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Abstract: This article proposes a direction-of-arrival (DOA) estimation algorithm for a random sparse
linear array based on a novel graph neural network (GNN). Unlike convolutional layers and fully
connected layers, which do not interact well with information between different antennas, the GNN
model can adapt to the goniometry problem of non-uniform random sparse linear arrays without
any prior information by applying neighbor nodes’ aggregation and update operations. This helps
the model in learning signal features under complex environmental conditions. We train the model
in an end-to-end way to reduce the complexity of the network. Experiments are conducted on the
uniform and sparse linear arrays for various signal-to-noise ratio (SNR) and numbers of snapshots
for comparison. We prove that the GNN model has superior angle estimation performance on arrays
with large sparsity that cannot be used by traditional algorithms and surpasses existing deep learning
models based on convolutional or fully connected structures. The proposed algorithm shows excellent
DOA estimation performance under the complex conditions of limited snapshots, low signal-to-noise
ratio, and large array sparsity as well. In addition, the algorithm has a low time calculation cost and
is suitable for scenarios that require low latency.

Keywords: direction-of-arrival (DOA) estimation; sparse linear array; graph neural network; single
snapshot; array signal processing

1. Introduction

Direction of arrival (DOA), which realizes the spatial localization of signal sources by
analyzing the signals received from array antennas, has always been a key technology in
array signal processing. It has been widely applied in many scenarios, including airborne
radar [1,2], underwater surveying [3,4], medical diagnostics [5], and autonomous driving [6,7].
The research challenges of DOA estimation are mainly focused on high-precision estimation
under the conditions of limited snapshots, low signal-to-noise ratio (SNR), and sparse arrays.

Traditional DOA estimation algorithms can be divided into three categories. The first
one comprises beamforming algorithms, such as digital beamforming (DBF) [8], minimum
variance without distortion response (MVDR) [9], etc. The second one includes super-
resolution goniometry algorithms based on subspace, such as estimating signal parameters
via rotational invariance techniques (ESPRIT) [10], multi-signal classification (MUSIC) [11],
and some of its derivatives [12–14]. The third one comprises sparse reconstruction al-
gorithms, such as atomic norm minimization [15], sparse Bayesian learning (SBL) [16],
compressed sensing (CS) [17,18] algorithms, etc. These algorithms rely on traditional ar-
ray structures to achieve accurate DOA estimation with high SNR and many snapshots.
However, non-ideal conditions such as limited snapshots and array defects lead to the
degradation of traditional algorithm performance, and calculations such as feature value
decomposition and spectral peak search are difficult to adapt to the real-time requirements
of the algorithm in engineering.
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In order to solve this problem, many scholars have introduced neural networks into
the field of DOA estimation [19–23] and have achieved angle estimation by learning the
nonlinear relationship between the output of the array and the position of the spatial
signal source. Deep learning has been adopted for DOA estimation in large-scale MIMO
arrays [24]. The literature shows that the uniform array goniometry algorithm based on
a convolutional neural network has a significantly better DOA estimation accuracy than
the traditional super-resolution estimation algorithm under the conditions of low SNR
and a small number of snapshots. Furthermore, a DOA estimation algorithm based on a
convolutional recurrent neural network (CRNN) [25] is proposed and can produce high-
precision DOA estimation results under different SNR. The denoising autoencoder (DAE)
neural network structure [26] is added to the literature, and the DOA detection accuracy is
higher than that of the basic autoencoder by recovering the feature information. Recently,
the literature has combined the sum-difference array with deep neural networks [21],
demonstrating that neural networks can better adapt to array defects.

These studies show that DOA estimators based on neural networks have a faster
computation speed and more robust estimation effects than traditional algorithms and can
adapt to more complex environments and interference situations. However, most of them
focus on uniform linear arrays with more than 200 snapshots and high SNR of 10 dB or
more, which are barely implemented in reality. In addition, fewer DOA estimation studies
on sparse arrays with random missing elements have been developed.

The CNN and MLP structure cannot make good information communication between
antennas, and it is difficult to adapt to situations in which an array has large sparseness.
However, a graph neural network (GNN) [27] is a neural network algorithm with nodes and
adjacency matrices, which can well update the graph structure with information between
neighbor nodes.

In this work, we propose a novel DOA estimation algorithm based on a graph neural
network (GNN) within the GraphSAGE [28] structure to achieve high-precision DOA estima-
tion in complex environments, such as those with low-SNR states, low numbers of snapshots,
defective arrays or a combination of these situations. Since non-uniform random sparse
arrays have missing elements, GNN can update the feature information of each element by
aggregating the received signals between neighbor elements and can restore, to some extent,
element information that is randomly missing in the non-uniform array. Hence, the proposed
DOA estimation algorithm based on a GNN can achieve strong robustness.

The rest of this article is organized as follows: Section 2 describes the model of
array signal and the formation and feature generation process for random sparse arrays.
Furthermore, the same section proposes a DOA estimation framework based on a GNN
and clarifies how the input and output meet the DOA estimation requirements, and it
also introduces the training strategy of the neural network. Section 3 sets the simulation
parameters and conducts experimental simulation to verify that the proposed algorithm
is superior to previous algorithms based on neural networks and traditional algorithms
adopted in random sparse arrays under the conditions of a small number of snapshots or
even a single snapshot and low SNR. Section 4 concludes this paper.

Notations: ( · )*, ( · )T and ( · )H represent the conjugate operator, transpose operator
and conjugate transpose operator of the matrix, respectively. E( · ) indicates the expected
operator and ‖·‖2 represents the L2 norm operator of a matrix. Re( · ) and Im( · ) represent
the real and imaginary parts of a complex value, and j =

√
−1 represents the imaginary

unit. C and R represent the fields of real numbers and complex numbers.

2. Materials and Methods
2.1. Signal Model
2.1.1. Uniform Linear Array Signal

As an assumption, K independent far-field narrowband signals are incident on an
M-element uniform linear array. As summarized in Figure 1, the uniform element spacing
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d is half-wavelength λ0 in free space. The incident angles of signals are θ1, θ2, . . . , θk, and
the received signals of a ULA are calculated as follows [29]:

xm(t) = ∑K
k=1 a(θk)sk(t) + nm(t), for m = 1, 2, . . . , M, (1)

where a(θk) represents the direction vector of θk; sk(t) represents the envelope of the k-th
signal; and nm(t) represents the white Gaussian noise generated at the m-th element with
a mean of zero and a variance of noise power σ2. The array output signal is sampled at
moment t, and the received signal can be expressed as a matrix.

X(t) = [x0(t), x1(t), . . . , xM−1(t)]
T = A(θ)S(t) + N(t), (2)

where
S(t) = [s1(t), s2(t), . . . , sK(t)]

T , (3)

A(θ) = [a(θ1), a(θ2), . . . , a(θK)]
T , (4)

N(t) = [n0(t), n1(t), . . . , nM−1(t)]
T , (5)

where X(t) denotes the array-received signal matrix; S(t) indicates the signal envelope
matrix; and N(t) represents the array noise matrix. A(θ)∈ CM×K is the array manifold
matrix, and a(θk) is expressed as follows:

a(θk) =

[
1, e

j2πdsinθk
λ0 , . . . , e

j2π(M−1)dsinθk
λ0

]T

. (6)
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Figure 1. Twenty-four-element aperture uniform linear array and random sparse linear array structure.

The covariance matrix Rxx ∈ CM×M of the array-received signal matrix X(t) can be
expressed as follows [30,31]:

Rxx = E
{

X(t)XH(t)
}
= A(θ)RssAH(θ) + σ2I, (7)
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where Rss represents the covariance matrix of signal S(t), σ2 is the noise power and
I∈ RM×M is the identity matrix.

2.1.2. Random Sparse Linear Array Signal

Random sparse linear arrays with different degrees of sparsity are also illustrated in
Figure 1 for comparison. The aperture sizes of RSLAs are kept unchanged to match that of
a ULA. Only one randomly generated sparse array for each sparsity rate is provided. The
first and last elements of all arrays are reserved. A certain number of missing elements are
randomly generated inside the array according to the specified sparsity rate. Hence, the
received signals for the missing elements in the RSLA are zero.

As an assumption, the received signal matrix of the RSLA is denoted by
∼
X(t). The

manifold matrix
∼
A(θ) of the RSLA can be generated from A(θ), only by setting a(θK) in

A(θ) at 0 for the missing elements. Thus,
∼
X(t) is expressed as follows:

∼
X(t) =

∼
A(θ)S(t) + N(t), (8)

where
∼
A(θ) =

[∼
a(θ1),

∼
a(θ2), . . . ,

∼
a(θK)

]T
, and

∼
A(θ) is a sparse matrix.

The covariance matrix
∼
Rxx ∈ CM×M of the random sparse array receiving signal

∼
X(t)

is as follows:
∼
Rxx = E

{∼
X(t)

∼
X

H
(t)
}

=
∼
A(θ)Rss

∼
A

H
(θ) + σ2I, (9)

where Rss is the covariance matrix of signal S(t), σ2 is the noise power and I∈ RM×M is the
identity matrix.

2.1.3. Preprocessing of the Array Signal

The solution for the covariance matrix Rxx and
∼
Rxx is obtained under ideal conditions,

but in a real system, the original covariance matrix is replaced by a sampling covariance
matrix R∈ CM×M. In order to facilitate the construction of mathematical models, the
received signal X(t) of a uniform linear array and the received signal

∼
X(t) of a random

sparse array are uniformly defined as X̂(t), so it can be universally applied to the case
of uniform arrays and sparse arrays. For the case where the received signal has multiple
snapshots, the sampling covariance matrix expression of the array is:

R =
1
T

T

∑
n=1

X̂(tn)X̂
H
(tn), (10)

where T is the number of snapshots, and X̂(t) = [x̂0(t), x̂1(t), . . . , x̂M−1(t)]
T .

Since the covariance matrix R is a complex matrix, complex values cannot be directly
used as input features of graph convolutional neural networks, so this work processes the
covariance matrix as follows:

R =

Re


R1,1 R1,2 . . . R1,M
R2,1 R2,2 . . . R2,M

...
...

. . .
...

RM,1 RM,2 . . . RM,M

, Im


R1,1 R1,2 . . . R1,M
R2,1 R2,2 . . . R2,M

...
...

. . .
...

RM,1 RM,2 . . . RM,M


, (11)

where Ri,j(i = 1, 2, 3, . . ., M; j = 1, 2, 3, . . ., M) represents the row-I and column-j element of
the covariance matrix R.

Normalizing the matrix R according to Equation (12) the matrix R̂ can finally be used
as the input feature of the neural network.

R̂ = R/
∥∥R
∥∥

2, (12)
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where ‖·‖2 represents the L2 norm operator.

2.2. DOA Estimation Framework Based on GNN
2.2.1. Graph Convolutional Network

Graph convolutional neural networks have nodes and adjacency matrices. In this
study, we introduce a residual graph convolutional neural network based on GraphSAGE
to process sparse array signals. The process of working with GraphSAGE consists of
two steps: aggregation and update. It is conducted to perform sampling and aggregation
operations on the neighbor nodes of each node and obtain its own characteristic information
by adding the current self-information and then updating it. We assume an undirected
graph Z = (V, E) with N nodes, as shown in Figure 2. The features of different nodes, as
well as their updated features, are distinguished by different colors.
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Here, V ∈ RN×F is the node matrix in the graph. N represents the number of nodes, and
F represents the dimension of each node feature in the graph. E∈ RN×N is the adjacency
matrix and represents the connection relationship between nodes. If there is an edge
between two nodes denoted by p and q, Ep,q = 1; otherwise, it is equal to 0. The set of nodes
around a node with edges connected to it is called the set of neighbor nodes. When v is a
node, κ(v) represents the set of neighbor nodes. The update process of GraphSAGE can be
defined as follows [28]:

hl
κ(v) = AGGREGATEl

({
hl−1

u , ∀u ∈ κ(v)
})

, (13)

hl
v = g

(
W lCONCAT

(
hl−1

v , hl
κ(v)

))
, (14)

where hl
κ(v) denotes the characteristics of neighbor nodes after aggregation. hl−1

u and hl
v

represent the node feature information of layer l − 1 and updated layer l, respectively.
AGGREGATE is the aggregator using the averaging method for aggregation operations.
CONCAT is the feature splicing operation, and g( · ) is an activation function.

For the non-uniform sparse array goniometry problem, the GraphSAGE convolutional
layer updates the received signal characteristics of each group of elements by aggregating
the information between different array groups. The addition of self-loop information can
effectively fill the feature information at the vacant array elements and can update the
features by aggregating the neighbor nodes and its own information. Therefore, the GNN
has a certain degree of predictability for unknown information and can better adapt to the
angle measurement situation under the conditions of random sparse arrays, low SNR, and
small numbers of snapshots. Meanwhile, GNNs usually have strong generalization ability
and can cope with radar goniometry tasks in different environments without the need for
complex feature engineering in advance.

2.2.2. GNN-DOA Model for Random Sparse Arrays

The covariance matrix contains the angular information of the target and can be
adopted as a feature of the input neural network. Since each covariance matrix corresponds
to a set of angle estimation results, this study constructs the DOA estimation as a graph-level
classification problem.
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The DOA estimation model with a graph neural network (GNN) is shown in Figure 3.
Each input covariance matrix is a graph and the covariance matrix is divided into a subset
composed of multiple elements according to rows. Since the number of subsets equals
the number of input nodes of the graph convolutional network, it is necessary to combine
the received array signals in each subset into a set of vectors as the input features of the
nodes. Finally, the adjacency matrix E is constructed according to the distance between
each subset.
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The backbone network consists of a feedforward neural network (FNN), a Graph Conv
module with four SAGEConv layers and a global pooling layer. The graph convolution
structure used here is GraphSAGE. It adds a self-loop to the adjacency matrix, can effectively
aggregate the information between nodes and updates the embedded expression of its
own nodes.

When assuming z as the feature of input nodes, through two fully connected layers in
FNN, the network output futures are z1 and z2. By introducing the weights of w1 and w2
and the biases of b1 and b2, the update process can be expressed as follows:

z1 = SiLU
(

w1
Tz + b1

)
, (15)

z2 = SiLU
(

w2
Tz1 + b2

)
, (16)

where
SiLU(a) = aϑ(a), (17)

ϑ(b) =
1

1 + e−b , (18)

The activation function SiLU(·) [32] nonlinearizes the output of the network.
Features enter the graph convolutional neural network for nodes’ feature updates.

As shown in Figure 3, the SAGEConv layer consists of the GraphSAGE, the Layer Norm
(LN) and an activation layer. The LN calculates the mean and variance of a layer of inputs
and normalizes the data, which can stabilize the forward input distribution and accelerate
convergence on mini-batch inputs.

The update process of GraphSAGE is based on Equations (13) and (14). For simplicity,
we define the Graph Conv module as a function G( · ). Therefore, the update process for
the Graph Conv module is:

z3 = G(z2), (19)
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After the node feature update is completed, the node features on each graph are
mapped into a full graph representation through a global average pooling layer. The
graph representation of the obtained feature z3 is H = {h1, h2, h3, . . . , hN}, and the feature
representations of each node at each layer are aggregated using the common summation
method of global pooling to obtain the graph-level representation of the feature.

R(H) =
1
T

N

∑
i=1

hi, (20)

whereR( · ) is a commonly used readout function.
Finally, the graph-level features are classified through the fully connected layer. The

network outputs the probability value of the presence of a target for each airspace interval,
ranging from 0 to 1, and the closer the result is to 1, the greater the probability of the
presence of a target in that direction.

2.2.3. Outputs of the GNN Model

Generally, since the number of measured target signals is limited and sparse in airspace,
the target airspace range can be evenly divided into L intervals, as shown in Figure 4. We
can obtain ϕ0 < ϕ1 < · · · < ϕL. If the target θk (k = 1, 2, . . ., K) exists in a sub-interval, the
value of the interval section takes the value 1; otherwise, it takes a value of 0. The above
concept can be described as the following formula:

f =

{
1, ϕl−1 < ϕk < ϕl
0, otherwise

, ∀k ∈ {1, 2, . . . , K}; l = 1, 2, . . . , L. (21)

Sensors 2024, 24, x FOR PEER REVIEW 7 of 14 
 

 

The update process of GraphSAGE is based on Equations (13) and (14). For simplic-

ity, we define the Graph Conv module as a function 𝑮( · ). Therefore, the update process 

for the Graph Conv module is: 

𝒛𝟑 =  𝑮(𝒛𝟐), (19) 

After the node feature update is completed, the node features on each graph are 

mapped into a full graph representation through a global average pooling layer. The 

graph representation of the obtained feature 𝒛𝟑 is 𝑯 = {ℎ1, ℎ2, ℎ3, … , ℎ𝑁}, and the feature 

representations of each node at each layer are aggregated using the common summation 

method of global pooling to obtain the graph-level representation of the feature. 

ℛ (𝑯) =
1

𝑇
∑ ℎ𝑖 ,

𝑁

𝑖=1

 (20) 

where ℛ( · ) is a commonly used readout function. 

Finally, the graph-level features are classified through the fully connected layer. The 

network outputs the probability value of the presence of a target for each airspace interval, 

ranging from 0 to 1, and the closer the result is to 1, the greater the probability of the 

presence of a target in that direction. 

2.2.3. Outputs of the GNN Model 

Generally, since the number of measured target signals is limited and sparse in air-

space, the target airspace range can be evenly divided into L intervals, as shown in Figure 

4. We can obtain φ0 < φ1  <  ⋯  < φ𝐿. If the target 𝜃𝑘 (k = 1, 2, …, K) exists in a sub-inter-

val, the value of the interval section takes the value 1; otherwise, it takes a value of 0. The 

above concept can be described as the following formula: 

𝑓 = {
 1, φ𝑙−1 < φ𝑘 < φ𝑙

 0, otherwise
  , ∀𝑘 ∈ {1,2, … , 𝐾}; 𝑙 = 1,2, … , 𝐿. (21) 

Therefore, the DOA estimation constructs a sparse mapping relationship from the 

covariance matrix to the target airspace. 

 

Figure 4. The relationship between target airspace and sections of GNN labels. 

The specific algorithm steps are summarized as follows: The first step is to preprocess 

the received signal. The second step is to build graphs and nodes to build a graph convo-

lutional neural network model. The third step is to test various arrays with different 

Figure 4. The relationship between target airspace and sections of GNN labels.

Therefore, the DOA estimation constructs a sparse mapping relationship from the
covariance matrix to the target airspace.

The specific algorithm steps are summarized as follows: The first step is to prepro-
cess the received signal. The second step is to build graphs and nodes to build a graph
convolutional neural network model. The third step is to test various arrays with different
structures under different conditions. The fourth step is to optimize the network structure
and achieve the best DOA estimation algorithm.

3. Simulation and Discussion

Table 1 lists the parameters of the training dataset. A random sparse linear array of a
24-element aperture has a sparsity of 0.5. That means 12 elements are randomly missing
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inside the array. Every six rows of the normalized covariance matrix are selected as a set of
node features, and the number of nodes becomes four. To construct the adjacency matrix,
we connect an edge between adjacent nodes with a distance of less than 2. In addition,
the number of snapshots per sample is 50, and the SNR is randomly generated within
the range of 0~10 dB. The discrete target space of −60◦~+60◦ has a resolution of 1◦, and
121 angle labels are obtained.

Table 1. Training parameters and values.

Training Parameters Values

Number of array sensors 12
Sparsity of the array 0.5

Number of incoherent sources 2
Angular range [−60◦–60◦]

Number of sections 121
Angular resolution 1◦

SNR 0–10 dB
Number of snapshots 50

According to the above settings, the training dataset of two incoherent signals with
50,000 samples is generated. The training and testing datasets in the simulation are generated
by MATLAB R2022a. The simulated samples are generated according to Equations (1)–(12),
and the corresponding labels are generated according to Equation (21).

The batch size and the learning rate used for training are 32 and 0.001. All neural
network-based models were trained for 500 epochs. The optimizer is Adam, and the
activation function is SiLU. We used ZLPR Loss [33] as the loss function for adjusting and
updating parameters during training.

ZLPR Loss compares all non-target class scores with the target class scores, in order to
achieve the effect that the target class score is greater than the score of each non-target class.
The specific formula is provided as follows:

Loss = log
(

1 + ∑i∈Ωneg
esi
)
+ log

(
1 + ∑i∈Ωpos

e−si
)

, (22)

where Ωneg is the non-target class set, Ωpos is the target class set and Si is the score.
When the result is greater than the threshold of 0.8, it is considered that there is a

target in this direction, and the output result is set to 1; otherwise, it is set to 0. The accuracy
calculation of the performance evaluation index is defined as follows: The total number of
sample sets used for testing is recorded as TOTAL. If a sample is considered to be positive,
the values of predictions and labels must be identical in all 121 dimensions. Meanwhile,
the remaining samples are negative. The number of positive samples is recorded as TRUE,
and the accuracy is calculated as follows:

Accuracy =
TRUE

TOTAL
, (23)

In addition, mean absolute error (MAE) and root mean square error (RMSE) are two
indicators used to evaluate DOA estimation error. MAE reflects the true error of DOA, while
RMSE is more sensitive to outliers and can well reflect the robustness of DOA estimators.
They are evaluated as follows:

MAE =
1
m

m

∑
i=1

∣∣∣ytrue − ypred

∣∣∣, (24)

RMSE =

√
1
m

m

∑
i=1

(y true − ypred

)2
, (25)
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where m is the number of test samples. ytrue and ypred represent the true angle and pred
angle, respectively.

We now consider three experiments for analysis. Firstly, the proposed GNN algorithm
is tested to estimate the performance from the angles of different sparsity arrays and
compared with other algorithms. Secondly, the goniometric performance of GNN and
traditional algorithms under the condition of a single snapshot is tested. Thirdly, the
performance of GNNs for sparse arrays is examined. Finally, we compare the goniometric
times of different algorithms, applying an Intel® Core (TM) i7-9750Hv CPU @ 2.6 GHz
hardware platform, based on CUDA 11.8 under the Pytorch framework.

3.1. Effect of the Array Sparsity on the Performance of DOA Estimation

In this experiment, to explore the performance of different angle estimation algorithms
under different sparsity conditions, we select the SNR as 10 dB and the number of snapshots
as 200. The traditional super-resolution algorithm MUSIC is chosen as a standard for
comparison, while the existing neural network-based algorithm CNN and the DNN with
MLP structure are compared.

First of all, the RMSE values of different algorithms under different sparsity conditions
are tested. As shown in Figure 5, the proposed GNN algorithm has excellent performance,
even when the array loses one-third of its elements. Its RMSE remains as low as 0.04◦, which
is much lower than 13.12◦ for MUSIC and 0.79◦ for DNN. Since MLP cannot exchange
information between different array elements, under the condition of sparse arrays, a large
amount of information can indeed lead to algorithm performance degradation. On the one
hand, the CNN uses local perception to extract feature information, and the connection
between global features is not tight. On the other hand, the graph convolution module
transmits updates layer by layer through the connection relationship between nodes. It
effectively captures and models the spatial relationship between sensors. More specifically,
the GNN algorithm uses the signals received by the adjacent antennas to update the
characteristics of the nodes. It obtains global information through the aggregation and
update of each layer. So, the GNN algorithm can build a complex nonlinear mapping
relationship even if there are a large number of elements lost.
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Meanwhile, the accuracies of different algorithms under different sparsity conditions
are tested. It can be seen from Table 2 that when the array loses one-half of its elements,
the neural network-based algorithms CNN and DNN are significantly better than the
traditional goniometric algorithm MUSIC. This is because neural network models are
data-driven and can learn more robust nonlinear representations through backpropagation
mechanisms to combat noise and fluctuations in complex environments. The proposed al-
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gorithm guarantees an accuracy of 95.3% in this case, which proves that the GNN algorithm
can effectively cope with the situation of losing a large number of array elements.

Table 2. Accuracy of different algorithms under different sparsity conditions.

Number of Antennas 12 16 20 24

MUSIC 58.5% 68.8% 79.4% 83.6%
DNN 81.3% 92.9% 97.6% 98.4%
CNN 87.1% 97.1% 99.1% 99.0%
GNN 95.3% 99.3% 99.8% 99.8%

3.2. Effect of SNR and the Number of Snapshots on the Performance of DOA Estimation

In this experiment, under the conditions of an array sparsity of 1/3, the dependences
of different algorithms on different SNR and numbers of snapshots are explored. We
compare the GNN algorithm with MUSIC, the improved front-and-back smooth MUSIC
(ssMUISC) [13], the neural network-based algorithms DNN and CNN and two excellent
neural network generalization models ViT [34] and MLP-Mixer [35]. It is observed in
Figure 6a that under the condition of 50 snapshots, all algorithms improved with an
increase in SNR, among which the algorithm based on the neural network improved
significantly, and the GNN model achieved the best performance above −6 dB. As shown
in Figure 6b, under the condition of a signal-to-noise ratio of 10 dB, the number of snapshots
is between 20 and 100, and the algorithm is not highly sensitive to its changes. This means
that excellent angular performance can be achieved with a small number of snapshots.
Even though MUSIC’s performance is poor in low-snapshot conditions, both GNN and
ViT guarantee a very low RMSE with similarity. At the same time, the parameter size of
the ViT model reproduced in the experiment is 1.18 M, while the proposed GNN model
parameter is 690.93 KB, indicating that the GNN algorithm achieves the same high-precision
performance as ViT with less computing resources. It is obvious that the proposed GNN
model can reduce the computational burden without sacrificing performance and the
Graph Conv structure used in the GNN algorithm can well adapt to the angle measurement
conditions of sparse arrays with limited snapshots.
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Figure 6. (a) RMSE of different algorithms with different SNR. (b) RMSE of different algorithms with
different snapshots.

3.3. Effect of Single Snapshot and Large Array Sparseness on the Performance of DOA Estimation

Single-snapshot angle estimation algorithms are commonly used in engineering, and
their calculation speed can quickly meet the needs of low-latency scenarios such as au-
tomatic driving. In this experiment, with a sparsity of 1/3, a single snapshot is used for
angle measurement to explore the performance of different algorithms. Since DBF [8] is
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a very efficient single-snapshot angle estimation algorithm that can be implemented, the
proposed algorithm is compared with it. As shown in Figure 7, MUSIC is difficult to cope
with the situation of single-snapshot angle measurement when the array is sparse. With
the improvement of SNR, MUSIC’s performance is not significantly improved, because it is
difficult to solve the feature vectors corresponding to the signal space and noise space from
the covariance matrix of a single snapshot. Under the condition that the array has a large
sparsity, the RMSE of the DBF algorithm remains high. However, The GNN algorithm
proposed can adapt well to the situation of a single snapshot, and the RMSE is significantly
reduced with the improvement of SNR. It should be noted that the GNN algorithm is very
robust when the array is sparse.
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Furthermore, we tested the MAE of the single-snapshot algorithms on different spar-
sity arrays including RSLA12, RSLA16, RSLA20 and ULA. It can be seen from Figure 8 that
when the SNR is higher than 5 dB, the GNN algorithm combined with RSLA16, RSLA20
and ULA achieves better angular measurement performance than the DBF algorithm
applied to the ULA. Therefore, the proposed algorithm can adopt fewer antenna array
elements occupying the same antenna aperture and obtain a level of performance only
achieved by the traditional algorithm applied to the ULA. It also contributes to reducing
the manufacturing cost of radar antennas. Especially in practical applications, a sparse
array configuration, which can effectively reduce the coupling between physical antennas,
has important engineering value.
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Finally, we compare the traditional DOA estimation algorithms with the proposed
algorithm based on a graph neural network. The test experiment calculates the average of
1000 Monte Carlo experiments on an Intel® Core (TM) i7-9750Hv CPU @ 2.6GHz hardware
platform. It can be found in Figure 9 that the time calculation cost of the GNN algorithm
is nearly half that of MUSIC and is slightly higher than that of the DBF algorithm. It is
obvious that the proposed algorithm can achieve better angular measurement performance
while ensuring low computational cost and is more in line with the real-time requirements
of engineering angle estimation algorithms.
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4. Conclusions

This work proposes a GNN-based DOA estimation algorithm. The graph convolu-
tional network structure is introduced into the field of DOA estimation for achieving robust
angle estimation on non-uniform random sparse arrays. The GNN model can effectively fill
in the information at the missing elements by aggregating and updating the characteristics
of neighbor nodes in the convolutional structure and provides good robustness in the
angle estimation problem of sparse arrays. In the experiments, the proposed algorithm
achieves better goniometric performance, compared with the traditional algorithm and the
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existing deep neural network algorithm based on multilayer perceptron and convolutional
structure in a complex environment. We tested the proposed algorithm on an array with
a sparsity of 1/3. When the SNR is −4 dB and the number of snapshots is 50, the angle
measurement performance is 88.81% higher than that of MUSIC. In the case of limited
snapshots or even a single snapshot, the proposed GNN algorithm has no dependence
on the specific array arrangement and is well adapted to arrays with a large number of
random missing elements. In addition, the array sparseness can effectively reduce the
manufacturing cost of antennas and reduce the coupling between elements. Meanwhile,
the GNN algorithm has a low time calculation cost and can meet the requirements of
scenarios requiring low-latency angle estimation. This proves the advanced and efficient
introduction of graph convolutional networks into DOA estimation problems.

In the future, we will further investigate the DOA of sparse arrays for incoherent
sources, study the DOA of virtual sparse arrays and improve the robustness of the model.
In addition, experimental verification by measured data will be conducted soon.
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