
Citation: Yamamoto, K.; Shindo, R.;

Ohno, S.; Konta, S.; Isobe, R.; Inaba, Y.;

Suzuki, M.; Hosoi, Y.; Chida, K. Basic

Performance Evaluation of a

Radiation Survey Meter That Uses a

Plastic-Scintillation Sensor. Sensors

2024, 24, 2973. https://doi.org/

10.3390/s24102973

Received: 20 March 2024

Revised: 30 April 2024

Accepted: 3 May 2024

Published: 7 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Basic Performance Evaluation of a Radiation Survey Meter That
Uses a Plastic-Scintillation Sensor
Keisuke Yamamoto 1,2, Ryota Shindo 1 , Saya Ohno 1, Satoe Konta 1, Rio Isobe 1,3, Yohei Inaba 1,3 ,
Masatoshi Suzuki 1,3, Yoshio Hosoi 2 and Koichi Chida 1,3,*

1 Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine,
2-1 Seiryo, Aoba-ku, Sendai 980-8575, Japan; keisuke.yamamoto.r3@dc.tohoku.ac.jp (K.Y.);
ryota.shindo.r5@dc.tohoku.ac.jp (R.S.); saya.ono.s8@dc.tohoku.ac.jp (S.O.);
satoe.konta.q8@dc.tohoku.ac.jp (S.K.); rio.isobe.r2@dc.tohoku.ac.jp (R.I.); inabay@tohoku.ac.jp (Y.I.);
masatoshi.suzuki.c7@tohoku.ac.jp (M.S.)

2 Department of Radiation Biology, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba-ku,
Sendai 980-8574, Japan; hosoi@med.tohoku.ac.jp

3 Department of Radiation Disaster Medicine, International Research Institute of Disaster Science,
Tohoku University, 468-1 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan

* Correspondence: chida@med.tohoku.ac.jp; Tel.: +81-22-717-7943

Abstract: After the Fukushima nuclear power plant accident in 2011, many types of survey meters
were used, including Geiger–Müller (GM) survey meters, which have long been used to measure
β-rays. Recently, however, a novel radiation survey meter that uses a plastic-scintillation sensor
has been developed. Although manufacturers’ catalog data are available for these survey meters,
there have been no user reports on performance. In addition, the performance of commercial plastic-
scintillation survey meters has not been evaluated. In this study, we experimentally compared the
performance of a plastic-scintillation survey meter with that of a GM survey meter. The results
show that the two instruments performed very similarly in most respects. The GM survey meter
exhibited count losses when the radiation count rate was high, whereas the plastic-scintillation survey
meter remained accurate under such circumstances, with almost no count loss at high radiation rates.
For measurements at background rates (i.e., low counting rates), the counting rates of the plastic-
scintillation and GM survey meters were similar. Therefore, an advantage of plastic-scintillation
survey meters is that they are less affected by count loss than GM survey meters. We conclude that
the plastic-scintillation survey meter is a useful β-ray measuring/monitoring instrument.

Keywords: Geiger–Müller (GM); radiation survey meter; plastic scintillator; radiation monitor-
ing/measurement; plastic-scintillation survey meter; β-ray; Fukushima nuclear accident; environ-
mental radiation; surface radiation contamination; electron beam

1. Introduction

Survey meters have long played important roles in radiation measurement. In assess-
ments of surface contamination, Geiger–Müller (GM) radiation survey meters have most
commonly been employed for β-ray measurements. The Fukushima nuclear accident of
2011 released radioactive materials such as Sr-90, I-131, Cs-134, and Cs-137 into the envi-
ronment [1,2]. Subsequently, measurements of the external and internal radiation doses
to Fukushima prefectural citizens, local soils, and the environment were made by several
researchers [3]. At that time, the need for survey meters that monitored environmental
radiation and surface radiation contamination increased. Therefore, many types of survey
meters were developed/used by various companies [4].

Radiation monitoring/measurement of β-rays (including electron beams) is important
in the fields of environmental radiation and radiation medicine [5,6].

GM survey meters have long been used to measure β-rays [7–11]. They are often used
to measure nuclides that emit γ-rays and β-rays (i.e., in mixed fields), such as Cs-137 and
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I-131. These meters use thin processed mica sheets (Figure 1) for the incident window
required for β-ray detection. Given the penetration ability of beta rays, the minimum
thicknesses available for mica sheets pose a lower threshold for beta detection. Survey
meters in which the radiation sensor is a plastic scintillator can represent a viable alternative.
Plastic-scintillation survey meters in which the radiation sensor is a plastic scintillator have
thus been developed.
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Conventional radiation-measuring instruments such as GM survey meters have been
described in many papers [12–16] and several performance reports have appeared [17–19].
In contrast, although catalog data on plastic-scintillation survey meters are available [20,21],
no user reports on performance for β-rays have appeared. In addition, although papers
on plastic scintillators per se have appeared [22–25], as well as reports of the use of plastic
scintillators in various experimental equipment [26], no paper has yet evaluated the perfor-
mance of a plastic scintillator incorporated into a commercial survey meter. Therefore, it was
important to evaluate the basic performance of this type of survey meter experimentally.

2. Instruments and Methods

Plastic-scintillation survey meters use a solid plastic scintillator as the radiation sensor.
The measurement principle is shown in Figure 2. Radiation entering the plastic scintillator
excites electrons in the scintillator, which emit light as they return to the ground state.
The light is then collected by a photomultiplier, where it is converted to photoelectrons
at the photocathode and these are multiplied to produce the output pulse. A plastic
scintillator is characterized by a low effective atomic number, which renders it suitable for
the measurement of charged particles, including β-rays. The luminescence and decay times
are shorter than those of inorganic scintillators. The plastic-scintillation sensor is sturdy. In
GM survey meters, radiation measurement is based on ionization of gas in the GM chamber
when radiation enters. GM detectors are not sturdy, because of the thin mica window used.
In this respect, the plastic-scintillation sensor can offer a more robust solution.
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2.1. Devices under Test

Two types of instruments were used to detect β-rays: a plastic-scintillation survey me-
ter (the LUCREST Rugged Survey Meter TCS-1319H (Figure 3) sold by Nippon Raytec [20])
and a GM survey meter (the TGS-1146 (Figure 4), also sold by Nippon Raytec [21]). Both
types of survey meter exhibit relative reference errors within ±25% in catalog data. We
used two (Nos. 1 and 2) of each type of instrument, thus four survey meters were used
in total.
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Note that all measurements in this study were made in scaler mode. Conventionally,
the count rate (count per minute [cpm]) mode is used to measure radiation when using
survey meters. However, this mode has the disadvantages that time constants must be set
and that measurement read-out errors (i.e., time-constant influence) are not uncommon.
All of the survey meters used in this study offer scaler mode, which eliminates the need for
time-constant settings and reduces reading errors. Therefore, we chose to use scaler mode.

2.2. Measurement Setup

Counts of the beta radiation of sealed Sr-90 and Cl-36 sources were measured in
scaler mode for 1 min (i.e., counts per minute) 10 times using the two types of instruments
described in Section 2.1; averages were then obtained as indices of the measured values.
We performed the experiment five times for each source. When comparing the values
obtained for the sources, the background radiation (BG) was subtracted. The radioactivity
values of the Sr-90 and Cl-36 sources were 73.5 kBq and 850 Bq, respectively. The distances
from the bottom of the source to the surface of the detector instrument were 1.45 cm,
4.45 cm, and 16 cm. A measuring table (PS-202E) from Nippon Raytec was used for the
experiments at 1.45 cm and 4.45 cm. For the experiments at 16 cm, a fixture was used
instead of the measuring table to ensure geometrically identical conditions. Figures 5–7
show the arrangements used for the measurements.
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2.3. Measurement Setup (Using an Absorber)

When Sr-90 decays, it emits β-rays up to an endpoint energy of 0.546 MeV. Y-90, a
daughter nuclide produced by such decay, further decays and emits β-rays up to an end-
point energy of 2.280 MeV (Table 1). Therefore, when measuring β-rays from a Sr-90 source,
two types of β-rays with very different endpoint energies are detected simultaneously.
Therefore, we also conducted experiments in which the radiation up to an endpoint energy
of 0.546 MeV was shielded. An aluminum absorber plate with an outer diameter of 50 mm
and an areal density of 217 mg/cm2 was used for shielding. The measurements were per-
formed with the plate on top of the source. The absorber selectively shielded β-rays with
energies below the 0.546 MeV Sr-90 endpoint energy. The other measurement conditions
were the same as those without shielding. We performed the experiment 10 times each for
1.45, 4.45, and 16 cm.

Table 1. The endpoint energy of radiation emitted from the nuclides used in the experiments.

Nuclide Cl-36 Sr-90 Y-90 (Daughter
Nuclide of Sr-90)

Endpoint energy of
radiation [MeV]

β − 0.709 (98.1%)
β + 0.120 (0.014%)

EC (Electron Capture)
(1.9%)

β − 0.546 (100%) β − 2.280 (100%)

2.4. Resolving-Time Measurements

In this study, the resolving times of the count-rate measurements of a plastic-scintillation
survey meter and a GM survey meter (one of each) were also measured.

The Sr-90 source shown in Figure 8 was used when employing the two-source method
for resolving-time measurements; it consists of two half-moon-shaped sealed sources that
can be placed together when combined measurements are required. One source bears
source information in orange characters and the other has such information in green
characters. Let n12 be the count of the two sources measured coincidently, n1 the count
of the orange source, n2 the count of the green source, and nb the background. Then, the
resolving time τ can be expressed by the following equation [27]:

τ = (n1 + n2 − n12 − nb)/(n12
2 − n1

2 − n2
2)
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Counts per minute were measured for four scenarios (both sources at the same time,
orange source only, green source only, and background) 10 times each and obtained the
average of each. After the measurements, the resolving time (s) was calculated. We
performed the experiment five times for the plastic-scintillation survey meters and three
times for the GM survey meters, respectively, and the averages were estimated. Two of the
four survey meters described in Section 2.1 were used, one of each type. The arrangement
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during measurements was the same as that for measurements at 4.45 cm described in
Section 2.2.

3. Results
3.1. Measurements of β-Ray-Emitting Nuclides

Figures 9–11 show the results for Cl-36 at each distance. Error bars in the graphs
indicate standard deviations. For the first plastic-scintillation survey meter (No. 1), the
averaged measured values (cpm) at distances of 1.45 cm, 4.45 cm, and 16 cm were 10,624.86,
3027.10, and 247.72 cpm, respectively. For the second plastic-scintillation survey meter
(No. 2), the values were 10,908.88, 3083.40, and 253.82 cpm, respectively. For the first
GM survey meter (No. 1), the measured values were 11,405.16, 3336.96, and 292.50 cpm,
respectively. For the second GM survey meter (No. 2), the values were 11,172.38, 3256.32,
and 272.58 cpm, respectively. Compared with the GM survey meters, the differences in the
sensitivities of the plastic-scintillation survey meters were −4.62%, −7.32%, and −11.30%
at 1.45 cm, 4.45 cm, and 16 cm, respectively (Table 2). According to the catalog data, both
types of instruments exhibit relative reference errors within ±25%. In other words, all
measurement disparities were within the relative ranges of reference error. At all distances,
the GM survey meters yielded slightly higher values. However, the degree of error was
not an issue. During measurements of Cl-36, the performances of each survey meter were
approximately equivalent.
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Figure 9. Measurement results for Cl-36 (1.45 cm).

Table 2. Difference in measured values using plastic-scintillation survey meters and GM survey
meters (using Cl-36).

Distance 1.45 cm 4.45 cm 16 cm

The difference in sensitivity of the plastic
scintillation survey meter relative to the GM

survey meters
−4.62% −7.32% −11.3%

Whether the difference is within the relative
reference error (≤±25%) Yes. Yes. Yes.
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TGS No. 1 measurement No. 5 differs from the others; it also has a larger error
(Figure 11). Although we are unsure of the reason for this difference, it might be due to
measurement error.

Figures 12–14 show the results for Sr-90 at each distance. All error bars in the graphs
indicate standard deviations (N = 10). For the first plastic-scintillation survey meter (No. 1),
the averaged measured values at distances of 1.45 cm, 4.45 cm, and 16 cm were 265,731.34,
115,793.44, and 9849.54 cpm, respectively. For the second plastic-scintillation survey meter
(No. 2), the values were 270,300.12, 120,131.38, and 10,275.68 cpm, respectively. For
the first GM survey meter (No. 1), the measured values were 154,847.78, 87,535.98, and
10,434.40 cpm, respectively. For the second GM survey meter (No. 2), the values were
136,554.34, 82,743.12, and 10,391.46 cpm, respectively. The disparities in the counting rates
of the plastic-scintillation survey meters compared to the GM survey meters were 83.95%,
38.55%, and −3.36% at 1.45 cm, 4.45 cm, and 16 cm, respectively (Table 3). The values
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measured by the two types of meter were closest when the distance was 16 cm. However,
at shorter distances, the plastic-scintillation survey meter values were much higher than
those of the GM survey meters, with a difference exceeding the relative reference errors.
The cause of this result will be investigated and clarified later in the text.
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Figure 13. Measurement results for Sr-90 at 4.45 cm distance.

Table 3. Difference in measured values using plastic-scintillation survey meters and GM survey
meters (using Sr-90).

Distance 1.45 cm 4.45 cm 16 cm

The difference in sensitivity of the plastic scintillation survey meter
relative to the GM survey meters 83.9% 38.6% −3.36%

Whether the difference is within the relative reference error
(≤±25%) No. No. Yes.
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3.2. Measurements of β-Ray-Emitting Nuclides Using an Absorber

Next, measurements at the distances detailed in Section 3.1 were repeated with the
absorber placed on top of the Sr-90 source; the results are shown in Figures 15–17. All error
bars in the graphs indicate standard deviations (N = 10). For the first plastic-scintillation
survey meter (No. 1), the averaged measured values for Sr-90 at distances of 1.45 cm, 4.45 cm,
and 16 cm were 64,107.60, 29,897.48, and 2480.95 cpm, respectively. For the second plastic-
scintillation survey meter (No. 2), the values were 65,190.40, 30,631.42, and 2581.94 cpm,
respectively. For the first GM survey meter (No. 1), the measured values were 53,730.13,
27,145.73, and 2753.90 cpm, respectively. For the second GM survey meter (No. 2), the values
were 52,113.02, 26,804.48, and 2705.19 cpm, respectively (Table 4). The disparities in the
counting rates of the plastic-scintillation survey meters compared to the GM survey meters
were 22.16%, 12.19%, and −7.26% at 1.45 cm, 4.45 cm, and 16 cm, respectively. As in Section 3.1
above, when the detection distance was short, the values measured by the plastic-scintillation
survey meters were larger than those measured by the GM survey meters. However, the
disparities were much lower than when the absorber was not used.
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Figure 15. Measurement results for Sr-90 at 1.45 cm distance (using an absorbing plate).
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Figure 16. Measurement results for Sr-90 at 4.45 cm distance (using an absorbing plate).
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Table 4. Difference in measured values using plastic-scintillation survey meters and GM survey
meters (using Sr-90, and absorbing plates).

Distance 1.45 cm 4.45 cm 16 cm

The difference in sensitivity of the plastic scintillation survey
meter relative to the GM survey meters 22.2% 12.2% −7.26%

Whether the difference is within the relative reference
error (≤±25%) Yes. Yes. Yes.

3.3. Resolving-Time Measurements

The resolving times of both types of survey meters are based on the measured values
of the No. 1 instruments. The average resolving time of the GM survey meter was 292 µs for
the three sets. That of the plastic-scintillation survey meter was less than 1 µs, on average,
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for the five sets; thus, very small compared to that of the GM survey meter. According to
the TGS-1146 catalog, the decomposition time is approximately 250 µs. Thus, this can be
considered a reasonable result, at least for the GM survey meter.

4. Discussion

In the field of radiation medicine, exposure of patients and staff to radiation is an issue
of great importance [28–37]. To date, many studies have evaluated radiation doses and
protection from exposure [38–43]. Our laboratory has also published many research papers
on patient radiation measurements, occupational exposure evaluation, and how to reduce
radiation doses [44–47]. Radiation exposure in nuclear medicine using radioactive materials
(radiopharmaceuticals) is another important problem [48,49]. Radiation monitoring using a
survey meter is often performed in rooms where nuclear medicine and X-ray medicine are
applied. Radiation survey meters are important, not only in monitoring nuclear facilities
but also in medical settings. Thus, we investigated the performance of a new radiation
survey meter with a plastic-scintillation sensor because there have been no user reports
regarding the performance of plastic-scintillation survey meters.

To the best of our knowledge, this is the first paper to offer a basic performance
evaluation of a plastic-scintillation survey meter.

When Cl-36 and Sr-90 sources were measured without an absorber, the values provided
by the GM survey meters were lower only for the Sr-90 source.

When Cl-36 was measured, the GM survey meters had slightly higher readings than
the plastic-scintillation survey meters (Figures 12–14), likely because of measurement error.
Another reason may be that as the distance between the source and detector increased,
the β-ray energy was affected by air-induced attenuation. For the GM survey meters,
the incident β-ray ionizes the organic gas in the GM tube; the resulting wave height is
independent of the incident energy of the β-ray. In contrast, the wave height of the plastic
scintillation survey meters depends on the energy of the β-ray that reaches the scintillator.
Therefore, the plastic-scintillation survey meter may have produced lower readings than
the GM survey meter. This suggests that the difference in sensitivity (cpm) between the
two models increased according to the distance between the source and detector.

According to the catalog data, the measurement ranges are 0–300 kcpm for the plastic-
scintillation survey meter (TCS-1319H) and 0–100 kcpm for the GM survey meter (TGS-
1146). This means that the upper limit of the measurement range was exceeded only when
the Sr-90 source was measured using the GM survey meter without the absorber.

Furthermore, if the radioactivity of the source is A, the number of counts per second is
N, the fraction of solid angle covered by the detector is λ1, and the counting efficiency of
the device is λ2, then Equation (1) holds:

N = λ1λ2A (1)

By transforming this equation, the counting efficiency of the device, λ2, can be ex-
pressed using Equation (2):

λ2 = N/λ1A (2)

As noted in Section 2.2, the radioactivity A is 850 Bq for the Cl-36 source and 73.5 kBq
for the Sr-90 source. The fraction of solid angle covered by the detector λ1 can be expressed
by Equations (3) and (4) when the distance between the source and the detector is h
(1.45 cm, 4.45 cm, or 16 cm) and the radius of the detector surface is r (2.5 cm for both the
plastic-scintillation survey meters and the GM survey meters) as shown in Figure 18.

cos θ = h/
√

(r2 + h2) (3)

λ1 = (1 − cos θ)/2 (4)
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Substituting Equation (4) into Equation (2) yields Equation (5):

λ2 = 2N/{A(1 − cos θ)} (5)

Insertion of the corresponding values for N, A, r, and h into Equations (3) and (5),
allows the graph for λ2 (Figure 19) to be drawn.
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Figure 19. The counting efficiencies of the devices per se.

The graph shows that the counting efficiencies of both the plastic-scintillation survey
meters and the GM survey meters are smaller during Sr-90 measurements compared
to Cl-36 measurements. Both instrument types may not be able to adequately measure
the high-energy β-rays from Y-90. The decreases in the counting efficiencies of the GM
survey meters were particularly noticeable as the distance between the meter and the
source decreased.
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The efficiency slightly exceeded 1.0 when Cl-36 was measured at 4.45 cm (Figure 19),
but since it is theoretically impossible for efficiency to exceed 1, this result may reflect
an error.

As mentioned in Section 3.3, the average resolving time of the GM survey meter was
292 µs, whereas that of the plastic-scintillation survey meter was less than 1 µs. If the
counts for the GM survey meters are adjusted for the counting losses (thus, by applying
count loss corrections, i.e., using Equation (6)), Figures 15–17 become transformed into
Figures 20–22. Note that Equation (6) is valid when the true counting rate (cpm) is R, the
actual counting rate (cpm) is r, and the resolving time is τ:

R/60 = r/60 + (r/60)2τ (6)
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Figure 20. Measurement results for Sr-90 at 1.45 cm distance (with adjustment of the GM survey
meter counts for the resolving time).
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Figure 21. Measurement results for Sr-90 at 4.45 cm distance (with adjustment of the GM survey
meter counts for the resolving time).
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Figure 22. Measurement results for Sr-90 at 16 cm distance (with adjustment of the GM survey meter
counts for the resolving time).

Equation (6) will essentially provide an approximation that is valid for low counting
rates; it may be ineffective when applied to highly radioactive sources.

All error bars in the graphs indicate standard deviations (N = 10). From these re-
sults (the graphs of Figures 20–22), it can be seen that the counting rates of the plastic-
scintillation survey meters and the GM survey meters were comparable after adjusting for
the counting losses of the GM survey meters. The disparities in the counting rates of the
plastic-scintillation survey meters relative to the GM survey meters became 7.42%, −2.08%,
and −8.05% at 1.45 cm, 4.45 cm, and 16 cm, respectively. The results for TGS-1146 (no. 2)
remain lower than the others at 1.45 cm. Individual differences between models may have
affected this result (they are not sufficiently large to be problematic).

Therefore, the large disparities in the readings at close range only when the Sr-90
source was measured without the absorber were attributable to counting losses caused by
the long resolving time associated with high numbers of β-rays and were more pronounced
for GM survey meters. Therefore, if using a GM survey meter in a situation in which a very
large number of β-rays is detected, it is necessary to ensure that the counting loss is adjusted
for via count loss correction. When obtaining measurements using the plastic-scintillation
survey meter, the measured values do not change significantly, so no count loss correction
is needed. However, in situations where the counts are very high, the influence of count
loss may even be present in a plastic scintillator. Therefore, if immediate count rates are
required from a high-radiation field, a plastic-scintillation survey meter is recommended.
For measurements at background rates (i.e., low counting rates), the counting rates of the
plastic-scintillation and GM survey meters were similar.

Furthermore, typically, GM survey meters suffer from degeneration of the GM tube
resulting from gas depletion and/or leakage from the detector. Thus, a GM survey meter
that has been in use for a long time may exhibit low sensitivity. In a plastic-scintillation
survey meter, there is little degeneration of the solid scintillation sensor.

In summary, radiation monitoring is important both in the field of radiation medicine
and in atomic power plants [1,3]. Verification of radiation-survey-meter performance is
necessary. We evaluated the basic performance of a novel β-ray survey meter that uses
a plastic-scintillation sensor. We compared the fundamental characteristics of this meter
to those of a GM survey meter, which is the traditional β-ray survey meter. The plastic-
scintillation survey meter exhibited roughly the same basic performance as the GM survey
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meter. However, gas degeneration is not an issue when using a plastic-scintillation sensor.
The GM survey meter exhibited counting losses at very high counting rates. Finally, we
are of the view that the overall characteristics of the plastic-scintillation survey meter
were good.

5. Conclusions

In this study, the measurements (counting rates) of a plastic-scintillation survey meter
exposed to β-ray-emitting radionuclides were evaluated and compared to those of a
Geiger–Muller survey meter. The counting rates for the Cl-36 source were comparable.
The values for the Sr-90 source measured using the plastic-scintillation survey meter were
higher than those measured using the GM survey meter and increased with increasing
counting rate. If the count number is not too high, the plastic-scintillation survey meter is
as effective as the GM survey meter. As the count increases to very high values, the count
loss of the GM survey meter becomes noticeable. The very short resolving time with almost
no count loss is one of the advantages of plastic-scintillation survey meters. Furthermore,
the solid plastic-scintillation sensor is sturdy. We conclude that the plastic-scintillation
survey meter is a useful β-ray measuring/monitoring instrument.
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