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Abstract: Autonomous Underwater Vehicles (AUVs) play a significant role in ocean-related research
fields as tools for human exploration and the development of marine resources. However, the un-
certainty of the underwater environment and the complexity of underwater motion pose significant
challenges to the fault-tolerant control of AUV actuators. This paper presents a fault-tolerant con-
trol strategy for AUV actuators based onTakagi and Sugeno (T-S) fuzzy logic and pseudo-inverse
quadratic programming under control constraints, aimed at addressing potential actuator faults.
Firstly, considering the steady-state performance and dynamic performance of the control system,
a T-S fuzzy controller is designed. Next, based on the redundant configuration of the actuators,
the propulsion system is normalized, and the fault-tolerant control of AUV actuators is achieved
using the pseudo-inverse method under thrust allocation. When control is constrained, a quadratic
programming approach is used to compensate for the input control quantity. Finally, the effectiveness
of the fuzzy control and fault-tolerant control allocation methods studied in this paper is validated
through mathematical simulation. The experimental results indicate that in various fault scenarios,
the pseudo-inverse combined with a nonlinear quadratic programming algorithm can compensate
for the missing control inputs due to control constraints, ensuring the normal thrust of AUV actuators
and achieving the expected fault-tolerant effect.

Keywords: AUV actuators; fault-tolerant control; T-S fuzzy; quadratic programming; control constraints

1. Introduction

Autonomous Underwater Vehicles (AUVs) play a crucial role in the exploration and
utilization of marine resources and space. As a new tool for exploring the ocean, AUVs
significantly enhance the efficiency of underwater detection and operations. They play an
extensive role in various areas, such as marine resource exploration, underwater engineer-
ing operations, scientific research and surveys. As AUVs need to work long-term in the
ocean, the harsh conditions and complex and ever-changing environment may cause vari-
ous faults in the actuators of their motion control systems. Therefore, fault-tolerant control
technology has become an urgent need to enhance the safety and reliability of AUVs.

Fault tolerance refers to a system’s ability to detect and diagnose its own faults in the
event of component faults, such as actuators, sensors or controlled objects, and to initiate
appropriate corrective actions based on the diagnosis results. This enables the system to
continue functioning as intended while maintaining performance consistency with a fault-
free scenario. Fault-tolerant control can be categorized into passive fault-tolerant control
and active fault-tolerant control based on its characteristics. Passive fault-tolerant control
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typically employs a fixed controller structure and parameters, utilizing robust control
techniques to render the system insensitive to specific faults [1]. Passive fault-tolerant
control is characterized by the ability of the original controller to mitigate the effects of a
component failure, ensuring that the system can continue to carry out its tasks with reduced
performance. In Ref. [2], a fault-tolerant controller is designed for the depth control of an
AUV . The controller utilizes periodic output feedback gains and a multi-model approach.
In the event of thruster failure, the multi-model system adjusts by using a gain matrix
with all off-diagonal terms set to zero. Ref. [3] proposed a finite-time extended state
observer (FTESO)-based scheme for AUV fault-tolerant control problems with multiple-
thrusters by estimating the uncertainties caused from faults, modeling uncertainty and
system disturbances.

Active fault-tolerant control relies on real-time fault diagnosis information to modify
the control inputs of the system to maintain stability. This approach can be classified into
two categories based on how the control inputs are adjusted: fault accommodation and
control reconfiguration [4]. Control reconfiguration involves the real-time reconstruction of
the control system based on fault diagnosis results using specific algorithms. In Ref. [5],
genetic algorithms are incorporated into the reconstruction of fault-tolerant control laws
to address reliability issues in AUVs. The proposed method utilizes constrained genetic
algorithms to reconstruct fault-tolerant control laws for AUVs. By providing relevant
fault weight matrices under different fault scenarios, the genetic algorithm is used to
search for the optimal solution of the control matrix, facilitating the reconstruction of a
propulsion system control matrix. In addressing the actuator fault-tolerant control issue,
control reconstruction is accomplished by leveraging the inherent redundant actuators of
the robot, thereby enabling the fault-tolerant control of the AUV, as discussed in Refs. [6,7].
A reconfigurable control allocation scheme was proposed in Ref. [8] for possible types of
fault in X-rudder UUV, which allows the UUV to operate normally even in cases of partial
rudder failure, and its effectiveness was verified through simulation. An observer-based
fault-tolerant control scheme for a discrete-time descriptor system with signal-to-noise
ratio-constrained channels was proposed in Ref. [9]. In this framework, the augmented
robust filter can achieve the simultaneous estimation of system states and faults. The intro-
duction of dynamic thresholds further enhances the performance of this diagnostic method,
providing theoretical guidance for the design of fault-tolerant control for AUVs.

Fault regulation involves adjusting the controller parameters or structure based on
fault diagnosis information to maintain the input–output relationship between the con-
troller and the controlled system. Ref. [10] developed a continuous adaptive nonlin-
ear model by adjusting the controller or model parameters. In the event of an actuator
fault, neural networks and fuzzy logic are employed to modify the model parameters,
enabling fault-tolerant control. Refs. [11,12] focused on thrust allocation modeling and
fault-tolerant control techniques, utilizing recursive neural networks for remote-controlled
AUVs. Ref. [13] established a control energy function using the duality principle, which
is based on the thrust allocation model. This approach enables the implementation of a
recursive neural-network-based fault-tolerant control algorithm for the thrusters. Ref. [14]
proposed a thrust allocation method based on the minimum l2 norm for a specific type of
7000-m manned submersible manufactured by China Shipbuilding Industry Corporation.
The correctness and effectiveness of the control allocation algorithm were verified using a
hybrid allocation algorithm based on the pseudoinverse matrix and fixed-point allocation
on a semi-physical simulation platform. Ref. [15] decoupled fault-tolerant control from
a dynamic controller design and used nonlinear programming to minimize allocation
errors and control costs as optimization objectives during the control allocation process to
solve the fault-tolerant control problem. Ref. [16] proposed a hybrid algorithm based on
singular-value decomposition and fixed-point allocation for fault-tolerant control allocation
in AUV propulsion systems. Compared to traditional methods, the above-mentioned
approach reduces computational complexity by avoiding the problem of pseudoinverse
matrix calculation and can satisfy the thruster saturation constraints.
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Currently, there is a scarcity of literature on passive fault-tolerant control methods.
Reliable stabilization is one of the passive fault-tolerant control methods for controller
faults. This concept involves employing multiple compensators in parallel to stabilize
the same controlled object [17]. Ref. [18] demonstrated that the essential condition for
reliable stabilization with two compensators is the strong stabilizability of the controlled
object. Ref. [19] addressed the aforementioned problem by introducing a parameterized
approach for designing two dynamic compensators, offering a solution to the reliable
stabilization problem. Ref. [20] developed a solution for the reliable stabilization problem
by utilizing multiple dynamic compensators for multivariable systems that are not strongly
stabilizable. Ref. [21] investigated the integrity concern associated with open circuit faults,
proposed a method to solve the static feedback gain matrix, and provided a numerical
solution method for the integrity issue of the closed-loop system configuration within
actuator faults. Ref. [22] proposed a state feedback law design with actuator fault integrity
control, utilizing optimization-solving through numerical solutions of compatible nonlinear
equation systems. However, the integrity concern was not entirely resolved. The main
challenge lies in the lack of an effective constructive method for solving fault-tolerant
control laws, particularly in the study of high-dimensional multivariable systems [23,24].
As a result, this area presents potential research prospects.

This paper presents a fault-tolerant control strategy for AUV actuators, utilizing T-
S fuzzy control and pseudoinverse quadratic programming under control constraints.
The subsequent sections of this article are structured as follows: Section 2 covers the
design of the T-S fuzzy controller. Section 3 delves into the fault-tolerant control of the
actuator. Section 4 focuses on the fault-tolerant control of actuators under control con-
straints. Experimental verification and analyses are shown in Section 5. Conclusions and
our future work are presented in Section 6.

2. System Description
2.1. T-S Fuzzy Modelling

The underwater dynamics of an AUV are influenced by buoyancy, gravity, thrust,
hydrodynamic forces, interference forces, etc. The model in both the static coordinate
system and the dynamic coordinate system is illustrated as in Figure 1. Furthermore, the six-
degrees-of-freedom motion equations of AUV can be found in to Ref. [25], with detailed
definitions of parameters provided in Table 1.

Figure 1. Coordinate diagram for AUV.
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Table 1. Coordinate system-related parameter definition for AUV [26].

Symbols Descriptions Units

X The force on x axis N
Y The force on y axis N
Z The force on z axis N
K The moment on x axis N·m
M The moment on y axis N·m
N The moment on z axis N·m

p, q, r Roll, pitch and heading angular velocity rad/s
u, v, w The velocity on x, y and z axes m/s
φ, θ, ψ Roll angle, pitch angle, heading angle rad

The AUV underwater motion is a six-degrees-of-freedom spatial motion, which can be
represented by linear motion along three axes and rotational motion around three axes in a
dynamic coordinate system. Assume that the center of gravity of the AUV (G) does not
coincide with the origin of the dynamic coordinate system (O), and its coordinates in the
dynamic coordinate system are xg, yg, zg. For the dynamics equation of the AUV, if only the
thrust and torque of the actuators are considered, the rigid-body six-degrees-of-freedom
spatial motion equation of the AUV can be represented as follows [25]:

X = m
[
u − vr + wq − xg

(
r2 + q2)+ yg(pq − r) + zg(pr + q)

]
Y = m

[
v − ur − wp − yg

(
r2 + p2)+ yg(qr − p) + xg(pq + r)

]
Z = m

[
w − uq + vp − zg

(
p2 + q2)+ xg(pr − q) + zg(qr + p)

]
K = Ix p +

(
Iz − Iy

)
qr + m

[
yg(w − uq + vp)− zg(v + ur − wp)

]
M = Ixq + (Ix − Iz)pr + m

[
zg(u − vr + wq)− xg(w + vp − uq)

]
N = Ixr +

(
Iz − Iy

)
pq + m

[
xg(v − ur + wp)− yg(u + vr − wq)

]
(1)

where m is the mass of the AUV; ρA is the density of the AUV; Ix, Iy and Iz are the moments
of inertia, which can be represented as follows:

Ix =
∫

V
(
y2 + z2)ρAdV

Iy =
∫

V
(
x2 + z2)ρAdV

Iz =
∫

V
(
x2 + y2)ρAdV

(2)

Furthermore, for AUV actuator fault modeling, this article establishes a parameter
deviation model for AUV output thrust and torque, shown as follows:

T =
(

Tn|n| + bn

)
n|n| (3)

M = Mδ(δ + bδ)u2 (4)

where T is the main thrust, Tn|n| is the main thrust coefficient, bn is the parameter deviation
of main thrust, n is the propeller speed, M is the thrust torque, Mδ is the rudder angle
coefficient, δ is the rudder angle, and bδ is the rudder angle deviation. The propeller and
rudder are operating normally when bn = 0 and bδ = 0. Applying the aforementioned
actuator fault description to the AUV nonlinear dynamics, one can obtain the following:

m(u̇ − vr + wq) = Xu|u|u|u|+ Xu̇u̇ + Xvrvr

+
(

Tn|n| + bLn

)
nL|nL|+

(
Tn|n| + bRn

)
nR|nR|

(5)

m(v̇ + ur) = Yv̇v̇ + Yṙ ṙ + Yurur + Yuwuw + Yδ(δ + bδ)u2 (6)

Iz ṙ =Nv|v|v|v|+ Nr|r|r|r|+ Nv̇v̇ + Nṙ ṙ + Nurur + Nuvuv + Nδ(δ + bδ)u2

+
((

Tn|n| + bLn

)
nL|nL| −

(
Tn|n| + bRn

)
nR|nR|

)
d

(7)
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where the distance d is the distance between the left and right thrusters and the longitudinal
centerline of the AUV.

To address the issue of fault-tolerant control allocation for the AUV actuator, it is
essential to provide a detailed description of the mathematical models involved.

The AUV considered in this paper is a small, torpedo-shaped AUV. Considering the
modeling of its actuators, the following form of the nonlinear dynamic system is considered:{

ẋ(t) = f (x(t)) + g(x(t))u(t)
y(t) = Cx(t)

(8)

where x(t) = [u v w q r ]T is the state vector of the system; u(t) is the control input to the
system; f (·) is the nonlinear term of the system; g(x(t)) is the control input matrix for the
system; y(t) is the output of the system; C is the known constant coefficient matrix.

We initially constructed nonlinear T-S fuzzy models for the AUV control system, based
on which the state feedback-based fuzzy controllers utilizing these models were developed.
The T-S fuzzy model aims to approximate nonlinear systems by employing multiple local
linear models established according to the IF-THEN rules. These rules effectively transform
intricate nonlinear problems into familiar linear ones [27]. Each rule corresponds to a
subsystem within a nonlinear system that illustrates the dynamic characteristics within
each local region. Global nonlinearity is attained through fuzzy inference, derived from
local linearization.

For the control system of AUV (8), the fuzzy rules are formulated as follows:

Rule i : IF θ1(t) is Mi
1 and · · · and θr(t) is Mi

r;

Then {
ẋ(t) = Aix(t) + Biu(t) i = 1, 2, · · ·, r
y(t) = Cx(t)

(9)

where Mi
1, Mi

2, · · ·, Mi
r are fuzzy sets; Ai, Bi, Ci are known real number matrices with

corresponding dimensions; θ1(t), θ2(t), · · ·, θr(t) are known prior variables, which can be a
state variable, external disturbance, a time function, or a combination of these vectors.

By integrating the individual subsystems using methods such as single-point fuzzifica-
tion, product inference, and weighted average defuzzification, we can derive the ultimate
hybrid model of the nonlinear system, as illustrated below. The state equation of the entire
fuzzy system can be expressed as follows:{

ẋ(t) = ∑r
i=1 µi(θ(t))(Aix(t) + Biu(t))

y(t) = ∑r
i=1 µi(θ(t))Cx(t)

(10)

where µi(θ) =
ωi(θ(t))

∑r
i=1 ωi(θ(t))

is the membership function, ωi(θ(t)) = ∏s
j=1 Mi

j
(
θj
)
. The fol-

lowing conditions are satisfied:

µi(θ(t)) > 0,
r

∑
i=1

µi(θ(t)) = 1 (11)

The importance of constructing a fuzzy model lies in its ability to approximate a
nonlinear dynamic model as an ensemble of local linear models, thereby enhancing fuzzy
precision by incorporating a larger number of fuzzy rules. However, as the number of
fuzzy rules increases, the design intricacy of fuzzy controllers also increases. Therefore,
system modeling must strike a balance between accuracy and complexity.

In order to better elucidate the fault-tolerant control scheme proposed in this arti-
cle, the flowchart shown as in Figure 2 is provided. Specific steps will be detailed in
subsequent chapters.
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Figure 2. The flowchart of fault-tolerant control scheme.

2.2. The Design and Stability of Fuzzy Controllers

When designing controllers for T-S fuzzy models, the prevalent approach in the current
research involves the utilization of the parallel distribution compensation method. In the
controller design, the premise variables of each controller’s fuzzy rule are the same as the
corresponding premise variables of the fuzzy model. Subsequently, a state feedback control
law is formulated for each rule’s respective linear subsystem, followed by the derivation of
the control law for the global system through fuzzification weighting.

For the T-S fuzzy system in Section 2.1, the state feedback controller is structured based
on the parallel distribution compensation algorithm. The controller rules are outlined as
follows:

Rule i : IF θ1(t) is Mi
1 and · · · and θr(t) is Mi

r;

Then
u(t) = Kjx(t) j = 1, 2, · · ·, r (12)

where Kj is the gain matrix for the compensation of the controller distribution that needs to
be designed. By amalgamating the controllers of the aforementioned subsystems, the com-
prehensive fuzzy controller can be acquired, as depicted below:

u(t) =
r

∑
j=1

µj(θ(t))Kjx(t) (13)
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Furthermore, a fuzzy model of the closed-loop system is obtained, as follows:{
ẋ(t) = ∑r

i=1 ∑r
j=1 µi(θ(t))µj(θ(t))

(
Ai + BiKj

)
x(t)

y(t) = ∑r
i=1 µi(θ(t))Cx(t)

(14)

When designing a system, the stability of the control system should be prioritized to
guarantee the smooth operation of the system. To establish a robust stability criterion for
the fuzzy control system (14), a controller can be designed from a theoretical standpoint.

Take the Lyapunov function as V(x(t)) = [x(t)]T Px(t), where P is a symmetric and
positive-definite matrix; then, one can obtain the following:

V̇(x(t)) = [ẋ(t)]T Px(t) + [x(t)]T Pẋ(t)

=

[
r

∑
i=1

r

∑
j=1

µi(θ(t))µj(θ(t))
(

Ai + BiKj
)
x(t)

]T

Px(t)

+ [x(t)]T P

[
r

∑
i=1

r

∑
j=1

µi(θ(t))µj(θ(t))
(

Ai + BiKj
)
x(t)

]

=
r

∑
i=1

r

∑
j=1

µi(θ(t))µj(θ(t))[x(t)]
T
[(

Ai + BiKj
)T P

+P
(

Ai + BiKj
)]

x(t)

(15)

For the formula (15), the Left and right side of (Ai + BiKi)
T P + P

(
Ai + BiKj

)
are

multiplied by P−1as P−1(Ai + BiKj
)T

+
(

Ai + BiKj
)

P−1.
Denote Hj = KjP−1

Qij =
(

AiR + Bi Hj
)T

+
(

AiR + Bi Hj
)

(16)

The variables in the Equation (16) must satisfy the following conditions:{
Qij < 0 i = 1, 2, · · ·, r

1
r−1 Qij + 0.5

(
Qij + Qji

)
< 0 1 ≤ i ̸= j ≤ r

(17)

When the aforementioned conditions are fulfilled, V̇(x(t)) < 0, then the T-S fuzzy
system exhibits asymptotic stability.

2.3. The Design of T-S Fuzzy Rules

The variations in the state variables v, w, q and r in the six-degrees-of-freedom motion
equations of an AUV are interconnected with the linear velocity u. Changes in u will impact
the velocities and angular velocities of other degrees of freedom. Additionally, there is a
constraint relationship between q and r in the posture equation, as both are influenced by
the control moments simultaneously. To facilitate future research, it is essential to simplify
the variables needed for the fuzzy controller design. Denote θ1 = u, θ2 = r; choose θ1
and θ2 as the premise variables of the T-S fuzzy system. According to the actual situation,
the corresponding fuzzy sets are designed as follows: {θ1 = 0.5, 1}, {θ2 = −0.1, 0, 0.1}.

The commonly used membership function information includes the upper and lower
bounds of the membership function, as well as boundary information. For instance,
one can approximate the membership function using a ladder function or by selecting a
certain number of equally spaced points and approximating the information with adjacent
points. Generally, the membership function in a fuzzy model typically mirrors that of a
fuzzy controller, requiring the consideration of accuracy requirements and computational
complexity. In the context of the actual AUV system, we select the following membership
functions for the AUV actuator fuzzy controller:
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Mθ1=0.5 =
2 + sin(θ1(t))

5
, Mθ1=1 =

3 − sin(θ1(t))
5

(18)

Mθ2=−0.1 =
cos(θ2(t)) + 2

5
, Mθ2=0 =

sin(θ2(t)) + 3
5

,

Mθ2=0.1 =
− sin(θ2(t))− cos(θ2(t)) + 5

5

(19)

For Equations (18) and (19), six working points are selected with reference to the fuzzy
set [0.5,−0.1], [0.5, 0], [0.5, 0.1], [1,−0.1], [1, 0], [1,−0.1]. Thus, the design of AUV fuzzy
model and fuzzy controller are as follows:

Rule1: IF θ1 is about 0.5 m/s and θ2 is about − 0.1 rad/s, then{
ẋ(t) = A1x(t) + B1u(t)
u(t) = K1x(t)

(20)

Rule2: IF θ1 is about 0.5 m/s and θ2 is about 0 rad/s, then{
ẋ(t) = A2x(t) + B2u(t)
u(t) = K2x(t)

(21)

Rule3: IF θ1 is about 0.5 m/s and θ2 is about 0.1 rad/s, then{
ẋ(t) = A3x(t) + B3u(t)
u(t) = K3x(t)

(22)

Rule4: IF θ1 is about 1 m/s and θ2 is about − 0.1 rad/s, then{
ẋ(t) = A4x(t) + B4u(t)
u(t) = K4x(t)

(23)

Rule5: IF θ1 is about 1 m/s and θ2 is about 0 rad/s, then{
ẋ(t) = A5x(t) + B5u(t)
u(t) = K5x(t)

(24)

Rule6: IF θ1 is about 1 m/s and θ2 is about 0.1 rad/s, then{
ẋ(t) = A6x(t) + B6u(t)
u(t) = K6x(t)

(25)

In the above rules, the controller distribution compensation gain vector of each sub-
system is as follows: K = [K1 K2 K3 K4 K5 K6]. By combining the known membership
functions, a complete fuzzy controller can be designed to provide control input for the
AUV motions and provide the premise for the subsequent fault-tolerance control.

3. Fault-Tolerant Control of Auv Actuators
3.1. Arrangement and Normalization Strategy of the Propulsion System

The devices collectively powering the AUV are known as its propulsion system, which
includes propellers and rudder engines (as shown in Figure 3). The propellers consist of two
horizontal thrusters and two vertical thrusters, producing thrusts T1, T2, T3, T4 (actually,
T1 and T2 are the same, described as u1; T3 and T4 are the same, described as u2), located
at the tail of the AUV. The rudder engines consist of vertically and horizontally distributed
rudders that produce thrust moments T5, T6, T7, T8 (where T5 and T6 are denoted as u3,
and T7 and T8 are represented as u4). The propulsion system of the AUV has the ability to
directly control all six degrees of freedom, making it equipped with redundant propulsion
control. In the event of a specific thruster or rudder failing completely or experiencing
partial malfunction, the lost control effect can be redistributed by other thrusters or rudders
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based on predetermined criteria. This redistribution enables the fault-tolerant control of
the AUV propulsion system.

x

y

T1

T3  T4
T2

T7

y

z

T6

T5

T8

a

b

Figure 3. Propulsion system layout for AUV.

Based on the above analysis, during the operation of an AUV, the forces and moments
at a specific moment can be represented using the state vector τ, where τ =

[
τx τy τz

]
is

the thrust force, and τ = [τm τn] is the moment generated by the control signal provided
by the entire propulsion system. For the AUV control system, each state corresponds to a
specific motion state, with forces and moments generated by the control signal u. In the
context of AUV fault-tolerant control, the goal is to reconfigure a new set of thruster control
signals based on the arrangement of the thrusters in the event of actuator faults. This
reconfiguration ensures that the thruster can still provide sufficient force and moments to
maintain control and stability of the AUV [28].

For the propulsion system arrangement described above, the force and moments
formula is as follows:

τ =


τx
τy
τz
τm
τn

 =


l cos α cos α cos β cos β
sin α cos α 0 0

0 0 cos β sin β
A A A A
B B B B




u1
u2
u3
u4

 = B · u (26)

where A = b
2 sin α + a

2 cos α, B = b
2 cos β + a

2 sin β.
In order to more intuitively reflect the utilization of thrust from each thruster and to

prevent potential thrust saturation output when the multiple desired control quantities are
simultaneously output, a detailed description of the normalization process for the output
resultant thrust of the propulsion system is necessary. Assume the maximum control vector
provided by the thruster can be represented as follows:

τxH = 2um cos α + 2um cos β = 4um cos α = 4um cos β
τyH = um sin α + um cos α

τzH = um sin β + um cos β
τmH = 4A
τnH = 4B

(27)

By performing a conversion of the above equation, one can obtain the following:

τ̄x =
τx

um
=

1
4 cos α

=
1
4

cos β

τ̄y =
τy

um
=

1
2 sin α

τ̄z =
τz

um
=

1
2 sin β

τ̄m =
τm

um
=

1
2

A

τ̄n =
τn

um
=

1
2B

(28)
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The final expression for the normalized state vector can be obtained as follows:

τ̄ =


τ̄x
τ̄y
τ̄z
τ̄m
τ̄n

 =


l 1

4
1
4

1
4

1
4

1
2

1
2 0 0

0 0 1
2

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4




ū1
ū2
ū3
ū4

 = B̄ū (29)

For Equation (29), when the thrusters are operating normally, a certain thruster control
voltage u will generate a corresponding rotational speed n, and then obtain the corre-
sponding thrust and torque. When a fault occurs in the propulsion system, for the same
control voltage, the output rotational speed n will decrease due to the presence of the fault,
resulting in an inability to obtain the corresponding thrust and torque.

At this point, the thruster speed n can more accurately reflect the thrust and torque
of the thruster during actual operation. In general, the relationship between the thrust
and torque of a thruster and its rotational speed is a complex, non-linear one. However,
for AUVs, this can often be approximated as a linear relationship. Therefore, Equation (31)
can be used to calculate the actual force state of the AUV and compare it with the desired
force state to evaluate the fault-tolerant control effectiveness.

τ̄ =


τ̄x
τ̄y
τ̄z
τ̄m
τ̄n

 =


l 1

4
1
4

1
4

1
4

1
2

1
2 0 0

0 0 1
2

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4




n̄1
n̄2
n̄3
n̄4

 = B̄n̄ (30)

3.2. Pseudo-Inverse-Based Fault-Tolerant Control

The redundant configuration of the propulsion system in Section 2.2 allows for the
fault-tolerant control of the thrusters. By utilizing the thruster priority matrix W, the control
priority of each thruster can be expressed as follows:

W =


w1 0 0 0
0 w2 0 0
0 0 w3 0
0 0 0 w4

 (31)

In fault diagnosis and the fault-tolerant control of AUVs, the thruster priority matrix
W is closely related to the thruster faults. When none of the structures in the propulsion sys-
tem have failed, the priority of each thruster signal u is equal, i.e., w1 = w2 = w3 = w4 = 1.
In the event of a thruster fault, fi is considered as a fault factor. If the i-th thruster expe-
riences complete failure, fi = 0. If the corresponding thruster experiences partial failure,
then 0 < fi < 1.

Furthermore, the priority coefficients of partially failed thrusters can be represented
as follows:

wi = e
1
f −1 (32)

If the thruster fails completely, wi = e+∞ = +∞, then

fi = ni(1 − si) (33)

where ni is the normalized thruster speed; si is the congestion parameter. 0 < si < 1
depends on the severity of the fault. If the thruster completely fails, si = 0. For partial
thruster faults, such as si = 0.5, the output operating range of the thruster is limited to 50.

In this scenario, the fault-tolerant ability of the AUV system is analyzed in the event
that a specific thruster encounters a time-varying fault. The affected thruster will experience
a partial loss of driving function. The goal of the control system is to develop a new set
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of control signals to replace the original four thruster control signals that included the
fault signal included in the fault occurrence. This ensures that the thruster can continue to
generate the required thrust and torque even in the event of a fault, maintaining the AUV’s
original motion states.

Assuming that the control signals of the thruster can meet the specified control quan-
tity, the pseudoinverse allocation solution can be obtained using the Lagrange multiplier
algorithm [29]. The Lagrangian function is defined as follows:

L(u, λ) =
1
2

uTWu + λ(τ − Bu) (34)

where λ is a Lagrange multiplier. By taking the derivative of it, one can obtain:

∂L
∂u

Wu − BTλ = 0 (35)

Therefore, we can obtain:

τ = Bu = BW−1BTλ (36)

Finally, the solution for pseudoinverse control allocation is obtained as follows:

T = B̄+u =
[
W−1B̄T

(
B̄W−1B̄T

)]
u (37)

where B̄+ is the pseudoinverse weight matrix of the thruster configuration matrix B̄.

4. Fault-Tolerant Control of Actuators under Control Constraints
4.1. Description of Control Constraints

Section 3 studies the thrust allocation control using the pseudo-inverse method to
ensure the normal operation of the AUV under ideal conditions. However, in practical
operations, there are constraints on the input controls that drive the motion of the AUV.
When the control inputs exceed the constraint limits, the pseudo-inverse method cannot
automatically adjust the remaining control inputs to compensate for the insufficient control
force caused by the constraints, leading to the actual control force failing to achieve the
desired control effect.

Due to the influence of its own dynamics and water flow, the propulsion system of
an AUV has limitations and saturation nonlinearity in the forces and torques. Figure 4
illustrates the typical input saturation characteristics of the propulsion system.

AUV propulsion
system

thrust

torque

u c

u max

u min

u 1

u 2

u 3

u 4

u in

Figure 4. Schematic diagram of input saturation characteristics.

The mathematical expression is described as follows:

uin =


umax uc > umax
kuc umin < uc < umax
umin uc < umin

(38)
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When implementing fault-tolerant control in the presence of actuator faults, it is crucial
to consider saturation constraints. In practical design, if the required control inputs exceed
the range that the propulsion system can provide, the controller will continuously accumu-
late errors, resulting in system instability and potentially causing damage to the actuators.

Suppose that the insufficient control force and torque can be redistributed through the
reallocation of the unsaturated control signals. The deviation matrix of the actuator control
signal is denoted as M. If the maximum and minimum control input vectors are Tmax, Tmin,
the feasible range of the actuator control signal during reallocation is determined as follows:{

M ≤ Tmax − T
M ≥ T − Tmin

(39)

and B(T + M) = u.
According to the properties of matrix multiplication, one can obtain:{

BM = u − BT
BM = Om×1

(40)

To ensure that the L2-norm of the control signals of the redistributed propulsion system
is minimized, it is necessary to ensure that the L2-norm of the control signals obtained from
the two control allocations is minimized.

According to the norm properties, one can obtain:

∥T + M∥ ≤ ∥T∥+ ∥M∥ (41)

Furthermore, the problem is transformed into solving min∥Mdev∥. Finally, the aforemen-
tioned problem can be formulated in the following standard form of quadratic programming:

min J = MT HM + CM

s.t. Ai M + Bi = 0, i ∈ E

Ai M + Bi ≥ 0, i ∈ I (42)

where H is the Hessian matrix; C is the coefficient matrix of the linear term for the variable
M; Ai, Bi are the coefficient matrices of the linear terms and constant terms in the constraint
functions for the variable M, respectively.

4.2. Nonlinear Quadratic Programming

The nonlinear quadratic programming algorithm is efficient in solving nonlinear
programming problems. Compared to other algorithms, its most prominent advantages
include its good convergence, high computational efficiency, and strong boundary search
capabilities. It has been widely used in many fields. All non-linear programming models are
generally composed of an optimization objective function and corresponding constraints.
For optimization problems with inequality constraints, this paper uses the active set method
to solve quadratic programming, shown as follows.

Assuming M̄ is a feasible point for Equation (44), its active set can be defined as the
set of constraints for which the equality holds, that is:

A(M̄) = {i ∈ (E ∪ I) : Ai M̄ = Bi} (43)

For quadratic programming problems with inequality constraints, the Lagrangian
function can be described as follows:

L(M, λ) = MT HM + CM − ∑
i∈(E∪I)

[λi(Ai M̄ − Bi = 0)] (44)
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Furthermore, the optimality condition (K-T) for quadratic programming can be de-
scribed as follows:

HM̄ + C − ∑
i∈A(M̄)

λi Ai = 0 (45)

where
Ai M̄ = Bi, i ∈ A(M̄)

Ai M̄ ≥ Bi, i ∈ I ∪ A(M̄)

λi ≥ 0, i ∈ I ∩ A(M̄) (46)

and M̄ is also referred to as the K-T point of Equation (46).
The active set method is essentially an iterative algorithm that uses the feasible point

of Equation (46) as the starting point in each iteration and defines the search direction with
the set of active constraints, then determines the search step size through linear search.

Let Mk be the feasible solution at the k-th step, with its active set denoted as Sk = E ∪ I(Mk);
consider the following optimization problem:

min
(

MT HM + CT M
)

s.t. Ai M = Bi, i ∈ Sk (47)

Denote the step length p = M − Mk and substituting it into Equation (47) while
removing the constant term yields the equivalent optimization problem, as follows:

min
(

pT Hp + pT
k p

)
s.t. Ai p = Bi, i ∈ Sk (48)

where pk = p + HMk. Find the optimal solution pk of quadratic programming under
equality constraints and divide it into the following three cases:

(1) pk ̸= 0, while Mk + pk is a feasible point of Equation (47). Take a new iteration
point Mk+1 = Mk + pk and then calculate the corresponding optimization problem.

(2) Mk + pk is a feasible point of Equation (47). Denote Mk+1 = Mk + αk pk, where the
step size parameter αk ∈ (0, 1] can be represented in detail as follows to ensure that Mk+1
in (2) is a feasible point.

αk = min
{

1, min
Bi − Bi Mk

Ai pk

}
(49)

(3) pk = 0, Mk is the optimal solution of the optimization problem (48). Determining
Mk in (3) is the K-T point of the original problem. If all Lagrange multipliers of the original
problem are non-negative, it can be concluded that this point is the optimal solution of the
quadratic programming problem (47) based on the convex optimization theory.

Quadratic programming can be used to optimize and solve the problems of mini-
mizing tracking errors and control inputs. When the propulsion system fails, quadratic
programming can dynamically update actuator matrices based on information, achieving
re-allocation under control constraints.

5. Experimental Verification and Analysis
5.1. Simulation Settings

In this section, simulations are conducted for the actuator fault-tolerant control of an
AUV with known fault types. The faults are set as follows: (1) Thruster fault: at 150 s,
one of the thrusters experiences a thrust degradation to 0, while the parameters of the
other thrusters remain unchanged; (2) Rudder servo fault: at 150 s, one of the servos fails,
with its torque degrading to 0, rendering it unable to deflect and provide the designed
torque, while the parameters of the other servos remain unchanged. It should be noted that
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the two types of fault conditions mentioned in this article will not occur simultaneously
and are not related to each other.

5.2. Simulation Results and Analysis

(1) Fuzzy controller input signals
Figure 5 illustrates the control input signals generated by the T-S fuzzy controller

for the actuator of the AUV, which are provided by the thrusters and the rudder servo.
From the figure, it can be observed that the input control signals generated by the fuzzy
controller are stable, indicating that the actuators of the AUV can provide a stable thrust
and torque to the AUV.

0 50 100 150 200 250 300
0

1

2

A
m

p
lit

u
d
e

Input signal u
1

0 50 100 150 200 250 300
0

1

2

A
m

p
lit

u
d
e

Input signal u
2

0 50 100 150 200 250 300
0

1

2

A
m

p
lit

u
d
e

Input signal u
3

0 50 100 150 200 250 300

Simulation time[s]

0

1

2

A
m

p
lit

u
d
e

Input signal u
4

Figure 5. Input signal for fuzzy controller.

(2) Pseudo-inverse-based fault-tolerant control (without control constraints)
Figures 6 and 7 show the pseudo-inverse fault-tolerant control based on thrust allo-

cation. It can be observed that when the control inputs of the AUV actuator degrade due
to faults, the output states change accordingly. By employing the pseudo-inverse method
for the thrust allocation of faulty thrusters and rudders, the lost thrust and torque can be
effectively compensated, enabling the AUV to maintain a certain level of system dynamic
performance even in the presence of faults.
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Figure 6. Fault-tolerant control under thrust loss (abrupt fault + slowly-varying fault).

(3) Quadratic programming under control constraints
Figures 8 and 9 illustrate the thrust allocation results based on pseudo-inverse control

under control constraints. When the control input fails to provide the ideal signal due to
various factors, the pre-designed control signals exceed the constraint range. The original
fault-tolerant thrust allocation method is unable to fully compensate for the missing effec-
tiveness due to faults, resulting in the originally designed fault-tolerant control scheme
failing to meet the expected effectiveness, which leads to significant deficiencies in practi-
cal applications.

Figures 10 and 11 present the fault-tolerant control results of the AUV actuators,
combined with pseudo-inverse and nonlinear quadratic programming. The quadratic
programming algorithm compensates for the missing control input within control con-
straints, allowing the input thrust of the AUV actuator to return to normal and achieving
the expected fault-tolerant effect
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Figure 7. Fault-tolerant control under moment loss (abrupt fault + slowly-varying fault).
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Figure 8. Fault-tolerant control under control constraints (abrupt fault).
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Figure 9. Fault-tolerant control under control constraints (slowly varying fault).
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Figure 10. Fault-tolerant control under quadratic programming (abrupt fault).

In general, the T-S fuzzy logic and pseudo-inverse quadratic programming-based fault-
tolerant scheme in this paper can resolve the issue of AUV actuator faults under control
constraints. However, in terms of fault-tolerant controller design, the proposed solution in
this paper does not consider the requirement for robustness. Inspired by Ref. [30], sliding
mode control (SMC) exhibits strong robustness to external disturbances and parameter
uncertainties, with a good response and tracking performance, making it suitable for
scenarios with high demands on system dynamic performance. Therefore, as shown in
Figures 12 and 13, the SMC approach can be taken into consideration in the design of
fault-tolerant controllers for both abrupt faults and slowly varying faults based on the
previous quadratic programming. Furthermore, based on the comparisons in Figures 10–13
(as indicated by the solid red line), the fault-tolerant control obtained under quadratic
programming and SMC design can obtain advanced robustness without sacrificing the
nominal control performance of AUVs.
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Figure 11. Fault-tolerant control under quadratic programming (slowly-varying fault).
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Figure 12. Fault-tolerant control under quadratic programming and SMC (abrupt fault).
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Figure 13. Fault-tolerant control under quadratic programming and SMC (slowly-varying fault).

6. Conclusions

In this paper, we propose a fault-tolerant control method for AUV actuators based on
T-S fuzzy logic and pseudo-inverse quadratic programming, taking into account control
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constraints in practical scenarios. Additionally, the thrust allocation method, employing
pseudo-inverse quadratic programming, has demonstrated effective fault-tolerant control
for AUV actuators. The simulation results indicate that the proposed fault-tolerant control
method with control constraints can effectively compensate for missing control input
signals, ensuring the normal operation of AUVs in the event of actuator faults. Our future
work will focus on efficient fault diagnosis methods [31–33] to obtain comprehensive
fault information for AUVs to further improve fault tolerance, and the data from real-
world experiments (not only the numerical simulations) will be used to demonstrate the
controller’s performance in practical scenarios.
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