then proposed, in which the optimization problem was
reformulated as an MDP, and a PPO-based algorithm for RAW parameters optimization
was proposed. In network environments with periodic and random traffic built in the NS-3
simulator, the performance of the proposed DRL algorithm was evaluated. The simulation
results show that the PPO-based DRL scheme can adaptively adjust RAW parameters under
different network conditions and achieve significantly improved network throughput
compared to that of the baseline slot division schemes.

The proposed DRL and NS-3 simulation framework can be extended to different IEEE
802.11ah IoT network scenarios and optimization problems, such as the design of channel
access mechanisms. Channel access optimization is particularly important in complex
scenarios involving diverse traffic types, expanding network scales, and dynamic network
topologies. In addition, complex network conditions hinder rapid environment reconstruc-
tion in NS-3, reducing learning and interaction efficiency in DRL. To reduce interaction
overhead and enable real-time application, it is beneficial to develop a more accurate and
comprehensive channel access analytical model. However, analytical models constructed
solely relying on mathematical methods is limited when solving problems involving the
joint optimization of multiple mechanisms. To address this limitation, a lightweight “surro-
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gate” model can be constructed by collecting test data from real deployed IEEE 802.11ah
IoT scenarios and fitting them using statistical methods and AI techniques. This model
would be adaptable to diverse scenarios and capable of efficiently interacting with DRL
algorithms. Moreover, in networks with time-varying network sizes and heterogeneous
traffic, RAW grouping problems involve categorizing STAs into different RAW groups,
requiring optimizing grouping strategies. In this paper, we have demonstrated the ability of
the DRL approach to effectively determine the preferable RAW parameters across different
network environments. Consequently, the DRL approach can be extended to address the
challenge of finding the optimal RAW grouping strategy.
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