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Abstract: Diabetic foot ulcers (DFUs) significantly affect the lives of patients and increase the risk of
hospital stays and amputation. We suggest a remote monitoring platform for better DFU care. This
system uses digital health metrics (scaled from 0 to 10, where higher scores indicate a greater risk of
slow healing) to provide a comprehensive overview through a visual interface. The platform features
smart offloading devices that capture behavioral metrics such as offloading adherence, daily steps,
and cadence. Coupled with remotely measurable frailty and phenotypic metrics, it offers an in-depth
patient profile. Additional demographic data, characteristics of the wound, and clinical parameters,
such as cognitive function, were integrated, contributing to a comprehensive risk factor profile. We
evaluated the feasibility of this platform with 124 DFU patients over 12 weeks; 39% experienced
unfavorable outcomes such as dropout, adverse events, or non-healing. Digital biomarkers were
benchmarked (0–10); categorized as low, medium, and high risk for unfavorable outcomes; and
visually represented using color-coded radar plots. The initial results of the case reports illustrate the
value of this holistic visualization to pinpoint the underlying risk factors for unfavorable outcomes,
including a high number of steps, poor adherence, and cognitive impairment. Although future studies
are needed to validate the effectiveness of this visualization in personalizing care and improving
wound outcomes, early results in identifying risk factors for unfavorable outcomes are promising.

Keywords: smart offloading; diabetes; diabetic foot ulcer; telemedicine; digital health; remote patient
monitoring; personalized care

1. Introduction

Diabetic foot ulcers (DFUs) pose a significant challenge in the management of diabetes
and represent a serious complication that requires careful attention. Every 1.2 s, someone
develops a DFU and every 20 s, someone with DFU undergoes an amputation [1]. One of
the key approaches to treatment for DFUs involves the use of offloading devices, which
aim to distribute force and reduce pressure on the wound, thereby facilitating the healing
process [2]. While adhering to the appropriate use of these devices is recognized as a crucial
strategy to promote the healing of DFUs, some individuals who adhere to offloading device
protocols still struggle to achieve healing. This suggests the existence of other contributing
factors that need to be considered, including the characteristics of the wound and diabetes,
motor function, and patient-reported outcomes [3–5]. Although current advancements in
DFU management have begun implementing smart technology and wearables, studies
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have mostly focused on one parameter such as pressure or temperature and informing the
patients about the changes in these parameters [6–13].

To distinguish between patients who experience successful healing and those who do
not, it is crucial to evaluate and analyze various factors beyond adherence to the device.
Understanding the underlying mechanisms associated with healing outcomes can enable
healthcare professionals to provide personalized care, leading to more efficient and effective
wound treatment. Thus, the objective of this study was to develop a comprehensive visual-
ization tool capable of measuring digital biomarkers closely associated with unsuccessful
healing and subsequent visualization for care providers.

Adopting a holistic and personalized technological strategy involves rethinking
chronic care to emphasize comprehensive knowledge-building for patients and their care
providers. This strategy leverages current advancements in real-time wearable technolo-
gies, aligns with electronic health records, and integrates patient-reported outcomes to
facilitate real-time, multidimensional data analyses. Current risk-prediction models for
the management of DFUs often fall short because they rely on isolated datasets, which fail
to capture the full complexity of the condition. Prior studies suggested that visualizing
multidimensional data in the management of chronic conditions enhances the understand-
ing of major risk factors, improves patient engagement, and enhances the treatment’s
efficacy [14–17]. With the conversion of complex health data into understandable visuals,
both patients and healthcare providers may better discern the patterns and correlations,
leading to personalized education for patients and potentially improved patient engage-
ment and tailored treatments [18]. Visual tools support predictive insights for pre-emptive
care adjustments and facilitate collaborative care through easy sharing among healthcare
teams [19]. Remote patient monitoring (RPM) solutions, initiated by the prolific uptake of
smartphones, mobile tablets, and cloud backend services, in tandem with expanding wire-
less networks and interoperable medical devices, create new opportunities for developing
a remote patient monitoring portal as an access point to health information [20–22]. This
could enable healthcare providers to evaluate various potential risk factors that may impact
the outcomes of wound healing, personalize interventions, and enhance patient education,
which, in turn, may improve the outcomes of wound healing. The clinical benefit of RPM
is consistently observed across diverse populations, even after adjusting for common social
determinants of health such as socioeconomic status, access to healthcare, education levels,
and geographic location [23]. This suggests that RPM not only compensates for these
disparities but also provides a significant opportunity to improve health equity.

However, despite advancements, there remains a significant gap in the design of
holistic approaches that integrate all the major risk factors associated with poor wound
healing in patients with DFU. Most existing systems fail to adequately simplify and inte-
grate complex data into a format that is readily accessible and actionable for both patients
and healthcare providers. This limitation hampers their ability to make informed decisions
quickly and effectively. To address this issue, our study proposes the development of a
comprehensive graphical interface that aggregates most of the measurable and relevant
risk factors into a single, coherent visual representation. This interface aims to display
information in an easily understandable manner, facilitating quick assessments and in-
terventions based on a patient’s current health status (e.g., glycemic control, frailty, and
cognitive function), behavioral metrics (e.g., adherence to offloading), functional metrics
(e.g., daily step counts, balance), and historical data. Additionally, by enabling healthcare
providers to view these integrated risk factors at a glance, we expect that the tool will foster
more personalized and timely adjustments to care plans, thereby potentially enhancing
the outcomes for patients with DFU. Our approach also includes feedback mechanisms
that allow for continuous improvement of the tool based on the users’ interactions and
its effectiveness in clinical scenarios. Through this study, we aimed to bridge the existing
gap and provide a robust solution that leverages technology for the better management of
chronic conditions.
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By designing such a holistic visualization tool, our research team hypothesized that
clinicians would gain valuable insights into how multiple factors contribute to the healing
of DFUs. This tool has the potential to empower healthcare professionals to become more
aware of the interacting factors that affect clinical outcomes, as they will be able to identify
and monitor specific digital biomarkers associated with improved outcomes of healing.
Ultimately, the implementation of this tool could lead to more efficient wound treatment
and enhanced patient outcomes in the management of DFU. To our knowledge, this is
the first study which combines digital biomarkers and offers a holistic view of the digital
biomarkers associated with the outcomes of healing.

2. Materials and Methods
2.1. Obtaining Digital Biomarkers Associated with Wound Healing

This manuscript presents preliminary findings from an ongoing parallel randomized
controlled trial (ClinicalTrials.gov identifier: NCT04460573) conducted at the Keck School
of Medicine, University of Southern California. The overarching goal of the parent study
was to investigate how interactive offloading devices, called smart offloading, can improve
adherence, and enhance the outcomes of wound healing in individuals with diabetes. The
validity and acceptability of the smart boot for the real-time estimation of adherence to
offloading and step count have been presented in prior studies [24,25]. However, this study
focused on designing and evaluating a holistic remote patient monitoring system. This
system aims to simplify the visualization of the key risk factors associated with unfavorable
outcomes of wound healing, aiding clinicians in personalizing wound care. It includes
tailored patient education that may optimize the outcomes of healing while guiding patients
in maintaining healthy mobility and mitigating secondary consequences, such as frailty,
poor balance, and gait. Participants meeting specific inclusion criteria, such as having
diabetes and a diabetic foot wound, were enrolled in the study, whereas those with high
A1c levels (>12), a lack of mobility, multiple wounds, or poor adherence to offloading
devices were excluded. The study protocol was approved by the institutional review board
of the University of Southern California. Figure 1 illustrates the overall study design.

Over a period of 12 weeks, participants attended weekly in-person visits, during
which, photographs of their ulcer were taken with a wound monitoring device (eKare,
eKare Inc., Fairfax, VA, USA) to measure the wound’s dimensions, and their feedback
regarding the offloading device and its usage was recorded. Baseline data for each visit
on the wound’s complexity and A1c levels were collected from the participants’ medical
charts. Additionally, participants underwent a 20 s repetitive elbow flexion–extension test
while sitting to assess the upper extremities’ frailty [26–30]. However, instead of using a
wrist sensor to assess frailty, we used an alternative solution to extract the kinematics of
the elbow’s motion and then estimated the frailty index and frailty phenotypes such as
exhaustion, weakness, and slowness using video analysis [31,32]. In addition, to determine
their cognitive level, a 12-point Montreal Cognitive Assessment (MoCA) questionnaire was
administered by the study coordinator, and a score of 10 points was used as the threshold
to determine whether a participant had cognitive impairment [33].

At four-week intervals, wearable inertial measurement unit (IMU) sensors developed
by BioSensics (LegSys + BalanSense, BioSensics, Newton, MA, USA) were used to measure
the participants’ mobility performance, including assessments of gait and balance [34–43].
The assessment of gait consisted of four walking tests: (1) walking at normal speed (walking
15 feet unassisted at their normal walking speed), (2) walking at fast speed (walking 15 feet
unassisted at a safe rapid walking speed), (3) walking at normal speed while counting
backwards, and (4) walking 15 feet unassisted at their normal walking speed while counting
backwards out loud from the number given by the study coordinator; as well as a timed up
and go (TUG) test, starting in a seated position, getting up, walking to the stop sign, turning
around, walking back to the chair, and sitting down. The balance assessment consisted of
four balance tests: a single stance with eyes open, a single stance with eyes closed, double
stances with eyes open, and double stances with eyes closed. For the single-stance–eyes
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open assessment, the patients stood on one leg unassisted and placed their arms on their
hips. For the single-stance–eyes closed assessment, they performed the same position with
their eyes closed. During the double-stance–eyes open assessment, the participants stood
facing the wall with their feet as close together as possible without touching and with
their arms folded across their chests. For the double-stance–eyes closed assessment, the
participants stood in the same position, but their eyes were closed. The assessments each
took 30 s.
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To monitor adherence to usage of the offloading device and collect step count data, a
smart offloading boot system was used. This system consisted of a removable offloading
boot (Foot Defender, Defender Ops., South Miami, FL, USA), a Sensoria Core microelec-
tronics device, and an Android 4G/LTE smartwatch custom app developed by Sensoria
Health Inc. (Sensoria Core, Sensoria Health Inc., Redmond, WA, USA) [24,25]. The Sensoria
Core utilized an IMU with 6 degrees of freedom to capture the boot’s movements and a
Bluetooth low-energy (BLE) module to communicate with the smartwatch. The Sensoria
Core transmits the collected data to the smartwatch, which processes and displays real-time
information, including the boot’s condition (worn or not worn), activity status (active
or resting), step count, and notifications. These data are also sent to the Sensoria cloud
system. This enables clinical providers to evaluate the patients’ adherence to offloading
and visualize step counts with and without offloading, as shown in Figure 2. Adherence
to the offloading boot was calculated using embedded algorithms on the cloud and pre-
sented as graphics to the clinical team. Additionally, the website allowed the recording of
notifications and alerted the clinician team if the participants removed their boots.
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2.2. Holistic Visualization to Empower Physicians and Patients

To effectively visualize the healing trajectory of the patients, we selected various
parameters believed to affect the outcomes of wound healing. These parameters included
demographics and digital metrics including the wound’s characteristics, frailty phenotypes,
gait (cadence), balance, and Smart-Boot-derived digital metrics such as steps and adherence.
For frailty phenotypes, we used metrics extracted from the video-based 20 s repetitive
elbow flexion–extension test and selected phenotypes that were previously shown to be
associated with wound healing, including exhaustion and slowness [44,45]. The details of
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these parameters, their definitions, and measurement methods are shown in Figure 3 and
Table 1.
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Table 1. Definitions of measurements.

Digital Biomarker Definition Measurement Tool

Adherence to offloading device

Adherence (n.u.) The consistency of the use of the offloading device and the
number of steps taken with the boot and without the boot Smart Boot, Sensoria Core [24]

Characteristics of the wound

Baseline
size of the wound (cm2)

Area of wound calculated by the wound monitoring
device (eKare) at the baseline visit Wound photos from eKare

Wound’s complexity (n.u.) The complexity of the wound scored using Wagner Medical chart [46]
Baseline age of the wound
(days)

The time difference between the wound‘s onset date and
the baseline date Medical chart

HbA1c level (%) Average blood sugar level over the past 3 months Medical chart

Motor Performance

Gait (steps/min)
(cadence)

Number of steps taken per minute during TUG
assessment; represents the motor function of the patient Wearables, LegSys [34]

Balance (center of mass sway)
Patient’s ability to distribute their weight during the
double- stance–eyes open assessment; represents the
motor function of the patient

Wearables, BalanSense [35]

Exhaustion (frailty) Decrease in the elbow’s extension–flexion speed,
variability in the elbow‘s extension–flexion speed

Video-based 20 s arm flexion and
extension exercise [28]

Slowness (frailty) Average extension–flexion speed of the elbow, number of
elbow flexions in 20 s

Video-based 20 s arm flexion and
extension exercise [28]

Mobility (n)
(steps)

Number of the steps taken during the daytime; represents
the motor function of the patient Smart Boot, Sensoria Core

Demographics andpatient-reportedoutcomes

Cognition (score) The mental action or process of acquiring knowledge and
understanding, scored with MoCA assessment 12-point MoCA questionnaire [33]

Age (years) Participant’s age Medical chart

Body Mass Index (BMI) (kg/m2)
Patient’s weight in kilograms divided by the square of
height in meters Medical chart

Outcome of the wound

Healing (%) Percentage of the reduction in the wound’s area each week Wound photos from eKare [47]

To simplify interpretation and visualization of the key digital metrics associated with
poor wound healing on a single graph, we normalized various parameters believed to
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affect the outcomes of wound healing on a scale from 0 to 10, where higher values indicated
increased risk. For normalization of these parameters, we categorized each metric as
low risk (0), medium risk (5), and high risk (10) using standard benchmarks reported in
literature; if the standard benchmarks were not reported in the literature, we used the
cohort and percentile approach to determine the low-, medium-, and high-risk groups.

For continuous variables, if the scale was linear and in a limited range (e.g., the MoCA
score), then we mapped them to 0 to 10; if needed, we reversed it to indicate that higher
values signified higher risk. If the continuous values were not confined within a range
and/or the increase in risk did not necessarily have a linear association with these metrics
(e.g., age, BMI, cadence, balance, and the wound’s characteristics), then we categorized the
variables a low risk (value of 0), medium risk (value of 5), and high risk (value of 10) on the
basis of thresholds represented in the literature. For example, glycemic control, quantified
by hemoglobin A1c (HbA1c) levels, are known to correlate with the outcomes of healing,
and higher values are associated with poor wound healing [48]. Research [49] has shown
that HbA1c levels above 8% indicate poor glycemic control, warranting the highest risk
score of 10. Conversely, levels of 7–8% are regarded as fair glycemic control, with a medium
risk score of 5; below 7% was given a low-risk score of 0. Through use of these thresholds,
the A1c levels were normalized on a scale from 0 to 10.

In cases where only one threshold was reported in the literature to determine the
risk, such as daily number of steps (above 3000 steps was defined to be high-risk [50,51]),
we used an arbitrary selection based on the recommendations of clinical experts in our
investigative team and a critical appraisal of the prior literature to define the risk level. For
example, in the case of the daily number of steps, we assumed that fewer than 1000 steps
per day would have a low risk, while more than 3000 steps would actually be considered
a high risk. This decision was based on the findings reported in Jarl et al.’s systematic
review [50], which noted that in users of both non-removable and removable walkers, the
weekly reduction in the ulcer significantly and negatively correlated with the number of
steps; each additional 1000 daily steps reduced the weekly healing rate (reduction in the
ulcer’s area) by between 5% and 5.4%, depending on the type of offloading used. Similar
results were reported in the study of Saltzman et al. [52].

For the outcomes of wound healing, on the basis of a critical appraisal of the prior
literature and input from wound care specialists who referred patients to this study or
were involved in their care, we defined three risk categories for wound healing as follows:
(1) high risk (score of 10) or unfavorable healing, defined as a reduction in the wound’s
area of less than 40% at 12 weeks compared with the baseline, along with adverse events
(e.g., amputation, wound infection, hospitalization, death), or dropout, as recommended by
Patry et al. [47]; (2) fair to good healing (score of 5), defined as a reduction in the wound’s
area of 40% to less than 100% at 12 weeks compared with the baseline; and (3) closure of
the wound (score of 0), defined as the full closure of wounds before or at 12 weeks.

For adherence to the offloading device, we considered the consistency of using the
offloading device and the number of steps taken with the offloading device together. Cases
where the offloading device was used consistently (e.g., every day while active) and with
less than 1000 steps taken with and without the offloading device were labelled as low-risk
(score of 0), while the cases where the offloading device was used inconsistently and where
the average number of steps taken with and without offloading device was more than 1000
but less than 3000 were labelled as medium-risk (score of 5), and cases where the offloading
device was used inconsistently and more than 3000 steps were taken with and without the
offloading device were labelled as high-risk (score of 10).

For metrics with no clear threshold recommended in the literature, we used the
cohort and percentile approach to determine the low-, medium-, and high-risk groups.
For example, for estimating exhaustion and slowness, we estimated, respectively, the
percentage of the decrease in the elbow’s extension–flexion rotation speed, variability in
the elbow’s extension–flexion speed, the average extension–flexion speed of the elbow,
and the number of elbow flexions over the 20 s repetitive elbow flexion–extension test,
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as recommended in the study of Toosizadeh et al. [28]. Then the median values of the
cohort for each parameter was then determined. Values lower than the medium value
were labelled as low-risk (0), and those higher than the medium value were labelled as
high-risk (10).

Table 2 details the specific thresholds used for categorizing these metrics as low-,
medium-, or high risk. Radar charts based on these grades were created to provide a
holistic visualization of the key digital biomarkers’ information by group, subgroup, and
individual patients to the care providers. The radar chart was shaded in green for a low
risk of unfavorable outcomes of the wound, where the grade was below the threshold.
Figure 4 shows the radar chart and the green-shaded area. All analyses were performed
using MATLAB R2022b (MathWorks, Natick, MA, USA) and SPSS 29.0 (IBM, Chicago, IL,
USA); 0.05 was set as the level of statistical significance.

Table 2. Thresholds of the digital biomarkers.

Digital
Biomarker Type of Value Threshold

Adherence tooffloadingdevice

Poor adherence Categorical value
Low risk (0): use of the boot is consistent; step number is low
Medium risk (5): use of the boot is inconsistent; step number is average
High risk (10): use of the boot is inconsistent; step number is high

Characteristics of the wound

Baseline size of
the wound

Continuous
value

Low risk (0): ≤5 cm2

High risk (10): ≥10 cm2

Wound’s
complexity

Categorical value
Low risk (0): 0–1 Wagner score [53]
Medium risk (5): 2–3 Wagner score
High risk (10): 4–5 Wagner score

Baseline age of
the wound

Continuous
value

Low risk (0): ≤60 days before the baseline date [54]
High risk (10): ≥240 days before the baseline date

A1c level
Continuous
value

Low risk (0): ≤7% [49]
High risk (10): ≥8%

Motorperformance

Slow walking Continuous
value

Low risk (0): ≥80 steps per minute [55,56]
High risk (10): ≤60 steps per minute

Poor balance
Continuous
value

Low risk (0): ≤0.5 center of mass sway
High risk (10): ≥1,5 center of mass sway

Exhaustion
(frailty)

Continuous
value

Low risk (0): ≤ 0.12 normalized exhaustion score based on the cohort (median value)
High risk (10): > 0.12 normalized exhaustion score based on the cohort (median value)

Slowness (frailty) Continuous
value

Low risk (0): ≤ 0.32 normalized slowness score based on the cohort (median value)
High risk (10): > 0.32 normalized slowness score based on the cohort (median value)

Steps Continuous
value

Low risk (0): ≤1000 daily steps [51]
High risk (10): ≥3000 daily steps

Demographics andpatient-reportedoutcomes

Cognitive
impairment

Continuous
value

Low risk (0): ≥10 point out of 12 points [57]
High risk (10): ≤6 points out of 12 points

Age Continuous
value

Low risk (0): ≤50 years [58]
High risk (10): ≥65 years

Body Mass Index
(BMI)

Continuous
value

Low risk (0): ≤25 [59]
High risk (10): ≥35

Outcome of theWound

Unfavorable
outcome of the
wound

Categorical value
Unfavorable healing (10): ≤40% wound closure [47]
Fair to good healing (5): 40–100% wound closure
Favorable healing (0): 100% wound closure
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Figure 4. The holistic visualization system consists of a radar plot that displays digital metrics
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medical assessment.

3. Results

Of the 124 participants who met the inclusion criteria, 119 initially completed the
study. However, 50 participants discontinued the study because of early dropouts for
various reasons. These included an inability to attend the weekly clinic visits and the
poor acceptability of offloading (21, 18%). Other reasons for discontinuation were adverse
events, such as unplanned hospitalization, death, or limb amputation (4, 3%). In addition,
seven of the remaining participants discontinued the study due to loss of eligibility, such as
a lack of insurance or developing another disease. Consequently, data from the remaining
62 participants were deemed to be reliable and were utilized to develop and assess the
remote visualization framework. This framework was designed to identify and display the
digital biomarkers associated with poor wound healing. The participants’ demographics,
the conditions of the foot ulcers at baseline, and unfavorable outcomes are shown in Table 3.

Among the 119 participants, 42% achieved successful healing, defined as ≥80% closure
of the wound at 12 weeks. Meanwhile, 39% of the participants exhibited unfavorable
outcomes, including less than 40% closure of the wound at 12 weeks or study-related
discontinuation of the study.

Figure 5 presents a visualization comparing four DFU cases, all with well-controlled
glycemia (A1c less than 7.5%); two did not heal by 12 weeks while the other two healed
before the 12-week mark. This visualization aimed to offer deeper insights into the major
risk factors influencing successful wound healing or contributing to failure. Both cases
in Figure 5a,c healed before the 12-week threshold, sharing characteristics such as high
adherence to offloading and a relatively low number of weight-bearing activities, as indi-
cated by the small number of daily steps. In contrast, the case in Figure 5b did not heal by
the 12-week mark, likely due to poor adherence to offloading and a high number of daily
steps, presumably unprotected. This suggests that the combination of poor adherence and
a high number of daily steps are key factors in suboptimal outcomes of wound healing.
Interestingly, the case in Figure 5d demonstrated that good compliance with offloading
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and a low number of daily steps are not always sufficient for favorable outcomes of wound
healing. We hypothesize that in scenarios where adherence is high and daily steps are low,
other factors, such as cognitive function and frailty, could be significant risk factors for poor
healing. This particular case had mild cognitive impairment and exhibited signs of frailty,
such as slowness, exhaustion, and a low walking speed, potentially impacting the healing
process. This aligns with other studies suggesting frailty as a determinant of the outcomes
of wound healing [44,45]. We also hypothesize that in cases of poor adherence or a high
number of daily steps, care providers could investigate the detailed daily summaries of
adherence and daily steps, as illustrated in Figure 2. This would enable them to personalize
education, such as discussing specific days or times of day when adherence to offloading is
low or when patients have a significantly high number of steps. This may, in turn, assist
in behavioral changes and the definition of an action plan. However, the effectiveness of
these strategies in enhancing wound healing needs to be validated in future studies.

Table 3. Participants’ demographics and baseline conditions of the wounds.

Digital Biomarker n = 124

Demographics

Age (years, median, (25–75th percentile)) 57, (50, 65.5)
Sex (male, %) 81%
Ethnicity (Hispanic, %) 55%

Race (%)

American Indian or Alaskan Native 2%
Asian 4%
Black or African American 6%
Native Hawaiian or Pacific Islander 2%
White 76%
Other 1%
No answer 10%

BMI (kg/m2, median, (25–75th percentile)) 31, (27, 37)

Clinical characteristics

Area of the ulcer (cm2, median, (25–75th
percentile))

1.3, (0.5, 3.2)

Wagner score (n.u., median (25–75th
percentile)) 1, (1, 2)

Wound age (days, median (25–75th
percentile)) 43, (4.8, 137.8)

Ulcer’s location (forefoot, %) 52%
Ulcer’s location (midfoot, %) 27%
Ulcer’s location (hindfoot, %) 14%

Outcomes n = 119

Favorable outcomes *, n (%) 50 (42%)
Poor outcomes, n (%) 54 (45%)

Fair healing outcomes **, n, (%) 7 (6%)
Not healed at 12 weeks ***, n (%) 5 (4%)
Study related dropouts †, n (%) 42 (35%)

Non-study-related dropouts º 15 (13%)
* Favorable outcomes were defined as participants achieving a reduction in the wound’s area of 80% or more at
12 weeks compared with the baseline or achieving outcomes that made them suitable for surgical wound closure.
** Fair healing outcomes were defined as a reduction in the wound’s area between 40% and 80% at 12 weeks
compared with the baseline. *** No healing outcome was defined as a reduction in the wound’s area of less than
40% at 12 weeks compared with the baseline. † Study-related dropout was defined as a major adverse event such
as limb amputation, removal of consent after trying the offloading device, missing follow-ups, or discontinuation
of the intervention. º Non-study-related dropout was defined as a loss of eligibility or screening failure, unrelated
adverse events such as hospitalization due to COVID or heart issues, or loss of data due to technical issues.
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4. Discussion

This study aimed to design a holistic visualization tool to determine and visualize
possible multiple digital biomarkers associated with poor diabetic wound healing. Our
major findings suggest that using a holistic visualization system could help identify digital
biomarkers associated with the unsuccessful healing of diabetic foot ulcers (DFUs) within a
12-week timeframe. By analyzing the radar plot for each patient, we were able to discern
the combination of various parameters contributing to the healing outcomes. This approach
allows for a comprehensive evaluation of multiple digital biomarkers, thereby enhancing
our understanding of the factors that influence healing.

The utilization of a visualization system in this context has significant practical im-
plications. Traditional methods for treating DFUs often rely on subjective assessments
and limited data points, which can lead to suboptimal outcomes. However, our approach
enables a more nuanced and personalized understanding of the healing process, thereby fa-
cilitating the development of more effective remote treatment plans. By considering a range
of digital biomarkers, beyond adherence to offloading devices, we gained insights into the
complex interplay of factors influencing the healing of DFUs. The implementation of our
visualization system has the potential to revolutionize the management of DFUs. By provid-
ing clinicians with a clear and intuitive representation of digital biomarkers associated with
healed and non-healed groups, the system enables informed decision-making. Clinicians
can use this information to adjust treatment strategies, provide targeted interventions, and
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closely monitor patients’ progress. However, considering only the group effects can mask
the individual parameters, which can be important for creating personalized treatment
plans. For instance, within our sample group, the baseline wound size exhibited the most
substantial effect size when distinguishing between the healed and non-healed groups.
It is crucial to highlight that this parameter falls within the range that is indicative of a
positive association with the healing process in our specific case studies. Conversely, other
parameters such as age, cognition, and steps contributed to unsuccessful healing. Therefore,
a thorough assessment of each case is imperative. This comprehensive evaluation would
enable clinicians to identify and address the specific barriers to healing that may be present
in individual patients. Consequently, personalized treatment plans can be tailored to meet
specific needs, thereby enhancing the likelihood of successful outcomes.

Moreover, the use of remote treatment plans supported by visualization systems
offers several advantages. This reduces the need for frequent in-person visits by providing
convenient and efficient care planning. Patients can receive ongoing support and guidance,
ensure adherence to treatment protocols, and facilitate early intervention in cases of poor
adherence or other complications. This remote approach has the potential to significantly
improve the patients’ outcomes, particularly in individuals who may face challenges in
accessing healthcare facilities or adhering to traditional treatment regimens for personal or
work-related reasons.

While this study was a sub-analysis of randomized controlled trial (RCT) studies
examining the effectiveness of various offloading methods in enhancing the outcomes
of wounds, the current presentation was observational in nature. The designed holistic
visualization and its potential effectiveness in empowering care providers to personalize
wound care and ultimately enhance the outcomes of wounds for patients with diabetic foot
ulcers need to be validated in new RCTs and compared with the standard of care without
the proposed visualization solution.

Although these preliminary findings are promising, our sample was both small and
homogenous. This homogeneity might account for the lack of significant differences in the
demographics and comorbidities between the healed and non-healed groups. Furthermore,
most of the participants were male. Given these factors, there is a pressing need to validate
our findings using a larger and more diverse sample that truly represents the demographic
spread of individuals with DFUs. Additionally, in our study, to simplify the interpretation
and visualization of all risk factors in a single holistic visualization graph, we normalized
all parameters to a scale of 0 to 10 based on benchmarks of risk reported in the literature.
However, for some of these benchmarks, the level of evidence to determine the level of risk
may be limited, and, in some cases, we relied on the clinical expertise and our investigative
team to determine healthy and risky benchmarks, such as the daily number of steps, for
which we assumed that a number of steps less than 1000 had a low risk and a number
of steps greater than 3000 was considered to be high-risk for wound healing. For some
risk factors, such as exhaustion and weakness, since we could not identify a threshold
based on values reported in the literature, we used the median value of the cohort to
determine the threshold, which may be considered subjective and arbitrary. Therefore,
future studies are warranted to validate our proposed benchmarks or to fine-tune them
to better associate with poor wound healing in patients with DFUs. Furthermore, our
proposed visualization solution may not include other potential risk factors that affect
wound healing, such as adherence to the recommended diet and other measurable factors
contributing to wound healing. These include vascular health, infection, the severity of
neuropathy, nutritional deficiencies, the immune system’s function, lifestyle factors, and
psychological stress. There was a risk of selection bias in this study, because for developing
the visualization and normalization solution, we relied on available data including data
collected from sensor-based offloading to collect daily steps, cadence, and adherence. In
our study, several participants dropped out from the study, since they did not want to wear
an offloading device, which is considered as standard of care, and some missed routine
clinical visits, which affected the ability to track their wounds’ healing. Thus, the proposed
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visualization may have underestimated some of the potential risk factors, such as the effect
of poor adherence or the effect of daily steps, as it limited the cohort to those with some
level of compliance with wearing offloading devices. In addition, future studies could
explore the long-term impact of the visualization system on the outcomes of healing with
large clinical trials and investigate additional digital biomarkers that may further enhance
our understanding of DFUs’ healing with the help of machine learning and deep learning
algorithms. Additionally, assessing the cost-effectiveness and scalability of implementing
such a system in a clinical setting in collaboration with stakeholders would be valuable.

5. Conclusions

In conclusion, our study suggests a holistic visualization system for identifying mul-
tiple digital biomarkers associated with successful healing of DFUs. By leveraging this
approach, clinicians can gain valuable insights into the complex dynamics of healing,
leading to personalized and effective treatment plans. Ultimately, the integration of such a
system into routine clinical practice has the potential to significantly improve the manage-
ment and outcomes of patients with DFUs.
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