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Abstract: The sneaker industry is continuing to expand at a fast rate and will be worth over USD
120 billion in the next few years. This is, in part due to social media and online retailers building hype
around releases of limited-edition sneakers, which are usually collaborations between well-known
global icons and footwear companies. These limited-edition sneakers are typically released in low
quantities using an online raffle system, meaning only a few people can get their hands on them. As
expected, this causes their value to skyrocket and has created an extremely lucrative resale market for
sneakers. This has given rise to numerous counterfeit sneakers flooding the resale market, resulting
in online platforms having to hand-verify a sneaker’s authenticity, which is an important but time-
consuming procedure that slows the selling and buying process. To speed up the authentication
process, Support Vector Machines and a convolutional neural network were used to classify images
of fake and real sneakers and then their accuracies were compared to see which performed better.
The results showed that the CNNs performed much better at this task than the SVMs with some
accuracies over 95%. Therefore, a CNN is well equipped to be a sneaker authenticator and will be of
great benefit to the reselling industry.

Keywords: sneakers; SVM; Alex architecture; VGGI architecture; LeNet-5; bespoke architecture

1. Introduction

Sneakerhead subculture started in the late 1980s in the United States and went global
by the late 1990s. In the past, diehard sneaker collectors used to queue outside outlets and
go to sneaker events in search of rare, “deadstock” (pairs of unworn sneakers), vintage,
and limited-edition trainers [1]. Currently, the ways consumers shop for sneakers have
drastically evolved due to increased technological advancements in internet accessibility
and smartphone applications [2]. Now, they can be bought on a first-come-first-served basis
from online retailers like Nike, Adidas, Footlocker, Footasylum, Offspring, and more. This
allows companies to communicate directly with their customers, to build relationships, and
to control brand messaging and identity [3]. The most sought-after sneakers are usually
sold via online raffles through Nike’s “SNKRS” phone app and Adidas’s “Confirmed” app,
where winners are chosen at random. These apps were made to give everyday buyers
a better chance to purchase exclusive pairs, but they have delivered varied results [4].
One reason for this is these apps’ algorithms, which are thought to push the bulk of their
limited-edition trainers to the most devoted and engaged customers. Another is the extreme
disparity between the number of available pairs and the amount of people trying to buy
them. This makes sneaker shopping a thrilling experience that drives consumer demand,
which is what brands and retailers want [5].

Artificial intelligence is revolutionizing the realm of footwear recognition with remark-
able precision and efficiency. Through advanced algorithms and deep learning models, AI
systems can swiftly identify and classify various types of shoes based on their design, color,
texture, and brand [6]. By harnessing convolutional neural networks (CNNs) and image
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recognition techniques, these systems can analyze intricate patterns and features, enabling
accurate categorization of sneakers, sandals, boots, and more [7]. Moreover, AI-powered
shoe recognition offers multifaceted applications, spanning from retail inventory manage-
ment to enhancing personalized shopping experiences online [8]. With the ability to swiftly
process vast amounts of visual data, AI empowers businesses to streamline operations,
optimise supply chains, and deliver tailored recommendations to consumers [9]. As AI con-
tinues to evolve, its role in revolutionizing shoe recognition underscores its transformative
impact across diverse industries [10]. Naturally, any form of human verification is inefficient
and in huge companies that see millions of products a month it is difficult if not impossible
not to make mistakes in the process of verifying the legitimacy of a pair of sneakers [11].
Another disadvantage of human sneaker authentication is the length of time it takes to train
employees to perform the role and gain experience with it. Moreover, this middle-man
approach causes delays in the buying and selling process and raises environmental concerns
because products are shipped to and from multiple places [12]. An electronic sneaker au-
thenticator using a computer algorithm can potentially help to avoid these issues. Utilising
artificial intelligence for automatic sneaker authentication could be performed by using an
image classifier as suggested by [13]. It should save ecommerce platforms time by speeding
up sneaker authentication as well as enhancing their reputation in being known as resellers
of genuine sneakers. It would also improve customer satisfaction as buyers can obtain
their sneakers quicker and sellers can receive payment faster. Therefore, using artificial
intelligence to be able to accurately and efficiently classify whether a sneaker being resold
is genuine or fake would be invaluable to an online platform. Moreover, it would benefit
the environment, which is now more important than ever in the sneaker industry according
to [14]. StockX has recently made use of artificial intelligence to aid their authentication
process, but they have not revealed which machine learning algorithms were employed.

This paper aims to design and develop an image classifier to help the Sole Suppliers
sneaker authenticators to distinguish between real and counterfeit sneakers so less human
inspection is required.

The organization of this paper is as follows: Section 2 reviews the most relevant re-
search of using different image classifiers for many related applications. Section 3 describes
the research methodology and how it is investigated in more detail. Sections 4 and 5 present
the numerical results and a discussion of these results. Finally, Section 6 concludes the
work and shows the future work.

2. Literature Review

Nowadays, the use of artificial intelligence (AI) in the fashion world to classify images
of clothing is becoming more prevalent as it has numerous benefits and applications
according to Prajapati et al. [15]. These include arranging the collections of a fashion firm
and recommending customers specific clothes. In the literature, many image classifiers
have experimented with the widely available MNIST and Fashion-MNIST datasets.

For instance, Greeshma and Sreekumar [16] used an SVM classifier alongside the
feature extractors histogram of oriented gradient and local binary patterns to classify the
10 groups of images in the Fashion-MNIST dataset. This gave an accuracy of 87.4%, which
was 2.8% higher than Zhang et al. [17], who used linear support vector classification
without any feature extraction, and 0.87% more than [16], who used an SVM classifier with
only a histogram of the oriented gradient. This also highlights the small but significant
difference that feature extraction can make to a classifier. Nonetheless, the predominant
models used for this task have employed deep learning, such as convolutional neural
networks (CNNs). CNNs are a specialized type of artificial neural network primarily
tailored to processing and analyzing two-dimensional data, such as images. They excel
at automatically extracting hierarchical patterns and features from visual data through
layers of convolutional operations, enabling tasks like image recognition, object detection,
and image segmentation with high accuracy (Figure 1) [18,19].
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Figure 1. Pipeline of general CNN architecture.

Their proficiency in extracting high-level hierarchical representations of the data
through multi-step image processing has made them extremely successful [20].
Bhatnagar et al. [21] used three different CNN architectures in deciphering the Fashion-
MNIST dataset for the classification of fashion article images. An accuracy of 92.54% was
obtained by using a two-layer CNN with batch normalization and skip connections. CNNs
have also been able to attain record beating outputs on extremely challenging datasets.
Krizhevsky et al.’s [22] network contained five convolutional layers and three fully con-
nected layers and was used on an ImageNet dataset. It achieved the best results ever re-
ported: a test error rate of 15.3%. Their neural network included several novel and unusual
features that increased performance, such as Relu nonlinearity and overlapping pooling.

AI has also been utilised in the sneaker world to predict the resale prices of sneakers,
as rare pairs can be sold for much more than they were originally bought for. If a reseller
knows how much a pair of sneakers can be sold for, they can determine whether it will be
a worthwhile investment opportunity. Raditya and Hanafiah [23] used historical sneaker
sales data from StockX to compare multiple algorithms, such as linear regression and
random forest, to determine which one performed better in predicting sneaker resale
prices. On evaluation, even though both algorithms produced similarly high R2 scores
it was concluded that random forest performed better as its mean squared error was
30% lower when cross validation was applied. The use of AI and image classification is
not just limited to the fashion industry. A closer look into the literature reveals a similar
approach has been employed in healthcare where classifying medical images plays a vital
role in aiding clinical care and treatment. For example, X-ray analysis is the best way to
diagnose pneumonia [24] but classifying this disease from chest X-rays needs professional
radiologists, which can be expensive in some regional areas [25]. This can lead to delays
in diagnosis and treatment, which can cause negative patient outcomes. Thus, machine
learning algorithms such as Support Vector Methods (SVMs), introduced by Cortes and
Vapnik [26], and K-Nearest Neighbours (KNNs) have been used to aid with this task.
Moreover, throughout the recent pandemic medical images were also used to effectively
control COVID-19, from its spread to its mortality rate. Elaziz et al. [27] computed 961 image
features from segmented regions of interest depicting chest X-ray images. After applying a
feature selection, a KNN classification model was constructed and returned an accuracy of
96.1% when classifying between non-COVID-19 and COVID-19 cases. Nevertheless, they
do have some drawbacks when used for classifying images according to Kermany et al. [28],
such as time-consuming feature extraction and selection. Hence, as previously mentioned,
CNNs are being employed more often in healthcare and they have even matched the
performances of medical professionals in some studies. For example, CheXNet, a CNN
with 121 layers trained on a dataset with over 100,000 frontal-view chest X-rays, attained
a better performance than the average performance of four radiologists [29]. CNNs have
the ability to automatically learn and compute discriminative features directly from the
raw input data. Unlike manually engineered features, which can sometimes be hit-or-miss
and heavily rely on human intuition, CNNs can effectively capture complex patterns and
representations from the data themselves.
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Another application of image classification is for security purposes. This is in part
due to mobile phones becoming prevalent and being capable of detecting the biometric
traits of humans. The recognition of an individual’s physical characteristics ensures an
easy method of authentication, removing the inconvenience of traditional authentication
methods likes identity cards and passports [30]. Fingerprints and facial recognition are
some examples of biometric features. Image classifiers have been deployed in various ways.
Yousif et al. [31] deployed their algorithm for classifying humans, animals, and empty frames
from camera trap images with a user-friendly graphical user interface (GUI). This allowed
ecologists to easily utilise the algorithms without detailed programming knowledge. Their
GUI automatically divided the deployment images into sequences based on time stamps,
color-coded the classified images, and was made available in Windows/Linux versions.
Beede et al. [32] used a web application displaying their deep learning model’s predictions
for diabetic retinopathy and diabetic macular edema. The images from the eye camera
were sent to the algorithm in the cloud, and an assessment for the presence and severity of
diabetic retinopathy, along with the existence or absence of diabetic macular edema, was
returned in real time. This included a recommendation for whether patients should be
screened and reviewed.

Based on this literature analysis, examples of adopting image classification techniques
in the fashion world and other industries are numerous (Table 1). Yet it appears there are not
many studies that address the use of these techniques, especially those using CNNs, both
bespoke and pretrained, to identify whether sneakers being resold are genuine. There is a
research gap in this field that this study is looking to address, and it will be of great benefit
to ecommerce platforms in the sneaker reselling industry. Even though inputs and outputs
are known, if asked how the outputs are selected algorithms cannot give reasoning that
could be discussed within a human community. This is the case for many deep and machine
learning models as they are virtually impossible to interpret. This is a significant issue in
healthcare but less so in fashion as life is not at risk. In relation to sneakers, it may require
a human to work alongside an algorithm on occasion to confirm why a particular item of
clothing is counterfeit from closer inspection. This could be anything from a sneaker’s upper
pattern direction to its logo size and positioning.

Table 1. Summary of literature review.

Citation Type Approach Apps Accuracy

[33] Image Classifier SVM Clothes 86.8%
[16] Image Classifier SVM Clothes 87.4%
[17] Image Classifier SVM Clothes 85.6%
[27] Image Classifier KNN Medical X-ray chest 96.1%
[21] Image Classifier CNN Clothes 92.54%
[29] Image Classifier CNN Medical X-ray chest -
[34] Image Classifier CNN Breast cancer 99.6%
[35] Image Classifier CNN COVID-19 X-ray 94.5%
[23] Predictor LR and RF Sneaker resale price prediction 94.5%

3. System Model: Methodology

The methodology applied in this work followed the traditional image processing
pipeline (Figure 2). Two different algorithms were used on the dataset: CNN and SVM.
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Figure 2. Image processing pipeline.

3.1. Data Selection

Real-life color jpeg formatted images of 3000 real and 2000 counterfeit sneakers were
used for the classifications. They were provided by the Sole Supplier. The Sole Supplier
made use of their image scraping system to build a massive volume of sneaker images.
They also confirmed the fake sneaker images were counterfeit and the real sneaker images
were genuine, as incorrect labelling would not be beneficial for the algorithm. One crucial
point is that this work had a much lower number of images for model training: 500 for
the SVM and 1000 for the CNNs. This was due to the online platform initially providing
around 1000 photos of the same style of sneakers from different angles. The other multitude
of images they had took too long to be provided, so they could not be used in this study.
Therefore, the authors had to source more images of sneakers from an available Kaggle
dataset. However, these were stock images which are unlikely to be used in a real-world
setting for authentication. To try to overcome this, the authors took photos of their own
authentic sneakers from various angles to add to the dataset even though this was a minimal
number. The fake trainers had to be snipped/screenshotted from various websites, then
augmented in different ways to create more. This did make it more difficult to know with
100% certainty that the images of the fake sneakers were of counterfeit goods.

All experiments in this study were conducted on a personal laptop with an Intel i3
processor. The dataset was uploaded to Google Colab as it provides free GPU/TPU resources
from the browser for image classification. With Colab, it is possible to write and execute code,
save and share analyses, and access powerful computing resources like pre-installed python
libraries. The used python libraries in this work were matplotlib, scikit-learn, scikit-image,
numpy, pandas, random, tensorflow, and keras.

3.2. Data Preprocessing

Data preprocessing has been found to increase classifier accuracy as it removes noise,
detects outliers [36], reduces misclassification, and improves the recognition rate [37].
The dataset was checked to ensure it was balanced as too much or too little of one class can
distort the classifiers’ performance. Data augmentation was utilised for all the CNNs. All
images were gray-scaled as well as having histogram equalization applied and/or smooth-
ing methods if required. They were then resized to 200 × 200 for the machine learning
model and 300 × 300 for the deep learning model. Images were also resized accordingly
to specified dimensions for use in various models. Pixel values were then normalized to
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obtain the dimensions in the same scale. These images and their subsequent labels were
then separated into training and test data with a 70/30 split and a random state of 100.

3.3. Feature Extraction

Various feature extractions were trialled in conjunction with SVMs. SVMs utilise a
set of flexible parameters to generate an optimal hyperplane between classes to attain
accurate results [38]. They are less sensitive to a dataset’s dimensionality [39], making them
beneficial for image classification. Feature extractors bridge the gap between the pixels and
meaningful concepts such as color, shape, and texture so that the task of classifying patterns
is made easy by a formal procedure. In this study, various methods of feature extraction
were applied with SVMs, such as Sobel, Prewitt, Canny Edge Detection, and histogram of
oriented gradient (HOG). Once feature extraction was performed on the dataset, it was then
used to train, validate, and test the model. Features are aspects of an image that help to
identify it. These feature extractors were trialled with the SVM image classifier to recognise
the images of sneakers.

3.4. Deep Learning Model

The chosen model for this work was the CNN pioneered by LeCun et al. (1989), as
deep learning models have made a great breakthrough in image classification tasks [33].
Feature extractors are not selected in a CNN as this is performed automatically. The number
of convolutional layers, filters, kernel sizes, and strides were adjusted in the bespoke CNN
to improve model performance. The initial weight and bias values of all feature maps were
assigned with random normal distribution. Same-padding and max pooling were employed
as well. As same-padding maximizes features captured in the image for optimal extraction,
it has been found to significantly increase performance compared to valid-padding [40].
Max pooling can bring about faster convergence, superior invariant feature selection, and
generalisation improvement [41]. Due the classification being binary, a “sigmoid” activation
was used after vector flattening. As CNNs can be either built from scratch or fine-tuned
with pretrained models, both strategies were utilised to see which performs best.

3.5. CNN Hyperparameter Tuning

Unlike model parameters, which are automatically optimised, hyperparameters are
variables that need to be defined by the user before applying a learning algorithm to a
dataset. They were utilised to try and improve the performances of CNNs. Since they are
unknown, identifying the optimal hyperparameter values for a CNN is challenging and
somewhat of a dark art requiring years of experience. Unfortunately, there is no fool-proof
method for their configuration. The most important hyperparameters that need to be
figured out are the number of the hidden unit, optimiser, learning rate, batch size, epochs,
and kernel regulariser.

3.6. Evaluation

There are various measures used to evaluate the accuracy of classification models.
Accuracy, loss, recall, precision, and F1-score were utilised to assess the classifiers’ per-
formance. The accuracy metric is vital for a classifier’s global performance, even though
it does not reveal how it performs for individual classes. F1-score, precision, and recall
are much more sensitive metrics in this aspect. Confusion matrixes are regularly used to
evaluate the performance of classification models. The predicted and observed classes
are typically presented in a matrix table as shown in Figure 3. For a two-class prob-
lem, the confusion matrix produces four combinations of observed and predicted values.
They are false positives (precision), false negatives, True Positives (Sensitivity) and True
Negatives (Specificity).
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Figure 3. Confusion matrix.

4. Experimental Results

This section presents the experimental results of multiple deep and machine learning
models on the dataset. It is separated into three parts: the SVM classifier, pretrained CNNs,
and the bespoke CNN.

4.1. Results of SVM Classifier

First, an SVM classifier utilised six different preprocessing methods, two feature
extraction methods, and three different kernels. The preprocessing methods applied were
gray-scaling, histogram equalization, Gaussian smoothing, bilateral smoothing, and median
smoothing. The feature extraction methods are Laplacian and HOG. On the other hand,
the kernels are poly, linear, and RBF. Only the most accurate model’s confusion matrixes
were displayed.

Table 2 shows that model 3 had the highest accuracy of 60%. This seemed to be due to
changing the kernel. Model 3 had slightly lower values for precision, recall, and F1-score.

Table 2. Multiple smoothing methods with HOG and Laplacian.

Model Preprocessing Feature Extraction Kernel Accuracy (%) Precision Recall F1-Score

1

gray-scaling,
histogram equalization,
Gaussian smoothing,
bilateral smoothing,
median smoothing

Laplacian,
HOG

poly 49.3 0.52 0.52 0.52

2

gray-scaling,
histogram equalization,
Gaussian smoothing,
bilateral smoothing,
median smoothing

Laplacian, HOG linear 54.0 0.52 0.52 0.52

3

gray-scaling,
histogram equalization,
Gaussian smoothing,
bilateral smoothing,
median smoothing

Laplacian, HOG RBF 60.0 0.51 0.51 0.51

Figure 4 displays that there were only 90 correct classifications out of a possible 150.
In total, 32 fake sneaker images were classified as real and 28 real sneaker images were
classified as fake.

In the second experiment, we only applied a gray scale for preprocessing and different
feature extractions with different kernels. Table 3 reveals that model 2 had the highest
accuracy, which was similar to the top performing model from Table 2. Generally, adding
the two additional feature extractors seems to have improved the accuracy. Precision,
recall, and F1-score were slightly lower in this table than the previous ones as none reached
above 0.49%.
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Figure 4. Confusion matrix for most accurate SVM model from Table 2.

Table 3. Gray-scaling with HOG, sobel_h, and prewitt_v.

Model Preprocessing Feature Extraction Kernel Accuracy Precision Recall F1-Score

1 gray-scaling sobel_h, prewitt_v, HOG linear 58.6% 0.49 0.49 0.49
2 gray-scaling sobel_h, prewitt_v, HOG poly 59.3% 0.48 0.48 0.48
3 gray-scaling sobel_h, prewitt_v, HOG RBF 55.3% 0.47 0.47 0.47

Figure 5 shows that there were 88 correct classifications for this model and 62 that
were incorrect.

Figure 5. Confusion matrix for most accurate model from Table 4.

Table 4. AlexNet model performance.

Trial Epochs Learning Rate Opt Train Accuracy Train Loss Validation Accuracy

A 10 0.1 Adam 69.9% 11.9 24.0%
B 10 0.000001 Adam 89.2% 0.2 50.0%
C 15 0.001 RMSprop 95.3% 0.2 49.4%
D 15 0.001 Adagrad 62.5% 2444.3 50.0%
E 15 0.0001 Nadam 98.4% 1349.1 50.0%
F 15 0.0001 Adamax 99.9% 0.1 50.0%

4.2. Results of Pretrained CNN Result

We applied different CNN architectures like Alexnet, VGG16, and LeNet-5.
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4.2.1. Performance of AlexNet

Table 4 confirms that AlexNet model trials were not able to train properly despite
numerous changes to the epochs, optimisers, and learning rates. The validation accuracies
for Trials B–F did not increase and stayed at the same value throughout training, with Trial
A yielding a poor result of 24.0%. Figure 6 illustrates what was occurring with the loss and
accuracy during training and testing for one of these trials. Figure 6 displays one example
of an AlexNet model trial in terms of loss and accuracy from Table 4. Trial D resulted in a
poor validation accuracy of 50% like the others. Unfortunately, in this trial the model was
not trained or fitted properly as the accuracy throughout testing stayed at 50%. The shape
and trend of the loss for validation clearly shows that this model was not learning and was
also suffering from overfitting. The potential reason for this may have been issues with
either the model, the optimiser, or the hyperparameter value but as this was the case for all
trials it would seem the AlexNet model was not applicable to this dataset.

Figure 6. AlexNet model accuracy and loss for training and validation.

4.2.2. Performance of VGG-16

Table 5 reveals that most of the VGG-16 model trials produced high validation accuracy
above 96%, except Trial A, which generated the poorest set of results with a validation
accuracy of 33.4%. A combination of the Adam/Adamax optimiser, a learning rate of
0.00001, and kernel regularisers seemed to work well with VGG-16. Even though Trial B
performed best, the graphs beneath Figure 7 display which specific VGG-16 model trials
looked best in terms of accuracy and loss throughout training.

Figure 7 illustrates the best performing VGG-16 model trials in terms of accuracy during
training and testing from Table 5. Trial B had a validation accuracy of 97.4%. Interestingly,
unlike Trial E the accuracy for training started at 55.3% and that for testing started at 82.5%.
As they did not start from the same point, it means the model had already learned before
the training had started. However, after 1 epoch accuracy for training and testing were
largely well matched. Convergence did happen on occasion for accuracy and loss. Loss for
training and testing levelled out at the end, showing that this trial did not need to be run
over further iterations. The loss graph also displayed that as the gap between the validation
and training curves was small there was not much room for additional improvement with
this model trial.

Table 5. VGG-16 model performance.

Trial Epochs Learning Rate Opt Train Accuracy Train Loss Validation Accuracy Validation Loss

A 10 0.1 Adam 31.2% nan 33.4% nan
B 15 0.00001 Adam 96.1% 0.08 97.4% 0.09
C 15 0.00001 Adagrad 97.2% 0.13 96.6% 0.15
D 15 0.00001 Adam 95.8% 2.49 96.3% 2.44
E 15 0.00001 Adam 95.8% 2.49 96.3% 2.44
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Figure 7. VGG-16 model accuracy and loss evolution during training and validation.

For Trial E, a validation accuracy of 96.3% was achieved and it was slightly overfit.
Accuracy and validation accuracy were predominantly well matched throughout training
and they both originated at the same point. There was a small drop in the validation accuracy
at 5 epochs. There was significant improvement in accuracy for testing and training after
1 epoch. The curves for accuracy and loss were generally smooth. Loss for training and
testing still seemed to be descending as the epochs increased, meaning the training was not
finished and more was needed. The gap between the validation and training curves for loss
showed there was not much area for improvement with this model trial. As the number of
epochs increased, it appeared convergence would happen for accuracy. If this trial had been
run over more iterations it may have brought some minimal improvement to the validation
accuracy. In summary, Trial E with its kernel regularisation is the better VGG-16 model as
accuracy for training and testing start at the same point even though its validation accuracy
is slightly lower than that for Trial B.

4.2.3. Performance of LeNet-5

Table 6 displays that LeNet-5 model Trials C, D, and E produced good validation
accuracies above 78.0%. It seems the use of kernel regularisers with Nadam/Adagrad
optimisers helped to boost validation accuracy in some trials. Adam and SGD optimisiers
had a negative impact as they did not facilitate training and thus the validation accuracy of
Trials A and B stayed at 50.0%. The graphs below (Figure 8) further explain which trials
looked best throughout training in terms of loss and accuracy.

Figure 8 shows some of the top performing LeNet-5 model trials from Table 6 in
terms of loss and accuracy. Trial C suffered from overfitting but resulted in a validation
accuracy of 78.0%. This was lower than that of the best VGG-16 model trials from Table 5.
The accuracy began around 58% for training and 50% for testing. Accuracy for training
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and testing were generally well matched even though there were some minor fluctuations
in both and as the number of epochs increased the accuracies for training and testing were
on course to converge. If the trial had been permitted to run over more iterations it may
have given further improvement to validation accuracy. Loss for training and testing was
beginning to flatten as the epochs increased, meaning the training was not finished and
more was needed. The gap between the validation and training curves for loss showed this
model trial could have been further improved.

Figure 8. LeNet-5 model accuracy and loss evolution during training and validation
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Table 6. LeNet-5 model performance.

Trial Epochs Learning Rate Opt Train Accuracy Train Loss Validation Accuracy Validation Loss

A 10 0.01 Adam 49.2% 0.71 50.0% 0.70
B 10 0.000001 Adam 56.6% 0.72 50.0% 0.73
C 20 0.0001 Adagrad 81.1% 0.44 78.0% 0.46
D 15 0.000001 Adam 82.3% 0.42 81.4% 0.44
E 15 0.000001 Adam 80.0% 0.81 80.5% 0.84

Trial D achieved a validation accuracy of 81.4%. Interestingly, the accuracy for training
started at 63% and the accuracy for testing started around 71%. As they did not start from
the same area, this probably means the model had already started learning before the
training had started. Although, after 1 epoch the accuracy for training and testing were
mostly well matched. Convergence did occur occasionally for accuracy and loss at certain
points, but this was earlier than expected. There were a few drops in accuracy for both
testing and training. Loss for training was beginning to flatten more than testing as the
epochs increased, meaning the model needed to be run over more iterations. If this trial had
more epochs it may have brought some improvement to the validation accuracy. The loss
graph did not exhibit overfitting but the gap between the validation and training curves
displayed that there was room for this model trial to be bettered.

Trial E reached a validation accuracy of 80.5%. Accuracy and validation accuracy
were predominantly well matched throughout training and they both started at 50%. At 11
epochs, there was a small drop in validation accuracy. Convergence for accuracy did happen
at 14 epochs, so this trial may not have needed to be run over more iterations. However, loss
for training and testing appeared to still be descending as the epochs increased, meaning
the training was not finished and more was needed. The loss graph did not show overfitting
but once again the space between the training and validation curves as the number of
epochs increased reveal there was room for improvement with this model trial.

5. Results of Bespoke CNN

Table 7 reveals that for a bespoke CNN model Trials B, C, D, and E produced high
validation accuracies above 87.7%. Trials B–D had five convolutional layers with varying
numbers of neurons in the first dense layer. Trial E had half the number of filters of Trials
B–D with 384 neurons in dense layer 1. The Adagrad optimiser produced high validation
accuracy with the Nadam optimisers close behind. It seems that the more neurons are in
the dense layer the higher the validation accuracy, and a lower number of filters gives a
lower validation accuracy. The graphs in Figure 9 further illustrate which trials looked
best throughout training in terms of loss and accuracy to give a clearer view of which trial
performed best.

Although the validation accuracies for Trials B and C were high, they are not shown
in Figure 9 as their accuracy and loss graphs were erratic throughout training. This was
probably due to the Adam optimiser. Figure 9 shows that Trial D achieved a validation
accuracy of 90.1%. Accuracy for training started at 60% and accuracy for testing started
at approximately 62%, so around the same area. After 1 epoch, accuracy for training and
testing were mainly well matched, especially at 10 epochs. However, there was a slight drop
at 3 epochs for the test accuracy. Overlapping did happen on occasion with the accuracies
and loss at certain points, but this was earlier than expected. Loss for training and testing
started to flatten out at the end, showing the model was properly fitted. The loss graph
does not present any overfitting and underfitting as curves are close together. If this trial
had been run over more iterations it is unlikely it would have brought much improvement
as the accuracies for training at testing were already well matched at 10 epochs.



Sensors 2024, 24, 3030 13 of 18

Figure 9. Bespoke CNN model accuracy and loss evolution during training and validation.

Table 7. Bespoke CNN model performance.

Trial Epochs Learning Rate Opt Train Accuracy Train Loss Validation Accuracy Validation Loss

A 15 0.01 RMS
Prop 48.3% 0.72 50.0% 0.71

B 30 0.01 Adagrad 99.8% 0.01 95.0% 0.17
C 25 0.01 Adagrad 99.9% 0.01 96.3% 0.11
D 10 0.0001 Nadam 90.2% 0.21 90.1% 0.22
E 10 0.0001 Nadam 87.5% 2.45 87.7% 2.47

Trial E reached a validation accuracy of 87.7%. Accuracy for training and testing started
at approximately the same point around 50% and they were well matched throughout,
except at 2 epochs, where the test accuracy was higher. Crossovers did happen on occasion
for the accuracies and loss, but these were sooner than expected. Loss for training and
testing was still descending as the number of epochs increased, meaning the training
was not finished and more was needed. The loss graph does not appear to show much
overfitting or underfitting as there was a minimal gap between the training and validation
curves. However, if this trial was run over more iterations it is debatable whether it would
have brought much improvement as the accuracies for training at testing were very close.
Trial D seems to present the better model.
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6. Discussion

The main aim of this work was to create a deep and machine learning model that would
use images to identify whether a pair of sneakers for resale was genuine or not. The models
would then be evaluated to see which performed better based on the following:

• RQ1. Does the machine or deep learning algorithm give better accuracy?

Research question 1 (RQ1) revolved around whether the machine or deep learning
models chosen in this study gave better accuracy. It is evident from Tables 2–7 that the deep
learning models resulted in more accurate image classifiers. The best SVM model (Table 2)
achieved 60.6%, whereas the best CNN model attained 97.4% in VGGI Trial B (Table 5).
Even the worst performing CNN model with an accuracy of 81.4% in LeNet-5 Trial D
(Table 6) comprehensively bested all the SVM models. Figures 5 and 6 also display that the
maximum number of correct classifications was 91 with false positives and negatives being
higher than expected.

• Q2. Which convolutional neural network architecture gives the highest accuracy?

Research question 2 explored which convolutional neural network gave the highest
accuracy. The results from Tables 4–7 confirm that the deep architecture of VGG-16 achieved
the highest accuracy of 97.4%. The shallower layout of the bespoke five-layered CNN was
a close second with an accuracy of 96.3% and LeNet-5 attained an accuracy of 81.4%.
Unexpectedly, AlexNet was unable to be suitably trained.

6.1. Performance of the CNN versus SVM

On analysis of this work’s results, it is clear to see that CNN models gave a much a
higher accuracy than those that used SVM. Tables 4–7 show that all the CNN models except
AlexNet were able to achieve accuracies that far surpassed those of the SVM classifiers.
Even the worst performing LeNet-5 model with an accuracy of 78.0% still comfortably
outperformed the best SVM model by nearly 18%. This is unsurprising, as CNNs have
been found to have the ability to recognise objects better than machine learning models.
This is mainly thanks to increased computer power, which means CNNs have more data
available to train them.

The best performing CNN and SVM are presented in Table 8. In this table, VGG-16 is
a large network which takes advantage of very few convolutional filters in all its layers. It
reached an impressive accuracy of 97.4% (Table 5), demonstrating that a bigger CNN size
is beneficial for improving image classification accuracy. One drawback of VGG-16 is that
it took 7–8 h to train on only 1000 images even when utilising a GPU with a small number
of epochs, as Figure 7 illustrates. It is therefore essential to have access to powerful GPUs
or TPUs for prolonged periods when training CNNs.

Table 8. Comparison of SVM with CNN architectures.

SVM
CNN

AlexNet VGG-16 LeNet-5 Bespoke

Accuracy (%) 60 50 97.4 81.4 96.5

Moreover, the LeNet-5 model trials (Table 6) may have been able to achieve better
performance if they were able to run over more iterations as the training and testing accu-
racies were close to convergence and loss curves had yet to flatten (Figure 8). Regrettably,
extended GPU usage was not available for this project as the author did not have access
to Colab Pro or Colab Pro+, so smaller epochs had to be utilised to reduce runtime. This
may have had an adverse effect on the validation accuracy. Therefore, even though deep
learning can achieve considerably better accuracy it does need increased processing power,
which can be costly and must be taken into consideration.

The only CNN model that yielded poor results was AlexNet (Table 6). Guo et al. [42]
suggested AlexNet’s two primary shortcomings are that it requires a fixed image resolution
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and there is no obvious insight into why it performs so well. Despite multiple optimisers
being tried, such as Adam, Adagrad, Adamax, Adadelta, Nadam, and RMSprop, learning
rate changes, data augmentation during training, and batch size adjustments, on every
occasion the testing accuracy did not improve as shown by Figure 6. This means the model
was not training/learning properly for some reason, which is surprising as even though
AlexNet is shallower than VGG-16 it has still been found to perform as well as it. One
potential reason the AlexNet model may not have learned could be that it was affected
by noise, but as the VGG-16, LeNet-5, and Bespoke CNN models were able to be trained
on the dataset that hypothesis appears unlikely. Another explanation might be AlexNet’s
use of batch normalization between each convolutional and pooling layer, as on closer
examination it was clear to see the other CNN architectures in this project did not utilise
this. Batch normalization aims to improve CNN training speed and stability, yet there is
not full unanimity on why this technique is effective.

The SVM results demonstrated that the best performing SVM model had an accuracy
of 60% with only the use of gray-scaling for image preprocessing and HOG for feature
extraction. Unexpectedly, despite the addition of numerous smoothing techniques and
more edge detection methods, an accuracy above 60% could not be reached. Some of the
top performing models in Tables 2 and 3 did manage to come close to this number. This
disappointing accuracy may have again been caused by the size of the dataset as explained
above. There also seemed to be no real discernible pattern for which kernel would generate
better model performance. With some models linear performed best, while for others RBF
and poly were best.

6.2. Comparisons with Related Works

As the dataset used in this study was balanced, accuracy was a good measure to
evaluate the performance of the deep and machine learning models. It is evident from all
the SVM results that SVM classifiers achieved a low accuracy when classifying the sneaker
images as 60.6% was the highest achieved. In comparison to Greeshma and Sreekumars [16]
and Greeshma and Sreekumars [33], SVM classifiers had an accuracy 87.4%. However, they
did use the Fashion-MNIST dataset, which contains 10,000 images.

In terms of other evaluation methods, precision and recall for the SVM classifiers
are of particular significance when it comes to classifying the sneakers. This is because
they help to minimise the chance of false negatives—fake sneakers being classified as
real—false positives—real sneakers being classified as fake—and more (Figures 5 and 6).
Precision and recall values should ideally be as close to one as possible but unfortunately,
as Tables 2 and 3 clearly show, no SVM models were able to come close to this. The usage
of gray-scaling, median smoothing with HOG and gray-scaling, Gaussian smoothing, and
histogram equalization with HOG was able to achieve mediocre precision and recall values.
Interestingly, these were both with the poly kernel. In a practical sense, this would mean
a lot of the sneakers identified as false positives and negatives would need to be checked
by hand if this classifier was employed in the industry. This would defeat the purpose of
using the AI system as it would not speed up the authentication process. Kart [43] used
SVM in conjunction with HOG to classify images into two categories: men’s and women’s
attire. They had an unbalanced training dataset of 753 images and 453 for testing. Their
model achieved a precision of 0.79 and a recall of 0.78 with the global and nine grids feature
extraction approach. These superior results may have been due to the larger dataset used
or the fact that in this study real and stock images were utilised in training. Furthermore,
Kart [43] only utilised the RBF kernel for their SVMs because it could be used as both linear
and sigmoid kernels by adopting specific parameters, whereas this work made use of poly,
linear, and RBF kernels.

In comparison with other studies, Bhatnagar et al. [21] achieved an accuracy of 92.5%
with a bespoke two-layered CNN on the Fashion-MNIST dataset. The resultant 90.1% accuracy
of the five-layered bespoke CNN in this project is quite similar. However, Bhatnagar et al. [21]
used the much larger Fashion-MNIST dataset and their CNN was trained over considerably
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more epochs. Obaid and Jasim [44] also used VGG-16, AlexNet, and a bespoke five-layered
CNN to classify the 70,000 images contained within the Fashion-MNIST dataset. A total
of 60,000 images were for training and 10,000 for testing. They augmented their dataset
images in three ways: rotation, acute angulation, and tilting. This created a larger dataset
comprising 180,000 training images and 30,000 testing images. The 5 layered CNN attained
a 94% accuracy, VGG-16 93% and 92% for the AlexNet. The bespoke five-layered CNN
in this study performed marginally worse, with an accuracy of 90.1% (Table 7), but the
VGG-16, with an accuracy of 97.4% (Table 5), performed slightly better. As explained earlier,
as the AlexNet model in this report did not train properly a legitimate comparison could
not be made. It does appear that data augmentation enhances the accuracy of CNNs as
there are more training data for the classifier to learn from.

7. Conclusions and Future Work
7.1. Conclusions

The sneaker reselling industry is worth billions of GBP, but unfortunately it has a
real issue with counterfeit goods which are being made to look more and more genuine.
These can ruin buyer experiences and damage an online platform’s reputation. The current
human sneaker authentication process is time consuming, at risk of error, and brings about
environmental challenges. The aim of implementing an artificial intelligence system into
the authentication process was to bring about improvements for both consumers and
businesses when purchasing/selling sneakers. The results of this work clearly show that
a highly accurate image classifier (97.4%) can be created from a VGGI CNN and that it
should be able to distinguish between genuine and counterfeit sneakers much quicker and
more efficiently. This would be of great benefit to online buyers because it would give
them peace of mind that the sneakers they may have spent a large amount of money on are
100% authentic. Ecommerce platforms would also be at an advantage as they could divert
human resources to other parts of their business if needed. In order to keep the model up
to date and relevant with the latest sneaker styles and colors, images of real and counterfeit
sneakers need to be continuously added to the model once they are released so it can be
trained consistently. It may also be beneficial to set up separate CNNs for each sneaker
style. Lastly, to potentially obtain the most benefit from the AI system it should be used in
conjunction with human sneaker authentication until its accuracy can be further increased.

7.2. Future Work

One opportunity for future investigation would be the utilisation of a larger dataset
that would contain more images of various sneaker brands, styles, and colors. The dataset
used for this study was relatively small compared to similar studies. Having a larger
dataset with numerous sneaker images would help the model classify the authenticity
of the sneakers better and mean it is less likely for it not to recognise a wide variety of
sneakers. This would vastly improve the model’s performance and its industry usefulness.
However, larger datasets require more powerful systems for data processing so this needs
to be considered.

Another aspect that can be looked at by others going forward is the use of other
machine learning techniques for image classification on this specific dataset. There are
various ones to choose from, such as K-Nearest Neighbour, an algorithm which generates
groups of objects by classifying their features based on their nearest neighbour; decision
trees; and random forest. Furthermore, the use of Shi–Tomasi corner detection with both
scale-invariant feature transform and sped-up robust features as the method of image fea-
ture extraction can also be looked at. This could be then compared to edge detection, which
was used in this project to assess which method gives better accuracy in an image classifier.

A further area for future research would be the use of KerasTuner for hyperparameter
tuning. This process finds the optimal learning rate and the number of hidden units in a
convolutional layer to give the CNN model its lowest loss and highest accuracy. The benefit
of this is that the optimal number of hidden units and learning rate do not need to be
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guessed as the best performing combination is automatically chosen. Moreover, the author
would suggest trialling more pretrained CNNs on the dataset going forward, such as
Google LeNet, ResNet50, Inceptionv3, and EfficientNet.
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