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Abstract: Mobility challenges threaten physical independence and good quality of life. Often, mobility
can be improved through gait rehabilitation and specifically the use of cueing through prescribed
auditory, visual, and/or tactile cues. Each has shown use to rectify abnormal gait patterns, improving
mobility. Yet, a limitation remains, i.e., long-term engagement with cueing modalities. A paradigm
shift towards personalised cueing approaches, considering an individual’s unique physiological
condition, may bring a contemporary approach to ensure longitudinal and continuous engagement.
Sonification could be a useful auditory cueing technique when integrated within personalised
approaches to gait rehabilitation systems. Previously, sonification demonstrated encouraging results,
notably in reducing freezing-of-gait, mitigating spatial variability, and bolstering gait consistency in
people with Parkinson’s disease (PD). Specifically, sonification through the manipulation of acoustic
features paired with the application of advanced audio processing techniques (e.g., time-stretching)
enable auditory cueing interventions to be tailored and enhanced. These methods used in conjunction
optimize gait characteristics and subsequently improve mobility, enhancing the effectiveness of the
intervention. The aim of this narrative review is to further understand and unlock the potential
of sonification as a pivotal tool in auditory cueing for gait rehabilitation, while highlighting that
continued clinical research is needed to ensure comfort and desirability of use.
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1. Introduction

Globally, the proportion of the population > 65 years (older adults) is increasing. In the
UK, projections suggest that by 2046, that group will represent 25% of the population [1].
Typically, older adults face challenges due to the potential decline in gait-related mobility.
That decline impacts crucial aspects of personal independence and the overall quality of
life [2]. Conditions such as Parkinson’s disease (PD), stroke, and arthritis can significantly
curtail an individual’s ability to freely ambulate and perform routine daily tasks unaided [3].
Functional challenges are compounded by mobility difficulties resulting in falls, which
constitute the leading cause of injury-related deaths for those > 65 years [4]. Moreover, a
harmful cycle due to a lack of confidence in walking due to a fear of falling can further
exacerbate physical decline, highlighting a necessity for public health initiatives aimed at
mitigating this escalating silent epidemic [5]. This pervasive issue underscores the critical
need for practical interventions aimed at alleviating gait-related mobility issues [6].

Rehabilitation research has examined cueing, leveraging auditory, visual, and tactile
cues to normalize abnormal gait patterns and improve mobility [7]. However, auditory
cueing has been found to both be the most effective at improving gait and the most practical
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to apply in outdoor settings [8,9]. There is also an appreciation regarding cueing paradigms
that one size does not fit all, i.e., there is a need to ensure personalised approaches to ensure
interventions are tailored to the individual and their functional limitations at a moment in
time. Furthermore, the long-term effectiveness of cueing mechanisms, such as metronomes,
ultimately suffer from their lack of engagement [10]. This highlights the existing gap
in personalised gait-cueing interventions that not only cater to an individual’s specific
physical needs but also offer an engaging experience to promote long-term adherence.

Sonification is the methodology of using non-speech audio to communicate infor-
mation [11]. Within medicine, heart rate and electrocardiograph monitors use a humble
representation of sonification to audibly represent a patient’s heartbeat, alerting doctors
to any potential irregularities in their cardiac cycle [12,13]. This is especially important
in critical care situations, where transforming patient vital signs into audio cues allows
caregivers to quickly detect and respond to any changes. Other examples showcase how
sonification can be used to provide valuable enhancements in medical diagnostics and
monitoring [14,15].

Applying sonification to audibly represent the rhythmic properties of a patient’s
vital signs underscores its potential application in gait rehabilitation where the goal is
to establish rhythmic, distinct, and harmonious walking patterns. This potential has
been recognized where several implementations of sonification in gait rehabilitation have
been effective in enhancing mobility, particularly for older adults who face challenges
with various mobility disorders [16–18]. A recently conducted review emphasizes the
technical and design aspects of real-time movement sonification systems relating to gait.
This includes the dimensions of movement to sonify, what anatomy to track, and what
motion capture methodologies to use [19]. However, while the findings of that review are
valuable and insightful, it notably omits a discussion on how acoustic variables influence
the valence of such rehabilitation systems. Understanding these acoustic factors is crucial,
as they can significantly affect patient engagement and treatment outcomes. Additionally,
the review does not delve into the potential for manipulating these acoustic variables
to provide more personalised interventions to further enhance the valence and overall
usability of these systems. Understanding these gaps could lead to more effective and user-
friendly rehabilitation solutions, tailored to the unique needs and preferences of individuals
undergoing neurological rehabilitation.

Here, we explore the concept of personalised interventions, focusing on sonification
and its potential in gait rehabilitation. This review discusses ways sonification can enhance
gait-related mobility, how it can be manipulated, and how it can be used to improve the
landscape of gait rehabilitation.

2. Assessing Gait

Measuring the gait of those with physical mobility challenges is an initial step to
providing effective and long-lasting rehabilitation strategies. By identifying which aspects
of an individual’s gait are abnormal, pragmatic approaches can be devised [20]. Digital
technologies are playing an important role within instrumented rehabilitation, objectifying
gait to provide high-resolution data. For example, instrumented walkways have integrated
pressure sensors that record footfall data as a person walks across the surface, generat-
ing a comprehensive representation of an individual’s spatial and temporal gait pattern.
Gait characteristics such as step length and step time can be recorded at millimetre and
millisecond resolution, respectively [21]. Alternatively, wearable inertial measurement
units (IMUs) are finding more routine use due to their greater affordability (compared to
instrumented walkways) and ability to be used in a range of environments. IMUs provide
equally precise, high-resolution data on a person’s gait with the capacity to provide many
more characteristics when fused as part of a sensing array [22]. Accordingly, wearable
IMUs are a more contemporary tool for performing accurate gait analysis [23].

Often, IMUs have routine connectivity capabilities through the Internet of Things (IoT),
where they can routinely integrate with other systems, offering a streamlined and more
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rounded experience for clinicians and patients alike [24]. IMUs are also capable of real-time
sensing. That is useful by providing users with precise gait data with the immediate
delivery of some feedback mechanism(s) during a rehabilitation process. Real-time sensing
offers clinicians and patients valuable insights into the efficacy of rehabilitation strategies
which could then be immediately adjusted to optimize gait [25]. In short, IMU-based real-
time monitoring with immediate feedback describes a process of biofeedback, enriching
the therapeutic landscape and enhancing patient outcomes further.

3. Personalising Interventions
3.1. Biofeedback

Biofeedback has gained prominence as an effective method to enhance biomechanical
and physiological aspects of movement and, in particular, the gait of those with mobility
issues [23]. Biofeedback offers a real-time response to various physiological signs such
as body movement and cardiovascular parameters, allowing patients to gain a better
understanding of their physical condition, which is beneficial for those who find it difficult
to recognize their physical limitations [26].

Moreover, biofeedback plays a significant role in neural plasticity, activating neural
circuits vital for motor control and learning [27]. This can be transformative for individ-
uals with mobility issues, enabling them to achieve meaningful improvements in overall
function. Ultimately, biofeedback aids immediate rehabilitation which can contribute to
long-term independence and improved quality of life for patients [28].

Real-time biofeedback suggests personalised interventions, i.e., tailored to an indi-
vidual’s physiological condition. This can enable a more nuanced approach to address
the physical and cognitive aspects of specific mobility challenges, rather than adopting
a one-size-fits-all approach. In contrast, contemporary rehabilitation lies in the person-
alised approach to interventions, where a prominent example is in the implementation of
biofeedback through personalised cueing [29].

3.2. Personalised Cueing

Cueing techniques play a crucial role in the context of reducing falls by assisting
individuals to improve their step-by-step gait patterns and therefore their overall walking
stability. Generally, cueing involves providing external stimuli or cues to guide and enhance
motor control and coordination during gait [30]. In gait rehabilitation, standardised cueing
techniques have been used. For auditory stimuli, these include metronome cues or the
use of music, where individuals synchronize their steps to a rhythmic beat, or visual cues
such as lines or markers on the floor to encourage specific stride lengths or step widths [7].
These standardized cues provide a consistent framework for gait retraining and can be
effective in promoting immediate improvements in gait characteristics [8].

To optimise the efficiency of cueing, researchers have examined personalised cueing
mechanisms by incorporating biofeedback. That approach includes customizing the cues to
harmonise with individuals’ distinct gait and mobility traits, thereby amplifying their effi-
cacy. By adopting a personalised approach, not only can patients’ comfort be enhanced, but
also intervention effectiveness. Various studies have underscored the substantial benefits
of tailoring the delivery of cueing mechanisms to align with individual gait characteristics,
resulting in a marked improvement in the effectiveness of each cueing mechanism [31,32].

To enable personalised cueing, the fundamental requirement is the accurate and near
real-time recording of gait, which can be performed with IMUs [33]. By leveraging specific
gait characteristics, such as cadence, it becomes possible to modify cueing mechanisms to
align with the physiological condition of individuals. For example, gait abnormalities have
been reduced by the use of a personalised auditory cue (a 10% increase in the number of
beats per minute on an individual’s natural cadence) [34]. To further refine personalised
gait rehabilitation, sonification is proposed as a dynamic and versatile methodology.
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4. Sound and Sonification Theory

Fundamentally, sonification is a method that uses sound, i.e., non-speech audio, to
convey information or data. This involves processing non-auditory data and converting
it into an auditory format, thereby creating an alternative data perception channel [35].
The technique can be useful when visual channels are overloaded or less efficient, or not
accessible [36,37]. Several acoustic variables are typically used to represent qualitative,
quantitative, and categorical aspects of information, which include pitch, timbre, amplitude,
tempo, duration, and spatialization [11,38].

A wide range of sonification techniques has been explored to represent data, including
sonic landscapes, auditory icons, ambient soundscapes, tonal music, ad hoc pitch mappings,
simple pitch mapping, speech and non-speech audio, earcons, and musical motifs [39].
Like personalised cueing, applying sonification to gait rehabilitation involves utilising gait
monitoring technology such as IMUs to provide real-time auditory biofeedback. For exam-
ple, gait characteristics can be transformed into discernible sounds [40]. Nown et al. [19]
have comprehensively explored the various ways sonification has been mapped to spe-
cific aspects of movement, including position, velocity, orientation, and acceleration, with
auditory feedback ranging from pitch, amplitude, and timbre to more complex melodies
and spatial cues. However, there is a lack of focus on how acoustic variables can influence
the overall effectiveness of interventions. Thus, there is also a lack of focus on how such
acoustic variables can be manipulated to further enhance treatment; this requires further
investigation.

However, before exploring the various applications of sonification and auditory
biofeedback, it is crucial to have a solid understanding of sound theory. This ensures
optimal approaches for comprehending and implementing sonification and its core con-
cepts into gait rehabilitation.

4.1. Acoustic Variables
4.1.1. Frequency

Frequency is a fundamental property of sound and refers to the number of cycles
of a sound wave that occur in one second, measured in hertz (Hz). The frequency of a
sound wave ultimately determines its pitch, where shorter frequency wavelengths are
associated with higher-pitched sounds and longer frequency wavelengths are associated
with lower-pitched sounds. In sonification, the frequency of auditory stimuli can be
used to represent various data attributes or dimensions [41]. For example, different data
values/variables can be mapped to specific frequency ranges, allowing users to perceive
variations in pitch and identify patterns or trends in the data [42]. By assigning frequencies
to data parameters, sonification designers can create intuitive auditory representations to
enhance the understanding of complex information [43]. Figure 1 illustrates the difference
in waveforms with varying frequencies.

4.1.2. Amplitude

Amplitude represents the strength or intensity of a sound wave and is typically
measured in decibels (dB). Amplitude directly affects the loudness or volume, with larger
amplitudes producing louder sounds and smaller amplitudes resulting in softer sounds [44].
In sonification, the amplitude can be used to convey the magnitude or intensity of data val-
ues, whereby mapping data attributes to specific amplitudes, users can perceive variations
in loudness and quickly identify data extremes or significant changes [45]. Figure 2 typifies
waveform difference between three amplitudes.
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Figure 1. This graph displays the waveforms of musical notes A1 and A5 sampled at a rate of
44.1 kHz. The waveform of the A1 note has a lower frequency of 110 Hz, while the green curve
represents the A5 note with a higher frequency of 880 Hz, demonstrating that the ‘closer’ the waves,
the higher the pitch.
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Figure 2. The graph displays three sine waves, each generated at 440 Hz but with different amplitudes
of 10 dB, 30 dB, and 50 dB, demonstrating that a higher waveform results in a higher amplitude.

4.1.3. Timbre

Timbre refers to the unique quality or tone of a sound, enabling a distinction between
musical instruments or voices producing the same pitch and amplitude [46]. Timbre is
influenced by factors such as harmonics, envelope, and spectral content. Harmonics are
additional frequencies accompanying the fundamental frequency, giving instruments or
voices their characteristic timbre [47]. Envelope represents the dynamic changes in a
sound’s amplitude over time, including attack, decay, sustain, and release, and finally,
spectral content refers to the distribution of energy across frequencies, contributing to the
timbre [48]. For sonification, timbre can represent distinct data categories or attributes,
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aiding the differentiation of information through auditory characteristics and enhancing
the identification of data dimensions [43]. Figure 3 as an example shows the difference in
waveforms between a human voice, piano, and tuning fork.
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Figure 3. Displays waveforms of 3 audio signals: human voice, piano, and tuning fork, all centred
around 440 Hz fundamental frequency. Timbre varies in all due to the difference in unique harmonic
structure, seen in each waveform.

With these acoustic variables and their potential use within sonification being estab-
lished, it is essential to understand how they can be used to enhance auditory rehabilitation.

4.2. Manipulating Acoustic Variables
4.2.1. Time Stretching

Several methods of acoustic manipulation have been explored. One prominent method
is the application of a phase vocoder to perform time stretching, which has opened possi-
bilities in gait training [49]. The phase vocoder provides the ability to modify the tempo of
music while preserving its original pitch, paving the way for a new level of personalised
auditory experiences. Time stretching through the use of the phase vocoder algorithm
employs a multi-step process [50] where, first, the original audio signal is divided into short
segments using an analysis window, such as a Hanning Windows, and Fourier transforms
are subsequently applied to obtain the short-time Fourier transform (STFT) representation.
In the modification step, the amplitudes of the sinusoidal components in the STFT are
adjusted according to a modification factor, while the phases are calculated using phase
unwrapping and a phase-propagation formula to ensure coherence.

Finally, in the resynthesis stage, the modified STFT is inverse Fourier transformed
to obtain short-time signals, which are then combined to create the time-scaled output
signal. Although the output signal may not precisely match the original signal’s STFT
representation due to the modifications, it retains the local spectral characteristics, which
in this case is pitch. Figure 4 below demonstrates the various steps as part of the phase
vocoder algorithm for both time stretching and pitch shifting.
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One particularly prudent application of a time-stretching algorithm is the application
of personalizing auditory stimuli to match an individual’s real-time gait cadence. For exam-
ple, as an individual walks, the tempo of the music can adjust dynamically, synchronizing
with the person’s stride in real time [49]. However, providing the ability to adjust music
tempo without changing the pitch of the music could therefore negate any effect changing
the tempo of music can have on gait initiation, motivation, and processing of information.

4.2.2. Pitch Shifting

Conversely, as it has been found that a higher pitch can have a positive impact on the
effectiveness of auditory stimuli, it may also be beneficial to modify the pitch of music while
maintaining the original tempo. The phase vocoder algorithm can also be used for this
purpose, where the algorithm applies a similar framework for pitch shifting as with time
stretching, but the difference lies in the processing step after the STFT is applied. Rather
than altering frame spacing, the algorithm shifts the frequency components of each frame,
which is typically achieved by multiplying each frequency bin by a pitch ratio. However,
directly shifting frequencies could lead to phase inconsistencies. Therefore, the phase
vocoder again must adjust the phase to ensure smooth transitions between frames [51].

Applying pitch shifting to personalised music cues could enable the creation of per-
sonalised auditory stimuli tailored to individual needs or preferences. For instance, the
pitch of a music piece could be subtly modulated to enhance emotional engagement with
the method of rehabilitation, with the goal being to improve its effectiveness.
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4.2.3. Dynamic Range Compression (DRC)

DRC is another audio processing technique that modulates the dynamic range, the
disparity between the loudest and softest parts, of an audio signal. By subtly diminishing
the amplitude contrast, this technique encourages sonic harmony and balance, ensuring that
every element of the sound can be heard clearly and resonantly [52]. The DRC algorithm is
carried out in several steps, where first it calculates the amplitude of the incoming audio
signal. Then, based on a set threshold and ratio, it determines how much the signal’s
amplitude exceeds the threshold and applies gain reduction proportional to this excess.
The ratio determines the degree of compression, i.e., a higher ratio results in stronger
compression. For instance, with a ratio of 4:1, for every 4 dB the input level increases above
the threshold, the output level will only increase by 1 dB.

The threshold level, ratio, attack time, which is how quickly the compressor starts
to work, and release time, which is how quickly the compressor stops working after the
signal drops below the threshold, are adjustable parameters in the DRC algorithm [53].
This technique could be beneficial for use within auditory biofeedback for several key
reasons. First, if the rhythmic aspect of the biofeedback is less distinct, with the use of DRC,
percussive components like drumbeats become more pronounced and discernible.

This improvement could enable patients to synchronize their movements more effec-
tively with the rhythm, facilitating a more immersive and engaging therapeutic experience.
Furthermore, its ability to minimize sudden and drastic changes in volume could limit
the level of disorientation or distress for individuals undergoing therapy. By applying
DRC, such jarring shifts in volume could be reduced, resulting in a more predictable and
comfortable listening experience for patients. Figure 5 below illustrates the DRC algorithm
being used to increase/decrease the level of gain using a threshold.
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4.3. Influence of Acoustic Variables on Auditory Rehabilitation
4.3.1. Pitch

To investigate the influence of pitch, a study evaluated the effects of pitch on par-
ticipants’ emotional response to audio during movement-based tasks [54]. The study
uncovered that higher pitch frequencies not only elevated participants’ sense of capability
but also boosted their motivation and comfort during physical movement. In contrast,
lower pitch frequencies generally produced the opposite effects. The study found also that
higher pitches positively influenced valence—the emotional response to pleasantness in
external stimuli. This is a significant discovery, given that valence plays a crucial role in
initiating gait [55]. Additional research has also discovered that pitch variations also play a
role in affecting the perceptual dimension of human cognition, where it critically influences
factors such as motivation and the processing of information [51].

4.3.2. Amplitude

To assess the role that levels of amplitude have on auditory gait rehabilitation, a
review was conducted on a total of 13 studies that were found through an extensive
search [56]. These studies revealed that high-intensity auditory cues significantly enhance
gait performance in PD patients, improving metrics like speed, stability, and muscle
activation. One study in particular involved 13 PD participants where they were instructed
to perform a quick walk initiated with their right leg, taking three consecutive steps
in response to three distinct types of stimuli: a visual cue (a white square shown on a
black computer screen), a combination of visual and low-intensity auditory cues, and a
combination of visual and high-intensity auditory cues [57]. Each auditory cue consisted
of 750-Hz tone bursts lasting 30 ms with an amplitude of 80 dB for low-intensity stimuli
and 130 dB for high-intensity stimuli. The results of this study revealed that in all PD
participants, tibialis anterior and rectus femoris muscle activation was faster with high-
intensity auditory stimuli than with low-intensity auditory stimuli. These results suggest
that for an auditory stimulus to be effective, a higher level of amplitude may be necessary.

4.3.3. Timbre

Focusing specifically on the effect of timbre, a study involving 13 young adults with
diplegic cerebral palsy examined the effect of simple vs. complex chords as auditory cues on
gait [58]. Participants were divided into two groups based on the complexity of chords and
melodies, where both groups showed significant improvements in walking speed, stride
length, and cadence. It was also found that complex chords led to better ankle movement,
suggesting that timbral qualities could enhance the effectiveness of auditory cueing in
improving mobility for neurological conditions. It is hypothesized in this paper that this is
also due to the increased valence in more complex auditory stimuli, demonstrating how
timbre can also impact valence and effectiveness.

The evidence indicates that acoustic variables play a crucial role in the success of
auditory rehabilitation. By carefully choosing and manipulating auditory cues, it is possible
to substantially improve the emotional experience associated with movement. This, in turn,
could pave the way for more effective strategies in sonification-based gait rehabilitation,
with the sonification of gait characteristics being a key example.

5. Sonification as a Gait Rehabilitation Tool

This section explores the various applications of sonification in gait rehabilitation,
covering the use of sonified cues generated from various aspects of gait including charac-
teristics, cycles, and joint kinematics. Figure 6 provides a visual summary, covering both
the previously discussed topics and the applications of sonification in gait rehabilitation
that we will explore in this section.
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Figure 6. This diagram provides examples, referred to in text, of how sonification and auditory
manipulation techniques could be applied to gait rehabilitation, illustrating the extraction of various
features from inertial measurement units (IMUs) on the feet. The IMU-based gait characteristics
could undergo sonification to generate biofeedback acoustic variables through specialized auditory
techniques, thereby changing the person’s gait.

5.1. Sonification of Gait Characteristics
5.1.1. Cadence Sonification

The application of cadence as a parameter for biofeedback extends beyond person-
alised cueing, as it has also been explored within the realm of sonification [46]. To explore
the potential of utilizing cadence with sonification as a gait retraining approach, a compre-
hensive study was conducted involving the design and evaluation of a music-sonification
system [17]. The first part of the study explores the selection of these feedback signals
and the establishment of a perception curve, where the feedback signals tested include
white noise, pink noise, amplitude-modulated noise, downsampling, and volume decrease.
The tests were conducted on a group of 10 participants who were asked to indicate the
perceived intensity level of the feedback signal and asked to fill in a questionnaire to
evaluate the clarity, valence, and annoyance of the feedback signals. A statistical evalua-
tion of perception tests involved fitting different curves (linear, second order, exponential)
to the data. The accuracy of mapping from objectively measured intensity to subjective
perception determined auditory input performance. It was found that pink noise with an
exponential fit emerged as the optimal choice, delivering the most perceivable signal and
effective mapping, while also having high scores for clarity and pleasantness, solidifying
its selection for subsequent experiments.

For the second part of the study, the chosen pink noise was tested under running
conditions to determine the minimum perceived sonification level and the just-noticeable
difference between different intensity levels. The participants were informed to run while
music with superimposed randomized pink noise intensity levels played; the experiment
resulted in an interval size of 20% being chosen for further experiments due to the high
probability of the detection of a difference in pink noise intensity level.

The study’s final part aimed to confirm the effectiveness of the sonification system
in modifying the running cadence of trained athletes. Four conditions were examined:
baseline, verbal instruction, fixed target noise feedback, and changing target noise feedback.
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The baseline measured the average runner cadence post-warm-up, while in the verbal
instruction, runners were told to increase their cadence by 15% from the baseline. For the
pink noise feedback, runners were asked to adjust their cadence to improve the sound
quality of the music they were listening to, which was distorted according to their cadence.
Real-time data from two tri-axial accelerometers, one being placed on each leg, were
processed to dynamically adjust the music being played to match the runner’s cadence
using a phase vocoder time-stretching algorithm. Before the task, runners chose songs from
music genres like pop, rock, and dance, with tempos between 140 and 190 BPM, and during
the running, if the cadence mismatched the BPM by over 4% for 8 s, a different song played.
In the fixed target noise feedback, cadence was tracked and mapped from 95% to 115% of
the initial cadence, converted into an exponential curve, and segmented into 20% intervals.
The resulting value determined the pink noise level added to the music, with 0% being
no noise and 100% being as loud as the music. The changing target phase used similar
noise mapping but with fluctuating cadence ranges: 95–115%, 120–85%, and 80–100%. The
results, illustrated in Figure 7, found that the pink noise feedback strategy was found to
perform significantly better than verbal instructions, suggesting potential for its use in self-
training and gait retraining programs, without requiring external assistance. Furthermore,
the pink noise feedback was effective for both increasing and decreasing cadence, where
feedback from questionnaires also indicated that the combination of minimized noise and
synchronized music had a rewarding effect.
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5.1.2. Velocity Sonification

Velocity is another gait characteristic that has been explored for gait rehabilitation
purposes specifically concerning ameliorating freezing-of-gait (FoG) in PD patients [59].
An experimental protocol, Action Observation plus Sonification (AOS), was devised and
applied in a study involving 37 PD patients with bouts of FoG, who were split into two
distinct groups: experimental and control. The core experiment involved exposure to eight
videos, each demonstrating an actor executing eight unique motor gestures. Participants
across both groups were required to mimic these motor gestures synchronously while
viewing the videos. However, the marked differentiation between the two groups lay in
the sensory aids incorporated into their respective videos. For the experimental cohort,
the visual stimuli were supplemented with enhanced auditory signals, which involved
the sonification of the walking velocity of the actors. These signals were recorded using a
seven-camera motion-capture Qualisys system (120 Hz) and were transformed into audio
pitch variations [60]. In contrast, the control group was provided with the same motor
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gestures, but their videos were complemented by strategic visual (stripes on the floor) and
auditory (metronome) cues. For the experimental cohort, a specialized sonification process
was employed to generate the enhanced auditory signals from the walking velocity data.

This process first involved the application of a median filter that incorporates a window
size of three frames, which suppresses any sensor noise that may potentially originate
from the kinematic data. Following this noise suppression, the data stream is adjusted,
undergoing a linear scaling process that normalizes it within an interval from 0 to 1.
Following this, the generation of the pitch sound itself is executed and subsequently and
carefully mapped to the audio channels, distributing it to either the left or the right channel.

The results, illustrated in Figure 8, from the experiment suggest the AOS treatment
significantly outperformed the standard cueing protocol, where reduced severity and
duration of FoG were observed, not just post-treatment, but also during subsequent follow-
ups. AOS also enhanced motor function, reduced daily activity discomfort, and maintained
these improvements over time. Additionally, it substantially ameliorated daily living
issues and somewhat improved motor balance, with enduring benefits observed three
months post-treatment. These results overall showcase the transformative power of the
sonification of gait characteristics, underscoring its superiority over traditional metronome
cueing in terms of sustained clinical effectiveness. However, while the sonification of gait
characteristics has demonstrated effectiveness, the sonification of gait cycles has also been
explored as a clinical method of regulating gait.
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Figure 8. Eta Squared (η2G%) values for the top five outcome measures. The bar chart represents the
η2G% for the New Freezing of Gait Questionnaire (NFOGQ), Parkinson’s Disease Questionnaire-39
mobility domain (PDQ39 mobility), Unified Parkinson’s Disease Rating Scale Part III (UPDRSIII),
PDQ39 bodily discomfort, and PDQ39 total. Notably, NFOGQ exhibits the highest η2G% value.

5.2. Sonification of Gait Cycles

A gait cycle, comprising roughly 60% stance phase and 40% swing phase, represents
the movements in a single step. The stance phase involves weight-bearing, starting with
heel contact (HC) and progressing through loading, midstance, terminal stance, and pre-
swing stages. The swing phase, on the other hand, includes the foot’s off-ground movement
in stages of the initial, mid-, and terminal swing [61].

The application of sonification for the swing phase of the gait cycle has been inves-
tigated to evaluate the efficacy of the approach for delivering effective gait rehabilitation
to individuals with PD [18]. Each of the nine PD participants was guided to undertake
two full walks, both up and down, along a designated 12-m pathway, where a total of five
reflective markers (200 Hz) were attached to the shoes of each participant. Positional (X and
Y axes) data were streamed from the markers during each walk, with the sonification of
each swing phase being calculated and subsequently played in real time. This sonification
process first involves each X and Y displacement alteration consolidated into a singular
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vector for each heel marker, where the absolute variance in displacement between two
distinct samples is calculated to provide an approximate measure of velocity. The com-
mencement of the swing phase of the step is defined when this calculated velocity exceeds
a predetermined threshold of 0.5 ms−1, which then subsequently triggers the onset of the
sonification synthesis process. This process involves a four-part sine tone being played,
starting with a fundamental frequency of 261.63 Hz.

As the distance from the initial stride increased in 0.1 m increments, each subsequent
tone was played, with the pitch rising by 1 MIDI number per interval, which creates
an auditory sliding effect for each stride. The sonification of each swing phase for each
respective foot was subsequently played in the corresponding ear of the individual. The
results, illustrated in Figure 9, from the study showcase that when listening to the sonified
swing phases while walking, the coefficient of variation (CoV) for step length decreased to
7.08% from 9.65%, while the CoV for step duration decreased slightly to 5.32% from 5.66%.
The decrease in CoV for step length was statistically significant (p = 0.019), indicating
a meaningful improvement compared to baseline measurements. However, the change
in CoV for step duration was not significant (p = 0.675). These findings suggest that the
real-time sonification of gait cycles, i.e., the swing phase, can significantly reduce spatial
variability in the gait of PD patients, potentially improving gait consistency.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 19 
 

 

The promising outcomes of sonifying gait characteristics and cycles highlight the po-
tential of sonification within gait rehabilitation. Building upon these findings, the next 
section delves into another aspect of sonification in the field of biomechanics, focusing on 
the sonification of joint kinematics during ambulation. 

 
Figure 9. A bar chart illustrating the results of the experiment, demonstrating the significant effec-
tiveness of sonification in increasing step length. 

5.3. Sonification of Joint Kinematics 
Joint kinematics refers to the study of joint movements and the measurement of an-

gles at specific joints during different activities, such as walking. One specific area where 
joint kinematics and rehabilitation intersect is the rehabilitation of knee flexion, where the 
use of sonification has been explored for this purpose [62]. The development of a novel 
prototype system, namely Sofigait, was conducted to both address the necessity of quan-
tifying knee flexion, as well as to provide sonification to evaluate the perception of sonifi-
cation feedback in participants with artificially created gait asymmetry. This system, 
equipped with IMUs and a sonification module, was validated against a Vicon motion 
capture system in a controlled experiment involving a cohort of 24 healthy individuals. 

For the first phase of testing, participants walked on a treadmill at a speed of 4 km/h 
while their gait was recorded by Sofigait and Vicon. Ten gait cycles captured by both sys-
tems were compared for measurement system analysis. For the second phase of testing, 
participants wore a knee brace on their right leg to create an artificial gait asymmetry and 
walked five times consecutively on the treadmill at a reduced speed of 3.5 km/h to com-
pensate for the gait restriction caused by the knee brace. They received sonification 
through wireless headphones from the Sofigait system, which was randomized into four 
different versions for trials 2–5, where trial 1 served as an acclimatization trial. Through-
out each of the trials, the sagittal knee angle is systematically measured and sonified with 
the position of an extended leg serving as the reference point, denoted as 0°. Subsequently, 
as flexion increases, the knee angle progressively rises, eventually reaching 180°, which 
signifies the angle formed between the thigh and lower leg segments. 

Four distinct versions of sonification, Soni 1.1, 1.2, 2.1, and 2.2, were implemented as 
part of the sonification module. Soni 1.1 utilizes a sine continuous tone during the swing 
phase, ranging from 35°. The knee angle is logarithmically mapped from −45° to +90°, 
resulting in frequencies spanning from 220 Hz to 1760 Hz. Notably, at 0°, the knee angle 

Figure 9. A bar chart illustrating the results of the experiment, demonstrating the significant effec-
tiveness of sonification in increasing step length.

The promising outcomes of sonifying gait characteristics and cycles highlight the
potential of sonification within gait rehabilitation. Building upon these findings, the next
section delves into another aspect of sonification in the field of biomechanics, focusing on
the sonification of joint kinematics during ambulation.

5.3. Sonification of Joint Kinematics

Joint kinematics refers to the study of joint movements and the measurement of angles
at specific joints during different activities, such as walking. One specific area where joint
kinematics and rehabilitation intersect is the rehabilitation of knee flexion, where the use of
sonification has been explored for this purpose [62]. The development of a novel prototype
system, namely Sofigait, was conducted to both address the necessity of quantifying knee
flexion, as well as to provide sonification to evaluate the perception of sonification feedback
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in participants with artificially created gait asymmetry. This system, equipped with IMUs
and a sonification module, was validated against a Vicon motion capture system in a
controlled experiment involving a cohort of 24 healthy individuals.

For the first phase of testing, participants walked on a treadmill at a speed of 4 km/h
while their gait was recorded by Sofigait and Vicon. Ten gait cycles captured by both
systems were compared for measurement system analysis. For the second phase of testing,
participants wore a knee brace on their right leg to create an artificial gait asymmetry
and walked five times consecutively on the treadmill at a reduced speed of 3.5 km/h to
compensate for the gait restriction caused by the knee brace. They received sonification
through wireless headphones from the Sofigait system, which was randomized into four
different versions for trials 2–5, where trial 1 served as an acclimatization trial. Throughout
each of the trials, the sagittal knee angle is systematically measured and sonified with the
position of an extended leg serving as the reference point, denoted as 0◦. Subsequently,
as flexion increases, the knee angle progressively rises, eventually reaching 180◦, which
signifies the angle formed between the thigh and lower leg segments.

Four distinct versions of sonification, Soni 1.1, 1.2, 2.1, and 2.2, were implemented
as part of the sonification module. Soni 1.1 utilizes a sine continuous tone during the
swing phase, ranging from 35◦. The knee angle is logarithmically mapped from −45◦ to
+90◦, resulting in frequencies spanning from 220 Hz to 1760 Hz. Notably, at 0◦, the knee
angle corresponds to the concert pitch of 440 Hz, effectively modulating a sine oscillator.
Additionally, the knee angle is mapped to the volume, gradually fading out linearly below
35◦ until it reaches 0◦.

Soni 1.2 employs the same principles as Soni 1.1 but with a lower pitch, half an octave
below. For Soni 2.1, a continuous sine tone is utilized during the stance phase, ranging
up to 35◦. Like the previous versions, the knee angle is mapped to the volume, but in
this case, the continuous tone gradually decreases linearly from 0◦ to 35◦. As a result, an
alternating left/right sound is generated, with emphasis on the smaller angles. Lastly,
Soni 2.2 shares the same principles as Soni 2.1 but with a half-octave lower pitch. Table 1
below summarizes the principles of each Soni version.

Table 1. Summary of Soni version principles.

Attribute Soni 1.1 Soni 1.2 Soni 2.1 Soni 2.2

Phase of Action Swing Phase Swing Phase Stance Phase Stance Phase

Tone Type Continuous Sine Continuous Sine Continuous Sine Continuous Sine

Angle Range 35◦ to −45◦ to +90◦ 35◦ to −45◦ to +90◦ Up to 35◦ Up to 35◦

Frequency Range 220 Hz to 1760 Hz Lower by half an octave
(165 Hz to 1320 Hz) 220 Hz to 1760 Hz Lower by half an octave

(165 Hz to 1320 Hz)

The results of the study showed that changes in pitch significantly affected the per-
ceived pleasantness of the sonification feedback, with participants indicating that a lower
pitch was more pleasant. However, the accentuation of the feedback did not appear to
influence participants’ perception of their gait asymmetry. Based on the findings, the
swing-accentuated and lower-pitched version of the sonification (Soni 1.2) received the
highest ratings on both the asymmetry perception and pleasantness and is, therefore, the
recommended approach from the four sonification techniques for patients with asymmetric
gait from restricted knee movement.

While these results are limited regarding their effectiveness in reducing asymmetry,
they further indicate the potential impact that acoustic variables such as pitch can have on
the pleasantness of sonification as a clinical intervention. This finding also emphasizes the
requirement for advanced audio processing techniques to effectively address any potential
negative impact that acoustic variables, such as pitch, timbre, and amplitude, may have on
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sonification and personalised cueing in general. Table 2 provides a summary of methods
and results regarding gait sonification.

Table 2. Summary of gait sonification methods and outcomes.

Approach Method Population Main Outcomes

Cadence Sonification [17].

A music-sonification system with
pink noise, runs under various

conditions. Real-time adjustment
based on the runner’s cadence.

10 healthy participants

Pink noise feedback significantly
better than verbal instruction for

altering cadence. Effective for
both increasing and
decreasing cadence.

Velocity Sonification [59].
Action Observation plus

Sonification (AOS) using visual
and enhanced auditory cues.

37 PD patients

Reduced severity and duration of
FoG. Improved motor function

and daily activity comfort.
Lasting benefits observed.

Sonification of Swing
Phase [18].

Real-time sonification of the
swing phase of the gait cycle with

specific pitch tones.
9 PD patients

Statistically significant reduction
in the CoV for step length.
Improved gait consistency.

Sonification of Knee
Flexion [62].

Prototype system Sofigait for
sonification during walking.

Different versions of
sonification techniques.

24 healthy individuals

Lower pitch (Soni 1.2) was found
to be more pleasant. Limited data
on the effectiveness in reducing

gait asymmetry.

5.4. The Unmet Clinical Need

As evidenced in a review by Nown et al. [19] and in this paper, sonification has
rehabilitation potential in movement and gait. However, there is a clear lack of focus within
the literature on the sonification of clinically relevant gait characteristics that comprise
five gait domains: pace, rhythm, variability, asymmetry, and postural control. This is
important as these domains are associated with specific cognitive domains: attention,
working memory, visual memory, executive function, visuospatial function, and global
cognition [63,64]. Those identified gait domains are not uniform but rather involve different
neural mechanisms, where, for example, attention has been linked with gait velocity and
with grey matter volumes in certain brain regions [65]. Such gait domains become even
more distinct in the context of pathological gait as they specifically each have connections
to neurodegenerative diseases (such as PD) and general cognitive decline [66,67].

Accordingly, there is an unmet need for harnessing the use of sonification within
clinically defined gait. There is a need for targeted and personalised sonification within
specific gait domains and associated characteristics. Subsequently, future research could
better enable clinicians to focus on specific aspects of gait to target underlying neural
mechanisms and this should be the approach taken going forward.

6. Conclusions

Personalised cueing with sonification may have added value in gait rehabilitation.
Sonification has demonstrated a myriad of applications in gait rehabilitation, to improve
spatial and temporal gait characteristics, gait cycles, and joint kinematics. Research has
demonstrated extremely promising results, with sonification-based interventions demon-
strating significant improvements in reducing freezing-of-gait, spatial variability, and motor
balance, and enhancing gait consistency in individuals with mobility disorders such as PD.

Moreover, our comprehensive exploration of sound theory and manipulation of acous-
tic features, including aspects such as pitch, timbre, and amplitude, has highlighted the
significant potential to augment the effectiveness of auditory-based gait interventions.
Through detailed analysis, we have discussed and shown how these techniques can pro-
foundly impact factors such as valence, motivation, and information processing. This
understanding not only underpins the physical effectiveness of these interventions on
improving gait but may also demonstrates their practical application, which is imperative



Sensors 2024, 24, 65 16 of 18

for long-term engagement. The insights gained from this discussion reinforce the impor-
tance of these auditory elements, showing how they enhance the overall efficacy of the
interventions, thereby offering promising avenues for future research and application in
neurological rehabilitation.

Overall, the application of sonification and the manipulation of acoustic biofeedback
in gait rehabilitation has the potential to improve personalised interventions and improve
the effectiveness of therapy to reduce falls. By providing real-time auditory feedback
and tailored auditory experiences mapped to gait domains and clinically relevant char-
acteristics, sonification-based interventions could enhance motor learning and promote
neural plasticity. Such an approach could ultimately contribute to improving mobility and
reducing falls, restoring independence and improving the quality of life.
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