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Abstract: In this work, we experimentally analyzed and demonstrated the performance of an in-line
Mach–Zehnder interferometer in the visible region, with an LED light source. The different waist
diameter taper and asymmetric core-offset interferometers proposed used a single-mode fiber (SMF).
The visibility achieved was V = 0.14 with an FSR of 23 nm for the taper MZI structure and visibilities
of V = 0.3, V = 0.27, and V = 0.34 with FSRs of 23 nm, 17 nm, and 8 nm and separation lengths
L of 2.5 cm, 4.0 cm, and 5.0 cm between the core-offset structure, respectively. The experimental
investigation of the response to the temperature sensor yielded values from 50 ◦C to 300 ◦C; the
sensitivity obtained was 3.53 a.u./◦C, with R2 of 0.99769 and 1% every 1 ◦C in the transmission. For
a range of 50 ◦C to 150 ◦C, 20.3 pm/◦C with a R2 of 0.96604 was obtained.

Keywords: white light interference; bi-tapers and core-offset Mach–Zehnder interferometer;
temperature sensor

1. Introduction

The technique of optical interferometry is widely used in the fabrication of fiber optic
sensors due to its accurate measurement of the physical quantities of industrial and medical
fields. Optical interferometry is based on the interference of two or more beams from a
light source launched into dielectric media with different optical length paths, creating
an optical phase difference between the beams and obtaining an interference pattern [1].
Small changes in the optical path induce variation in the interference light intensity to the
output sensor, and one can obtain information about these changes for the measurement of
physical parameters. The optical fiber sensor based on an in-line Mach–Zehnder interfer-
ometer (MZI) has become an attractive research subject due to its simplicity, adaptability,
manufacturing, compact size, and stability [2]. They are usually fabricated using single-
mode fibers (SMF)s [2–7], multimode fiber (MMFs) [8–14], photonic crystal fibers [15–17],
and erbium-doped fibers (EDFs) [8,18] with different configurations: core-offset [2–4], ta-
pers [5–7,18], two-peanut-shape [8,19], and microcavities [19–21], among others. The MZIs
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are generally used to measure several physical variables, such as curvature [3,18], refractive
index [3,5–7], temperature [5,19], strain [15], and gas sensing [17]. The optical fiber MZIs
have been mainly studied in the infrared (IR) [1–9,14–18], near-infrared (NIR) [20,21], and
visible spectrum (VIS), in contrast to the design of interferometric sensors based on optical
fibers in the VIS region [19–21]. The NIR and VIS interference using optical fibers SM800
and SM600 have been researched by Eftimov et al. [20,21], and they used optical fibers
SM800 and SM600. The spectrum interference was obtained in the range of 670 nm to
1100 nm. The interference emission in the VIS region was obtained by a taper MZI based
on microfibers or nanofibers (MNFs). The MZI was fabricated with two MNFs placed
on a MgF2 substrate [22]. The supercontinuum source was used in their experimental
setup [19–21].

In this work, during experimentation, the proposed in-line MZIs demonstrated an
emission pattern of interference with white light from an LED source. For visible light
interference research, two MZIs with an SMF-SMF-SMF structure were fabricated. The first
interferometer was bi-taper and the second was based on the core-offset splicing technique.
Both MZIs were fabricated using standard optical fibers (SMF-28). The interferences
emissions were analyzed individually.

2. Design and Fabrication of Mach–Zehnder Interferometer

Two interferometers were proposed and fabricated for white light analysis interference,
taper, and core-offset in-line MZI.

2.1. Design and Fabrication of Taper MZI

The tapered MZI was fabricated using a stretching machine designed by the Uni-
versitat de València. It simultaneously heats and stretches a short section of single-mode
fiber (SMF-28 of Thorlabs, Newton, NJ, USA, with 8.2 µm and 125 µm core and cladding
diameters, respectively, and an operating wavelength range of 1260 nm to 1650 nm). The
flames were generated with a precise mixture of butane and oxygen gas. The section of
SMF was fixed at both ends by two holders on a servomotor. In the stretching machine, the
diameter of the MZI waist was controlled by original software on a PC; these data were the
only set required for its manufacturing (Figure 1).
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Figure 1. Stretching machine to fabricate the tapers (designed and built at laboratory of fiber optics,
Universitat de València).

The region of fiber created by the stretching machine had a small and uniform waist,
where the fiber diameter changed as a result of the stretching, fabricating an adiabatic
tapered MZI [6].

Figure 2 shows the schematic of a bi-taper MZI which consists of a single-mode fiber
and can be divided into first taper T1 and second taper T2, with a separation distance L.
The tapers T1 and T2, can be divided into regions: down taper (Ddown1 and Ddown2), waist
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length (L1 and L2), waist diameter (W1 and W2), and up-taper (Dup1 and Dup2), respectively:
D1 = Ddown1 = Dup1 and D2 = Ddown2 = Dup2. The tapers T1 and T2 can be divided into re-
gions: down and up-taper (D1,2), waist length (L1,2), and waist diameter (W1,2), respectively.
In an SMF, coherent light propagates along the core and the fundamental mode (LP01) is
generated, but when a low-coherence source is launched into the SMF, higher-order modes
(LP0m) are excited [11,12]. The interference effects may exist between different core modes
or between different cladding modes of the MZI structure. The modal interference between
modes of the MZI structure can be given by [11–13]:

I = I1 + I2 + 2
√

I1 ∗ I2 cos(θ) (1)

where I1 and I2 are the intensities of the interference signal, the core modes, and the
cladding modes, respectively. θ is the phase difference between the core mode and the
cladding mode, and is given by:

θ =
2π

(
∆ne f f

)
L

λ
(2)

where λ is the wavelength of the light source, L is the fiber waist length of the MZI,
and the ∆ne f f = ncore

e f f − nclad
e f f is the refractive index difference of the two interferometer

arms; ncore
e f f and nclad

e f f are the effective refractive index of the core and cladding mode of the
fiber, respectively. When the interference signal reaches its minimum at θ = π(2m + 1) in
Equation (1), the wavelength of the mth order attenuation peak is written as in Equation (2).
As a result, the free spectral range (FSR) of such a fiber interferometer is expressed as [8,16]:

FSR =
λ2

∆ne f f
L (3)
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Figure 2. Schematic bi-taper MZI on SMF-28.

Several MZIs with different lengths L and waist diameters were fabricated, and their
transmission spectra were analyzed.

The experimental setup for analyzing the pattern interference in the VIS region of
MZIs is shown in Figure 3 as an LED source (DLF, Model LP3WBCD, Guangdong, China,
power of 3 Watts, natural white) with a wavelength range of 400 nm to 650 nm (the spectral
emission at room temperature is shown in Figure 4). The light was introduced into fiber
optics with an Olympus Plan N 20×/0.40 micro-scope objective, Nanjing, China, which
was mounted on fiber alignment 3-axis flexure stages (MBT610/N of Thorlabs, Newton,
NJ, USA); then, the light traveled through in MZI and the spectral emission interference
was obtained using a Spectrum Analyzer (Ocean Optics, USB650, Boston, MA, USA) with a
slit of 5 µm in the software configuration of the computer.
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Table 1 shows the results from a collection of samples of MZIs with different waist
diameter parameters for T1 and T2 from 10 µm to 60 µm. The separation distance between
two bi-tapers is kept to L = 3 cm and the waist length between 1.83 mm to 29.35 mm. The
software requires the waist diameter, and the other parameter is automatically calculated.

Table 1. Parameters of symmetric and asymmetric tapered MZI.

#MZI Taper 1 (T1) Taper 2 (T2)

Waist Diameter
Relation

[µm]

Waist Length
[mm]

Waist
Diameter [µm]

Length
[mm]

Waist Length
[mm]

Waist
Diameter [µm]

Length
[mm]

#[T1-T2] L1 W1 D1 L2 W2 D2

1 [10-20] 5.05 10 2.52 7.33 20 3.66
2 [45-45] 6.13 45 3.06 6.13 45 3.06
3 [10-10] 5.05 10 2.52 5.05 10 2.52
4 [50-60] 1.83 50 0.91 29.35 60 14.67
5 [15-10] 8.48 15 4.24 5.05 10 2.52

2.2. Design and Fabrication of Core-Offset MZI

Figure 5a shows a U-type MZI. The MZI was fabricated using SMF-28 (Thorlabs)
with core and cladding of 8.2 µm and 125 µm, respectively. The schematic diagram of the
experimental setup is similar to Figure 3. For the manufacturing process of the U-type MZI,
three segments of SMF and a section of fiber length L were used between two SMFs, joined
by a Fitel S178A fusion splicer, Tokyo, Japan. First, a 70 cm section was cut with the fiber
cleaver and fixed with masking tape to a flat aluminum bar, leaving approximately 7 cm of
optical fiber at one end of the bar; see Figure 5b. It was carefully placed in the left holder
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of the fusion splicer. The flat aluminum bar was placed on top of the lab jack of vertical
travel L490 at the same height as the holders on the fusion splicer. Second, another optical
fiber segment was placed in the right holder, aligning the two core fibers. Afterward, the
right holder was displaced in the [−x1, 0.0] axis direction, the splice was made in manual
mode, and the SMF-1300 program setting was used to splice with one discharge. Thirdly,
the spliced fiber was removed and the second section of the interferometer length L was
cleaved. A ceramic fiber scribe CSW12-5 was used when the length L was less than 4 cm,
taking care not to break it. The cleaved part of the interferometer with length L was placed
in the left holder and fusion-spliced with another segment of 70 cm of fiber, and then
aligned in the [+x2, 0.0] axis direction. The same configuration was used for the fusion
splicer. In order to analyze the influence of the offset distance on the propagation of the
core and cladding modes, it was necessary to fabricate and test several symmetrical and
asymmetrical interferometers, with length of 2.5 cm, 4 cm, and 5 cm; see Table 2.
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Table 2. Parameters of symmetric and asymmetric SMF-SMF-SMF structure core-offset MZI.

#MZI
Length

L
[cm]

First Splice
Displacement [x1,y1]

Directions [µm]

Second Splice
Displacement [x2,y2]

Directions [µm]

1 2.5 [−4.6, 0.0] [+4.6, 0.0]
2 4 [−3.0, 0.0] [+3.0, 0.0]
3 4 [−3.0, 0.0] [+4.0, 0.0]
4 4 [−4.0, 0.0] [+4.0, 0.0]
5 4 [−4.6, 0.0] [+4.6, 0.0]
6 4 [−5.0, 0.0] [+4.0, 0.0]
7 4 [−5.0, 0.0] [+4.5, 0.0]
8 4 [−6.0, 0.0] [+5.0, 0.0]
9 4 [−6.0, 0.0] [+6.0, 0.0]
10 5 [−4.6, 0.0] [+4.6, 0.0]

Table 2 shows a collection of samples of core-offset MZIs with different length segments
of L = 2.5 cm, 4 cm, and 5 cm. For the analysis of spectrum emissions, the MZIs were
fabricated using different displacement on the x, y axis.

3. Results

The interference pattern was measured in tapered and core-offset MZIs. The results
are presented in two parts.

3.1. Analysis of Tapered MZI

Figure 6a shows the spectral emissions, and Figure 6b shows the spatial frequency that
are obtained by Fourier transform. In Figure 6a, the interference emission obtained for the
MZI with a symmetrical waist length relation of ([45-45]) µm is weak. For this case, we can
see in Figure 6b that the interference pattern output was formed by the fundamental core
mode and three cladding modes at p ∼ 44 nm, p ∼ 24 nm and p ∼ 17 nm; these spatial
frequencies were generated by the multimode fiber of the MZI [10–12], and there were
more higher-order modes that contributed weakly to forming the interference pattern with
an incompletely sinusoidal waveform. The best sinusoidal interference emission profile
was obtained with an asymmetric waist length relation of 10–20 µm. Figure 6b shows that
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the interference was formed by the contribution of the fundamental core mode and a strong
cladding mode in p ∼ 24 nm. The period signal was rationed between spatial frequency
and period sinusoidal components using ν = 1/p [18].
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Figure 6. (a) Spectrum emission of #MZIs; (b) spatial frequency spectrum by FFT.

The spatial frequency analysis was similar to an adiabatic [6,17], because the interfer-
ence pattern of the fabricated asymmetric tapers was mainly formed by the fundamental
core mode I1 and cladding mode I2. The asymmetric and symmetric MZIs with waist length
relations of [50-60], [15-10], and [10-10] µm (see Figure 6a) did not have an interference
pattern due to their weak intensity of the cladding modes.

The spectral profile of the interferometer with a waist length relation of 10–20 µm is
plotted in the Figure 7. The spectral response shape is a sinusoidal waveform, with the
typical interference emission of a relation MZI [1]. The interference patterns are defined by
the optical path difference, and its amplitude is a function of the fringe visibility or contrast
(V) and is defined based on coherence theory [1,23]:

V =
IMax − IMin
IMax + IMax

(4)
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IMax is the maximal and IMin is the minimal intensities of wave oscillations. The
fringes of interference with good visibility V, took values of 0.1 ≤ V ≤ 1. We obtained a
visibility of V = 0.14, a FWHM = 13 nm, and FSR = 23 nm; moreover, for the other waist
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length relation MZI, the interference was weak or null. This parameter V is very important
for optical fiber sensor application [1,23].

3.2. Analysis of Core-Offset MZI

The core-offset technique was studied experimentally with different displacement
in the [x, y] axis, in both the first and the second fusion splice, to fabricate the MZI while
keeping the length L at 4 cm. First, the MZIs numbered from #2 to #9 in Table 2 were
analyzed. Figure 8a–c show the evolution of interference spectrum dependent on the
displacement of the [x, y] axis in the splicing fiber. We can see that the extinction ratio (ER)
increased or decreased as the displacement [x, y] of the MZIs increased.
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The spatial frequencies of the MZIs mentioned above are plotted in Figure 8d. For the
MZI (#5), a strong cladding mode was present in p ≈ 15 nm and contributed significantly
to the emission pattern interference; therefore, the interference pattern was due to the
fundamental core and cladding mode at p ≈ 15 nm. For the MZIs (#6) and (#7), the
amplitude of the spatial frequency in p ≈ 15 nm was smaller by 75% proximally compared
to the #5 MZI, but the output pattern also had a sinusoidal form, as can be seen in Figure 8b.

We can see that the interference patterns for other core-offset MZIs are not completely
sinusoidal waveform, as they were formed using the fundamental core mode and a number
of high-order cladding modes. This was generated when the white light was launched
into the an SMF; higher-order modes (LP0m) were excited [11,12]. It could be observed in
all MZIs that the interference pattern was generated by the fundamental core mode and
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high-order cladding modes because the SMF fiber had a performance multimode. However,
in MZI (#5), it can be observed that high-order cladding modes and higher-order modes
were not predominant due to their weakness We found that the optimal displacement in
the [x, y] axis for the MZI was [−4.6, 0.0] µm and [+4.6, 0.0] µm for the first and second
junction splice, respectively.

Figure 9 shows the spectra emission outputs of the #1, #5, and #10 MZIs, with displace-
ments in the [x, y] axis of [−4.6, 0.0] µm and [+4.6, 0.0] µm at the first and second fusion
splice junction, respectively. We can see the output interference emission of the #1 MZI,
Figure 9a, with a visibility of V = 0.3, the FWHM = 13 nm and an FSR = 23 nm, for the #5
MZI, we obtained a V = 0.27, FWHM = 8 nm, and an FSR = 17 (see Figure 9b). For the #10
MZI, we obtained a V = 0.34 and the FWHM = 3 nm with an FSR = 8 nm; see Figure 9c.
Figure 9d shows the spatial frequency of MZIs with lengths of L = 2.5 cm, L = 4 cm, and
L = 5 cm. The peak dominant intensity at zero is the core mode, and the dominant core
cladding modes are localized in p ≈ 21 nm, p ≈ 15 nm, and p ≈ 12 nm, respectively. It
can also be seen that there were weak peaks that corresponded to higher-order cladding
modes, but their contribution to the interference pattern emission was null. Therefore, the
interference emission was generated by core and cladding modes with different spatial
frequencies because the length L was not the same at each interferometer.
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Figure 9. The pattern interference emissions: (a) #1 MZI with L = 2.5 cm; (b) #5 MZI with L = 4 cm;
(c) #10 MZI with L = 5 cm; (d) the spatial frequency of the #1, #5, and # 10 MZIs.

4. Discussion

Table 3 shows a comparison of the reported fiber interferometer structure in infrared
and visible regions, as well as the range of core-offset displacement from 5 µm to 40 µm with
SMF-MZI MZI [3,4]. The taper MZI structure [7,18] is shown in the infrared region and



Sensors 2024, 24, 3026 9 of 13

the microcavity MZI structure in the visible region. In [4], it is reported how a large lateral
core-offset displacement affected the relative direction of the joints of two segments of
SMF in the interference performance of an interferometer, and we obtained a visibility
of V = 0.2 with displacements of 6 µm and 40 µm. The best interference pattern for the
core-offset MZIs was obtained at 4.6 µm, and in other displacements, the visibility of the
fringes decreased considerably, up to 50%, V = 0.12 for #4 MZI, V = 0.1 for #6 MZI, and
V = 0.08 for #7 MZI. Alternatively, it reached almost zero; see Figure 8a,b. Therefore, it is
important to measure the displacement in the joints of two segments of fiber to fabricate
an interferometer based on SMF-28 in the visible region, and a minimal increase in the
displacement can cause the interference emission to be lost. An optical fiber sensor with
symmetric and asymmetric taper MZI structures and visibility up of V = 0.2 was reported.
In [20], a visibility of V = 0.5 was reported in an optical fiber SM-800 and SM-600, and in [22],
a V = 0.08 with MNF was described. The proposed taper MZI with an asymmetric relation
waist length of 10–20 µm had a sinusoidal profile of interference emission with a V = 0.14
and an FSR = 23 nm. These parameters are within the visibility range of 0.1 ≤ V ≤ 1, [1,23].
In this study, an SMF-28 with an LED source was used, and the visibility values obtained
were V = 0.14 for the taper MZI and V = 0.3 for the core-offset MZI.

Table 3. Comparison of the reported fiber interferometer structures in infrared and visible regions.

Interferometer
Structure and Operation Region

Core-Offset
[µm]

Interferometer
Length

(cm)

FSR
(nm) Visibility Ref.

Infrared region
Core-offset MZI (SMF) 5 4 12 0.1 [2]
Core-Offset MZI (SMF) 6 to 40 3 15 0.2 [3]

Core-offset (SMF-Al coated) 30 2 16 0.7 [4]
Taper MZI (SMF) - 2 19 0.2 [6]
Taper MZI (EDF) - 4.5 12 0.25 [13]

Visible region
Microcavity MZI (SMF-800) - - 50 0.5 [15]

Microcavity (MNF-SMF) - - 8 0.09 [17]
Core-offset (SMF) 4.6 2.5 23 0.3 This work

Sensing Application

A setup based on the MZI have been proposed for temperature measurement using
fiber SMF [5,19]. It had a sensibility of 0.04 dBm/◦C and was coated with aluminum with
a sensibility of 120 pm/◦C [5], and used doped fiber peanut structure with a sensibility
of 0.158 nm/◦C [19]. The core-offset MZI with a length of 2.5 cm was implemented for
the experimental setup shown in Figure 3. The sensor was fixed on a hot plate (Thermo
Scientific Cimarec, Waltham, MA, USA, Mod. SP131015) and the temperature response was
measured using a Bosch GIS 500 temperature detector (with a temperature range of −30 ◦C
to +500 ◦C and a resolution of ±1.8 ◦C). Figure 10a shows the temperature response that was
detected in the range of 50 ◦C to 300 ◦C. A variation in the intensity amplitude interference
was observed when the temperature increased; this was because, as the temperature
increased, the effective refractive index of both the cladding and core modes increased [5].
The peaks and dips A, C, and E and B and D, respectively, were chosen to analyze the
sensor’s sensitivity. The intensity amplitude variation versus temperature increase is shown
in Figure 10b, and presented a good response to the change in temperature. Sensitivities
of 1.13 a.u./◦C, 1.58 a.u./◦C, 1.77 a.u./◦C, 3.53 a.u./◦C, and 2.53 a.u./◦C, with R2 values
of 0.83077, 0.9538, 0.99393, 0.99769, and 0.97666, respectively, were achieved. The linear
response to C, D was is better, and the best sensitivity and R2 were achieved for the dip D.
To compare the sensibility obtained by our sensor with other reported manuscripts, the exit
intensity was normalized, obtaining the best sensibility in the dip D of 1.0% every ◦C; see
Figure 10c.
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Figure 10. (a) Spectrum emission of temperature sensor. (b) Experimental and fitting results of the
sensitivity. (c) Normalized intensity experimental and fitting results of sensitivity.

In Figure 10a, we can see that in the interference patterns (B, C, and D) and (A and
E) were shifted to longer and shorter wavelength directions, respectively, when the tem-
perature increased. This is because of the interference or resonant wavelength, expressed
as [11–14]:

λm =
2L0∆ne f f

2m + 1
=

2
(

∆nm
e f f + β∆T

)
(L0 + α∆T)

2m + 1
(5)

where m is an integer. The resonance wavelength shift versus temperature variation
depended on the effective refractive indexes of the core and cladding modes. It depended
on 2L0β/(2m + 1), where β is the thermo-optic coefficient difference core and cladding,
and α is the thermal expansion coefficient. Thus, these corresponding changes can cause
the interference dips to shift in the long or short wavelength direction in the transmission
spectrum [14].

Figure 11 shows the sensibility of the sensor for the dip D; the sensitivity obtained was
20.3 pm/◦C, with a R2 of 0.966604, in a temperature range of 50 ◦C to 150 ◦C. The other
peaks and dips were analyzed, but the sensibility obtained was not good.
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Table 4 shows a comparison of the temperature sensors reported in the infrared and
the visible region. It can be observed that, in the sensor, a good sensibility of 20.3 pm/◦C
was obtained compared with [24–27] in the infrared region. In the comparative analysis
of the visible region, a sensibility of 1% was obtained every ◦C, while in [28], sensibilities
of 3.5%, 3%, and 1% is reported every ◦C in transmission. Reversible thermochromic
micro-powders were used to add thermal sensing functionality into photocurable resin
comprising polyhydroxyethyl methacrylate (p-HEMA)and polyethylene glycol diacrylate
(PEGDA)-based polymer fibers.

The importance of the parameters of visibility range and FSR in interference emission
is to determinate the sensibility of the interferometers for sensing applications. The sensor
fabricated for the temperature obtained a good sensibility compared with those of the other
configurations; therefore, it was expected to increase with a coating of a layer of metal on
the sensor, e.g., gold [29], platinum [30], aluminum [5], or another a thin metal, to increase
the sensitivity. This type of sensor with SMF and a white light source could have multiple
measurement applications.

Table 4. Comparison between the sensibilities of the reported sensors.

Configuration Range of Temperature Sensitivity Sensitivity Every 1 ◦C Ref.

Infrared region
Air cavities with capillary fiber

between 2 SMFs 50 to 400 ◦C 0.8 pm/◦C - [24]

SMF + hollow-core photonic crystal
fiber (PCF) 17 to 900 ◦C 0.94 pm/◦C - [25]

SMF + Hollow core tube + SMF 50 to 450 ◦C 0.902 pm/◦C - [26]
SMF + NCF 100 to 700 ◦C 6.8 pm/◦C - [27]

SMF + NCF (with a gold film) + SMF 20 to 80 ◦C 37.9 pm/◦C - [31]

Visible region
OF + polymer 25 to 35 ◦C - 3.5%, 3% and 1% [28]

Core-offset (SMF) 50 to 300 ◦C - 1% This work
Core-offset (SMF) 50 to 150 ◦C 20.3 pm/◦C - This work

5. Conclusions

The visible light interference in the taper and core-offset MZIs structure was experi-
mentally demonstrated using a standard SMF-28 for its fabrication. The visibility fringes
of V = 0.14 were obtained with an FSR = 23 nm for the taper MZI structure. V = 0.3,
V = 0.27, and V = 0.34 were obtained with FSR = 23 nm, 17 nm, and 8 nm using an MZI
with lengths of L = 2 cm, L = 4 cm, and L = 5 cm, respectively. The core-offset MZI of
2.5 cm was characterized by a temperature sensor in a range from 50 ◦C to 300 ◦C. The best



Sensors 2024, 24, 3026 12 of 13

sensitivity obtained was 3.53 a.u./◦C and 1% every ◦C in transmission, with R = 0.99769.
The sensibility obtained was 20.3 pm/◦C, with a R of 0.96604, in the temperature range
from 50 ◦C to 150 ◦C. The MZIs based on this configuration could be used in the detection of
other physical variables, such as the refractive index, strain, pressure, chemical properties,
and biosensors.
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