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Abstract: Three-dimensional object modeling is necessary for developing virtual and augmented
reality applications. Traditionally, application engineers must manually use art software to edit
object shapes or exploit LIDAR to scan physical objects for constructing 3D models. This is very
time-consuming and costly work. Fortunately, GPU recently provided a cost-effective solution for
massive data computation. With GPU support, many studies have proposed 3D model generators
based on different learning architectures, which can automatically convert 2D object pictures into
3D object models with good performance. However, as the demand for model resolution increases,
the required computing time and memory space increase as significantly as the parameters of the
learning architecture, which seriously degrades the efficiency of 3D model construction and the
feasibility of resolution improvement. To resolve this problem, this paper proposes a part-oriented
point cloud reconstruction framework called Part2Point. This framework segments the object’s parts,
reconstructs the point cloud for individual object parts, and combines the part point clouds into the
complete object point cloud. Therefore, it can reduce the number of learning network parameters at
the exact resolution, effectively minimizing the calculation time cost and the required memory space.
Moreover, it can improve the resolution of the reconstructed point cloud so that the reconstructed
model can present more details of object parts.

Keywords: 3D modeling; artificial intelligence; point cloud; part segmentation; high resolution;
parameter amount

1. Introduction

In recent years, 3D modeling has become increasingly widespread in virtual reality
(VR), augmented reality (AR), and computer vision. These applications enrich people’s
lives and bring much convenience. For example, in the realm of gaming [1], it can offer
players a fantastic and realistic gaming experience. In architecture and real estate, it can be
used to create virtual models of buildings [2], enabling designers and clients to visualize
better and understand the appearance and structure of the buildings. In the medical field,
it can be used to create precise models of human organs, assisting doctors in surgical
planning and simulation [3]. In education and training [4], it can be used to establish virtual
laboratories, simulated environments, and interactive learning tools to help students better
comprehend complex concepts and operations. In the entertainment and film industry [5],
it can be employed to create realistic special effects in animations and making movies. It
can be foreseen that the applications of 3D modeling will continue to expand and penetrate
people’s daily lives.

However, creating 3D models took much work in the past. Application developers
had to manually use computer-aided design software such as Blender [6], Solidwork [7],
and ProE [8] to model objects one by one according to their structures. To save labor
and time, an alternative method is to scan physical objects using 3D scanners directly.
However, the scanning range of 3D scanners is limited, and high-resolution 3D scanner
equipment is expensive, making it difficult for the general public to afford. By contrast,
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structure-from-motion (SfM) photogrammetry [9–11] is a practical and realistic solution to
create three-dimensional models of physical objects from a collection of two-dimensional
images or video frames. The steps involved in SfM mainly include feature detection and
matching, camera pose estimation, triangulation, and point cloud generation. SfM is a
well-established method with simplicity and versatility, while it is sensitive to outliers in
feature matching and relies on dense and distinctive features for accurate reconstruction.
It is necessary to seek or integrate with an alternative approach for generating promising
3D reconstructions, even with sparse input data, and handling low-texture and -occlusion
environments more effectively by learning contextual information.

Fortunately, the rapid development of graphics processing units (GPUs) in recent
years has led to artificial intelligence (AI) breakthroughs. Along with the release of large
open-source 3D object databases such as ShapeNet [12], Pix3D [13], and ModelNet [14],
deep learning has gained excellent development opportunities in the 3D modeling field. By
inputting multiview 2D images of objects, machines can learn various features of objects
and automatically reconstruct the 3D models of the entities. These models can be used
to create 3D digital content later. This dramatically accelerates the development of 3D
modeling applications, making AI-based 3D modeling a popular trend in research. The
primary methods for representing 3D object models are voxels [15], meshes [16], and point
clouds [17]. Point clouds require less data than voxels and are suitable for handling large-
scale models. They can directly capture and represent real-world data, such as 3D scans.
They also can achieve a similar level of detail as meshes by sampling specific points on
the object’s surface while avoiding using complex polygonal data structures to describe an
object. Considering resolution and computational costs, this study adopts point clouds as
the target for 3D model reconstruction.

Past research has proposed numerous 2D-to-3D point cloud generators. Their ar-
chitecture can be divided into two parts. The first part is the encoder, responsible for
extracting latent features from input 2D images. The second part is the decoder, which
transforms the obtained elements into a 3D point cloud. The overall architecture resembles
an autoencoder. With the continuous evolution of encoder and decoder architectures, the
performance of reconstructing 3D point clouds through autoencoders has reached practical
levels. However, most models currently maintain resolutions of around 1024 or 2048 points.
For particular complex objects, this can lead to losing many details in the object’s shape
and reducing the model’s realism. As shown in Figure 1, the point cloud comparison of
the bicycle at different resolutions is illustrated. The point clouds are represented using
16,384, 8192, and 2048 points, respectively. The details of the bicycle’s wheels, rear rack, and
handlebars are visible at the highest resolution, while some accessory details are missing
around the handlebars at the lower resolution. More information including the wheel
spokes, rear rack, and handlebars is lost at the lowest resolution, since directly increasing
the output resolution of the model would substantially inflate the number of parameters in
3D modeling. Consequently, the model’s training time and memory requirements would
also dramatically increase. Moreover, the point cloud generators proposed by past stud-
ies often lack constraints on local structures while learning the construction of an object
model. This leads to a lack of diversity in the generated 3D objects. Consequently, the local
structure of the object needs to be accurately reconstructed.

As previously described, this study aims to increase the output resolution of deep
learning models for point cloud reconstruction while not increasing the number of model
parameters. Inspired by the divide and conquer approach, we propose a part-oriented point
cloud reconstruction framework called Part2Point. The key feature of this framework is its
process of performing 2D part segmentation on the input 2D image data. This segmentation
divides the reconstruction target into smaller parts, initially a complete object. These parts
are then sequentially inputted into the point cloud generator to reconstruct corresponding
part point clouds. Finally, these individual part point clouds are merged to generate a
complete point cloud. On the other hand, this framework uses gamma adjustment to
enhance the part image features to extract the part image with better features in the image
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processing stage. Moreover, it calculates the loss values of the reconstruction results by
comparing them with the actual part clouds segmented from the 3D ground-truth point
cloud to optimize the output of the 3D part point clouds reconstructed from 2D part images.
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The remaining sections of this paper are organized as follows: Section 2 introduces
related research, and Section 3 explains the framework of Part2Point. Section 4 presents
and discusses the experimental results of performance evaluations. Finally, we give the
conclusions of this paper and future work.

2. Related Work

The proposed framework involves many research topics related to point clouds, such
as feature extraction, reconstruction, localized comprehension, and semantic segmentation.
The related work about these topics is described as follows.

Feature extraction: PointNet [18] introduced a method for feature learning and clas-
sification of irregular and unordered 3D point clouds. It utilizes multilayer perceptrons
(MLPs) and max pooling in the local feature extraction network, and fully connected
layers and max pooling in the global feature extraction network. PointNet++ [19] em-
ploys a hierarchical structure to capture local and global features in 3D point clouds. It
divides the point cloud into multiple levels of regions, progressively extracting features
from small local areas to the entire global part of the point cloud. Each layer uses the
PointNet method to enhance understanding of local features. To address incomplete point
clouds, which can hinder essential feature extraction, PCN [20] proposes a point cloud
completion method based on autoencoders. It predicts missing points from incomplete
3D point clouds to restore the missing parts. PU-Net [21] learns point cloud features
through PointNet and utilizes multibranch convolution units for feature transformation
and deconvolution operations, converting sparse 3D point clouds into denser ones. Zhang
et al. [22] introduced a self-supervised method for upsampling sparse point clouds to
increase their density. N. Engel et al. [23] proposed a deep learning network called the
point transformer to extract local and global features and relate both representations by the
local–global attention mechanism to capture spatial point relations and shape information.
This network is permutation-invariant because of a module called SortNet that extracts
ordered local feature sets from different subspaces. M.H. Guo et al. [24] presented the
point cloud transformer (PCT) to capture better local features hidden in the point cloud
by the offset-attention of the implicit Laplace operator and the normalization mechanism
that is inherently permutation-invariant and more effective than the original transformer
for learning point clouds. H. Zhao et al. [25] constructed a 3D point cloud understanding
network based on point transformer layers, pointwise transformations, and pooling.

Reconstruction: Several approaches have been developed for reconstructing 3D point
clouds from 2D single-view images. PSGN [26] introduced a framework and loss formula
for this purpose. Lin et al. [27] synthesized depth images and used supervised depth images
to enhance point cloud reconstruction. Jin et al. [28] extended [27] using weak supervision
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to generate depth images for improved reconstruction. Mandikal et al. [29] predicted a low-
resolution point cloud from a 2D image and upsampled it to reconstruct a high-resolution
point cloud. DeformNet [30] retrieved a point cloud shape template and fused it with image
features. 3D-LMNet [31] employed a multistage approach with an autoencoder architecture.
Pix2Pc [32] used VGG19 to extract features and then reconstructed the point cloud through
a deformation network. 3D-ReConstnet [33] proposed an end-to-end 3D reconstruction
network based on a variational autoencoder (VAE). Pixel2point [34] used CNN to extract
image features and combine them with a spherical template. Yuniarti et al. [35] extended
templates to more categories, while Ping et al. [36] projected point clouds onto a 2D
plane and used Gaussian derivatives and Harris corner detection to reduce differences.
Liu et al. [37] employed multiscale features and random point clouds for global feature
generation. Chen et al. [38] used image retrieval and filtering of object regions to reconstruct
point clouds. 3D-SSRecNet [39] introduced a point cloud reconstruction network based on
the DetNet backbone and ELU activation function, providing a higher receptive field for
feature extraction.

Localized comprehension: Prior research in point cloud understanding and recon-
struction primarily focused on learning overall object features directly for reconstruction.
However, some studies emphasized understanding object composition for capturing local
structures in reconstructed point clouds. Yu et al. [40] treated 3D part segmentation as a
multiclass labeling problem, introducing a top-down recursive decomposition method.
They recursively decomposed 3D models into binary nodes, using a classifier to determine
decomposition type and stopping criteria, with leaf nodes representing 3D part segmen-
tation results. Ko et al. [41] presented a model generating 3D point clouds with semantic
parts. Using latent 3D model features, the generator expanded the point cloud iteratively
in a coarse-to-fine manner, starting from a single point. Wang et al. [42] proposed the part
tree to point cloud (PT2PC) model based on conditional generative adversarial networks
(GANs). They traversed the input part tree, extracting subtree features bottom-up and
recursively decoding part features top-down to generate the final part point cloud. Li
et al. [43] used a variational autoencoder (VAE) to obtain global latent features mapped
into three different features and concatenated for reconstructing the complete point cloud
and primitives. Niu et al. [44] introduced the structure recovery network, mapping input
images directly to a hierarchical structure representing part structures for recovering part
structures from a single 2D view. Mandikal et al. [45] proposed an architecture combining
point cloud reconstruction networks with segmentation networks. They used a novel loss
function called location-aware segmentation loss to enable information sharing between
the two networks, optimizing the output point cloud model.

Semantic segmentation: In single-view 3D reconstruction tasks, the input 2D images
significantly impact the model’s output, making proper preprocessing of input data neces-
sary. Liu et al. [46] introduced a pixel-level classification approach for street view images,
dividing them into four semantic and depth regions. Cordts et al. [47] employed fully
convolutional networks (FCN) for pixel and instance-level segmentation in complex urban
scenes to capture spatial information effectively. DeepLabv3 [48] utilized residual networks
(ResNet) for feature learning and multiscale dilated convolution to capture features of
various scales for scene-level segmentation. Zhou et al. [49] analyzed the ADE20K dataset,
which covers scenes, objects, and parts, and tested various semantic segmentation models.
They need a hierarchical segmentation module for handling different segmentation levels.
Liu et al. [50] addressed the challenges of manual part segmentation by annotating 3D CAD
models and rendering numerous synthetic 2D images from these models. Atik et al. [51]
present an effective ensemble deep learning method for semantically segmenting mobile
LiDAR sensor point clouds. The approach involves projecting 3D mobile point clouds into a
2D representation using spherical projection on range images. Liu et al. [52] introduced the
spatial eight-quadrant kernel convolution (SEQKC) algorithm for enhancing 3D point cloud
semantic segmentation, specifically targeting small objects in complex environments. The
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SEQKC algorithm improves the network’s capability to extract detailed features, resulting
in higher accuracy for small objects and boundary features.

In summary, previous methods primarily relied on 2D image data to reconstruct global
point clouds directly. However, they faced limitations in generating high-resolution point
clouds, as achieving higher resolution necessitates increasing the decoder’s output neuron
count. While Mandikal et al.’s [29] method can generate higher-resolution point clouds, it
initially reconstructs sparse point clouds and incrementally increases resolution, potentially
losing object details similar to upscaling a compressed 2D image. 3D-PSRNet’s [45] recon-
struction method incorporates object parts into network training, allowing the segmentation
network to capture detailed object part features. However, this approach requires training
in both reconstruction and segmentation networks, leading to increased model parameters
and similar limitations on point cloud resolution output.

By contrast, our study utilizes 2D and 3D part annotation data during model training
to address these challenges to enhance output resolution, retain object details, avoid
increasing model parameters, and maintain object detail comprehension. We employ the
2D annotation image from Liu et al. [50] based on the ShapeNet [12] dataset for 2D part
segmentation training, along with ShapeNet part annotation [53] point cloud annotation
data. We also use the DeepLabV3 method proposed by Zhou et al. [48] to train the part
segmentation model. The comparison of the related studies with Part2Point is summarized
in Table 1.

Table 1. Comparison of related work.

Research Year Encoder Feature
Vector Decoder Image Process Reconstruct

Target Resolution Approach

3D-
ReconstNet

[27]
May 2020 ResNet50 1 × 100 FC Normalization Global

Point Cloud
1024
2048

Using VAE methods
to produce plausible
point cloud results
for blurry or
slurred images.

Pixel2point
[28]

December
2020 Conv 256 × 259 FC Normalization Global

Point Cloud 2048

Using the spherical
point cloud template
with the features of
the image feature
extraction network.

Yuniarti
et al.
[29]

November
2021

ResNet50
PointNet++

2048
(2D:1024)
(3D:1024)

Conv Normalization Global
Point Cloud 1024

Different input
images using
different point cloud
templates to
reconstruct.

Ping et al.
[30]

August
2021 Conv 512 FC Normalization Global

Point Cloud 1024

Generating edges
and corners of the
image, and
reprojecting the
output point cloud
back to the plane.

Liu et al.
[31]

October
2021 Conv Nx2435 resGraphX

(FC + GCNN) Normalization Global
Point Cloud 1024

Reconstructing point
clouds using random
point clouds and
multiscale features.

Chen et al.
[32]

December
2021

Conv
PointNet 1024 Linear Normalization Global

Point Cloud 1024

Searching for real
point clouds of
similar objects in the
database to aid
reconstruction.
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Table 1. Cont.

Research Year Encoder Feature
Vector Decoder Image Process Reconstruct

Target Resolution Approach

3D-
SSRecNet

[33]

October
2022 DetNet 1 × 100 FC Normalization Global

Point Cloud
1024
2048

Image feature
extractor based on
the DetNet
backbone network
to bring a higher
perception field.

Part2Point July 2023

ResNet50 1 × 100 FC

Normalization
Gamma Adjust

Part
Point Cloud

1536
4608
9216

13,824

Using part
segmentation to
reconstruct the local
parts of the object
separately to improve
the reconstruction
resolution and quality.

Conv 256 × 259 FC

DetNet 1 × 100 FC

3. Proposed Framework

This paper proposes a part-oriented point cloud generation framework called Part2Point,
as shown in Figure 2. The process of reconstructing a point cloud model for a given
object image is shown in the (a) block. Firstly, the input object image undergoes data
preprocessing and is segmented into several part images, and each only contains some local
structure of the object. Then, the part images are individually input into the point-cloud
generator to reconstruct the part point clouds of the object. Finally, the part point clouds
are combined to form the complete object point cloud. This architecture allows the neural
network to focus on learning the reconstruction of local structures of objects while reducing
the number of parameters in the generator model, preventing an explosion in the parameter
number with increasing overall point cloud resolution. On the other hand, the model’s
training process is as outlined in block (b). The first is to input the 2D images (x) of objects,
segmenting each 2D object image into x-part images (xpart). The second is to input the x
part images individually into the point cloud generator for producing predicted part point
clouds. The third is to calculate the part loss (Lpart) by comparing the predicted part point
clouds (ypred) with the ground truth (ypart) of the part point clouds. The fourth is to merge
the predicted part point clouds to form a complete object point cloud (youtput) and compare
it with the 3D ground truth (y) of the object point cloud to calculate the global loss (Lglobal).
The final is to optimize the parameters of the point-cloud generator according to the local
and global losses.

As previously described, the stages of point cloud reconstruction in the proposed
framework are mathematically expressed as follows.

Stage 1: xpart = S2D(x), where S2D(x) is a function to separate an input image (x) into
a set of part images denoted as xpart.

Stage 2: ypred = G
(
xpart

)
, where G

(
xpart

)
is a function to transfer xpart into a set of

part point clouds denoted as ypred.

Stage 3: youtput = M
(

ypred

)
, where M

(
ypred

)
is a function to merge ypred into an

output point cloud denoted as youtput.
Stage 4: ypart = S3D(y), where S3D(y) is a function to separate the 3D ground truth

(y) of the input image into a set of part point clouds denoted as ypart.

Stage 5: Compute the values of Lpart

(
ypred, ypart

)
and Lglobal

(
youtput, y

)
, where

Lpart

(
ypred, ypart

)
is a loss function to estimate the difference between ypred and ypart;

Lglobal
(
youtput, y

)
is a loss function to estimate the difference between youtput and y.

Stage 6: Optimize the point cloud generator (i.e., the G
(
xpart

)
function) according to

the values of Lpart

(
ypred, ypart

)
and Lglobal

(
youtput, y

)
.
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Stages 4–6 are performed only when training the point cloud generators, and 3D part
segmentation is executed in advance to save training time. The following are the details of
the part segmentation, point cloud generator, and loss functions in the Part2Point framework.
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Figure 2. Framework of Part2Point.

3.1. Part Segmentation

The 3D part segmentation denoted as S3D, assigns a class label to each point, essentially
classifying points into different parts. To calculate reconstruction errors for individual part
point clouds in Part2Point, the ground-truth point cloud is segmented into multiple parts,
where each part point cloud corresponds to a specific part of the object. For example, in
the “airplane” category, the segmentation might include part point clouds for the fuselage,
tail, and wings (as shown in Figure 3). However, due to variations in the resolutions of
segmented part point clouds, batch training during model training is impractical. We
draw inspiration from PointNet++ [19] to address this challenge and perform uniform
point subsampling on the input point clouds. We utilize the farthest point sampling (FPS)
technique to subsample the segmented point clouds to a consistent resolution.
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Similarly, the 2D part segmentation denoted as S2D assigns a class label to each
pixel in the image. The image is divided into distinct parts, with each containing the
pixels of a specific part area, while other regions are masked and filled with black color.
This segregation enables the extraction of unique features for each part to facilitate point
cloud reconstruction. However, challenges arise when objects are occluded from certain
viewpoints, causing some part images to be unavailable. For instance, the wheels may be
occluded when viewing a car from directly above, causing the 2D part segmentation to
miss the wheel parts. To address this issue, we utilize the original input image to fill in
the missing part images (as depicted in Figure 4). We currently employ the DeepLab [54]
architecture to train a neural network for 2D part segmentation to annotate part information
in 2D images.
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3.2. Point Cloud Generator

As shown in Figure 2, the role of the point cloud generator G is to reconstruct the
predicted part point cloud ypred from independent part images xpart using a neural network,
defined as ypred = G

(
xpart

)
. Npred represents the resolution of the predicted part point cloud.

Once the reconstruction of individual object parts is completed, a loss function calculates
the error between the predicted part point cloud and the actual part point cloud ypart,

defined as Lpart

(
ypred, ypart

)
. On the other hand, after reconstructing the predicted part

point clouds, they are merged to obtain the model’s output point cloud youtput, which is then
compared to the actual point cloud to calculate the global loss, defined as Lglobal

(
youtput, y

)
.

The loss function of the neural network is defined as L = Lpart + Lglobal .
For merging part point clouds, the order of points does not need to be processed

individually due to the permutation invariance property of data structure. It is sufficient to
reshape the tensor size from

(
X′, Npred, 3

)
to

(
X′ × Npred, 3

)
, where the segmented point

cloud parts are sequentially arranged as a single point cloud. This operation is defined as
youtput = M

(
ypred

)
, as shown in Figure 5.
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3.3. Loss Function

The loss function evaluates the error between the output and the ground truth. It
is a crucial factor affecting the learning performance of neural networks, as the network
optimizes and updates its weights based on this error. In the point cloud generation task,
the loss function measures the distance between the generated and real point clouds. Since
a point cloud is an unordered set of points, the meaning remains the same regardless of
the order of the points. Currently, the loss functions for point cloud reconstruction usually
are the chamfer distance (CD) [55] and Earth mover’s distance (EMD) [56]. The chamfer
distance is defined as Equation (1).

LCD(S1, S2) = ∑
x∈S1

min
y∈S2

∥x − y∥2
2 + ∑

y∈S2

min
x∈S1

∥x − y∥2
2 (1)

Past studies [33,34,39] used CD as the loss function due to its computational effi-
ciency. However, these studies found that CD could not generate high-quality point clouds
with uniform distribution. This often led to the clustering or splattering of points in the
reconstructed output, resulting in a visual effect that was not satisfactory.

On the other hand, the Earth mover’s distance is defined as Equation (2).

LEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

∥x − φ(x)∥2 (2)

In this equation, φ is a one-to-one mapping function that maps S1 to S2. Due to the
one-to-one mapping relationship, EMD does not have the clustering characteristics existing
in CD. The drawback of EMD is that it involves enormous computational complexity for
high-resolution point clouds. Therefore, in most existing methods, the EMD algorithm is
approximated to compute the point cloud error.

As shown in Figure 6, the evaluation results of different reconstruction outputs using
CD and EMD show that CD’s evaluation does not accurately capture the actual visual effect
of the objects. Although the CD metric considers Output2 to have a minor error compared
to Output1, the points in Output2 are excessively concentrated in some regions and need
to accurately match the points of the actual object, resulting in unclear details. In contrast,
EMD requires finding a mapping function that ensures each point in the output point cloud
is mapped to a unique point in the actual point cloud. This ensures that the output point
cloud has the same distribution and density as the true point cloud, making it more capable
of capturing local details and density distribution. Although CD has inherent drawbacks, its
efficient computation can assist point cloud reconstruction networks in faster convergence
during training. By using additional constraints to aid model training, this study uses EMD
and CD to compute Lpart and Lglobal when training the point cloud generator.
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4. Experimental Results

We have evaluated the performance of Part2Point in this paper. We used three point
cloud generators, namely 3D-ReconstNet, Pixel2point, and 3D-SSRecNet, in the Part2Point
framework. We evaluated these generators without and with part segmentation to assess
differences in model reconstruction performance, model parameters, training time, and
point cloud resolution. We also tested the impact of the additional global loss function
and part numbers on the Part2Point reconstruction performance. Our experimental envi-
ronment set up for this performance evaluation included a PC with an Intel i9-10980XE
CPU, an NVIDIA GeForce RTX 3090 Ti graphic card, 256 GB RAM, and a Linux Ubuntu
20.04.5 operating system. We used Python programming language, CUDA 12.0 library,
and the Pytorch [57] deep learning framework for developing the test program and em-
ployed CloudCompare [58] for point cloud visualization and rendering of point cloud part
segmentation. During the training of these generators, the input image size was set to
128 × 128, and the used optimizer was Adam, with a learning rate of 5 × 10−5. Each batch
had 32 data samples, and the training lasted 50 epochs.

On the other hand, the datasets used in the tables and figures of experimental results
are UDA-Part [50] and ShapeNet Part Annotation [53]. We utilized the multiview 2D
part segmentation dataset provided by UDA-Part and extracted corresponding 3D part
segmentation point clouds from the ShapeNet part annotation as reconstruction targets for
the 2D dataset. The dataset categories include cars, airplanes, bicycles, buses, and motor-
cycles. For the experiments, 80% of the data were used for training the used point cloud
generators, while the remaining 20% served as the test set. However, the existing ShapeNet
part annotation dataset only contains point cloud objects with a resolution of approximately
2000 points for representation. To test the performance of point cloud reconstruction at
higher resolutions, we used the point cloud processing software, CloudCompare [58], to
resample 15,000 points on the mesh surface for each object from ShapeNetCore, where each
point was annotated with part information. While testing the performance of reconstructing
point clouds, we calculated the distance error between each part of the generated point
cloud and its corresponding ground truth. Then, we summed and averaged the errors
belonging to the same object part to provide the overall error of the output point cloud. As
discussed in Section 3.3, we used the EMD metric for the error of point cloud reconstruction
in our experimental results.
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4.1. Impact of Part Segmentation

This experiment assessed the influence of part segmentation on both the computational
cost and effectiveness of point cloud generators at different resolutions (1536, 4608, 9216,
and 13,824). Firstly, we present the impact on execution cost in Table 2.

Table 2. Impact of part segmentation on parameter number and training time.

Baseline Resolution
Parameters × 106 Batch Time (ms)

w/o Part w Part w/o Part w Part

3D-
ReconstNet

1536 34.0985 26.7026 55.5416 81.4390
4608 100.3262 34.0985 226.3058 133.8352
9216 * 58.9548 * 322.4979

13,824 * 100.3262 * 639.8990

Pixel2point

1536 645.8794 186.8478 99.1192 43.0830
4608 * 645.8794 * 150.4784
9216 * * * *

13,824 * * * *

3D-SSRecNet

1536 26.8140 19.4182 56.3019 87.7139
4608 93.0417 26.8140 227.1828 140.5757
9216 * 51.6703 * 329.6051

13,824 * 93.0417 * 646.7262
* GPU out of memory.

Obviously, the parameters of the point-cloud generators with part segmentation are
much less than those of the same generators without part segmentation. When part
segmentation is utilized, the point cloud generators individually reconstruct point clouds
for the part segments of a given object and then assemble the point clouds of part segments
to form the complete point cloud of the object. For the same resolution, as the point cloud is
divided into three parts, the number of output points of the decoder is only one-third of that
without part segmentation. Consequently, the parameters of the generator models decrease
significantly. However, when an object undergoes three part segmentations, the generator
must create three part point clouds for each object and combine them into a complete point
cloud. When the resolution is small (e.g., 1536), the increased time for generating more
part point clouds may offset the time saved by reducing generator parameters, resulting in
an overall increase in point cloud generation time for some cases, such as 3D-ReconstNet
and 3D-SSRecNet. However, as the resolution increases, the parameter reduction begins to
outweigh the effects of increased part point generation, leading to a significant decrease in
batch time for all generators. Notably, at resolutions 9216 and 13,824, all three generators
cannot execute without part segmentation due to high memory demands exceeding the
graphics card capacity. However, with part segmentation, the model parameters do not
excessively increase with resolution, enabling the generators to effectively generate point
clouds regardless of the resolution.

Table 3 presents the Earth mover’s distance (EMD) errors for point cloud reconstruc-
tion with three parts and resolutions of 1536, 4608, 9216, and 13,824. The results consistently
show that employing part segmentation improves the EMD metric for point cloud recon-
struction. This experiment highlights that integrating part segmentation into point cloud
reconstruction tasks can enhance reconstruction results at most resolutions. Although the
parameter number of the generator model is much less than the original, the generators
with part segmentation can reduce the EMD values because they construct better point
clouds for each part of the target object as they can focus on local part features. With
increasing resolution, the model parameters also grow, enabling the model to capture
finer object details, theoretically resulting in improved point cloud quality. However, the
reconstruction results induced by 3D-ReconstNet and Pixel2point are not improved by part
segmentation at the 1536 resolution. This result implies that although part segmentation
can effectively reduce the model parameters necessary for reconstructing point clouds, the
reconstruction accuracy may not be improved but degraded when the parameter number



Sensors 2024, 24, 34 12 of 20

is reduced below a threshold. In addition, the improvement induced by part segmentation
seems most pronounced when transitioning from resolutions 1536 to 4608. The possible
explanation could be that the current model architectures for the generators are not yet opti-
mized for higher resolutions like 9216 and 13,824. Future work may require adjustments to
the generator model architecture to achieve better reconstruction quality with more points.

Table 3. Impact of part segmentation on reconstruction errors.

Baseline Resolution
EMD × 10−3

w/o Part w Part

3D-ReconstNet

1536 3.0150 3.6341
4608 2.7259 2.4058
9216 * 2.7349

13,824 * 2.9141

Pixel2point

1536 4.5801 4.7705
4608 * 3.4979
9216 * *

13,824 * *

3D-SSRecNet

1536 3.9524 3.6830
4608 2.8710 2.7549
9216 * 2.7639

13,824 * 3.0988
* GPU out of memory.

Figures 7–10 show the visualizations of point clouds generated by 3D-SSRecNet with
and without part segmentation. In each figure, from left to right, we have the input
image, image-based part segmentation, point cloud generated without part segmentation
(w/o part), point cloud generated with part segmentation (w part), and the ground-truth
point cloud. At a resolution of 1536, each part contains only 512 points. The resolution of
part point clouds is too low to show the visual differences in the reconstructed point clouds.
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At a resolution of 4608, the ground-truth point clouds exhibit more detailed object
information. When applying part segmentation, the reconstructed point clouds are closer
to the real ones. For instance, on the bicycle, the frame’s support structure in the wheels is
reconstructed more precisely and uniformly. The separation between the rear mudguard
and the tire is more precise, resulting in a more uniform and smoother appearance overall.
Conversely, without part segmentation, the reconstruction of the wheel’s support structure
and the rear mudguard appears blurred and exhibits irregularities and roughness. Even
at resolutions of 9216 and 13,824, the point cloud generators with part segmentation still
achieve nearly realistic point cloud reconstructions. For example, on the bicycle, the brake
lines on the frame and the chain on the derailleur are reconstructed with fine details, and the
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overall contour lines are denser and more distinct. In contrast, without part segmentation,
the point cloud generator lacks the memory capacity to adequately train and reconstruct
point clouds.
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4.2. Impact of Part Number

This experiment aims to assess the impact of the number of parts on the proposed
framework’s performance. We measured model parameters, training time, and point cloud
generator reconstruction errors for configurations with two and three parts. The results
are summarized in Tables 4 and 5. When maintaining the same resolution, increasing the
number of parts substantially reduces the generator’s model parameters. Additionally,
we observed that the training time per batch increased with resolution. However, using a
generator with more parts actually results in less training time. This phenomenon occurs
because as the number of parts grows, the point cloud can be divided into smaller part
clouds, reducing the reconstruction time for each part. The time saved in generating
additional parts outweighs the time spent, leading to an overall reduction in training
time. This effect may not be very noticeable at lower resolutions but becomes increasingly
pronounced as the resolution rises. Conversely, increasing the number of parts leads to a
higher overall point count in the generated objects.

Table 5 presents the Earth mover’s distance (EMD) evaluation for point cloud re-
construction using two and three parts. The table reveals that increasing the number of
part point clouds results in improved EMD values. These improvements become more
significant as the resolution increases. Part segmentation enables the generator to focus on
the distinct features of each part. As the resolution rises, the generator’s model parameters
also increase, enhancing its capacity to capture finer details of object parts.
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Table 4. Impact of part number on parameter number and training time.

Baseline
with Part2point Resolution

Parameters × 106 Batch Time (ms)

Part 2 Part 3 Part 2 Part 3

3D-ReconstNet

1536 27.8635 26.7026 67.7732 81.4390
4608 44.4623 34.0985 155.3247 133.8352
9216 100.3262 58.9548 431.5171 322.4979

13,824 * 100.3262 * 639.8990

Pixel2point

1536 290.3990 186.8478 56.9126 43.0830
4608 * 645.8794 * 150.4784
9216 * * * *

13,824 * * * *

3D-SSRecNet

1536 20.5790 19.4182 70.7718 87.7139
4608 37.1778 26.8140 158.5024 140.5757
9216 93.0417 51.6703 435.3806 329.6051

13,824 * 93.0417 * 646.7262
* GPU out of memory.

Table 5. Impact of part number on reconstruction errors.

Baseline
with Part2point Resolution

EMD × 10−3

Part 2 Part 3

3D-ReconstNet

1536 3.2090 3.6341
4608 2.6103 2.4058
9216 3.3004 2.7349

13,824 * 2.9141

Pixel2point

1536 4.5668 4.7705
4608 * 3.4979
9216 * *

13,824 * *

3D-SSRecNet

1536 3.2416 3.6830
4608 2.8234 2.7549
9216 2.8905 2.7639

13,824 * 3.0988
* GPU out of memory.

4.3. Impact of Global Loss

This experiment aims to conduct investigations and explore the impact of using an
additional global loss function to constrain the global point cloud in terms of Part2Point’s
performance. Table 6 shows that after using the additional global loss function, the EMD
errors of the generated reconstruction models improve regardless of the resolution or the
type of generator used. This indicates that incorporating an extra global loss function
effectively aids in merging and fusing the part point clouds into a coherent whole object.
This result suggests that the global loss function can capture the overall features and
structure of the entire point cloud, leading to more consistent and natural-looking generated
point clouds. Consequently, this method shows significant effectiveness in enhancing the
performance of the part point cloud generator. The experimental findings may contribute
to further improvements in point cloud generation by achieving the generated point clouds’
global and shape consistency.



Sensors 2024, 24, 34 16 of 20

Table 6. Impact of global loss on reconstruction errors.

Baseline
with Part2point Resolution

EMD × 10−3

w/o Global Loss w Global Loss

3D-ReconstNet 1536 5.5664 3.6341
4608 5.1782 2.4058
9216 5.2911 2.7349

13,824 5.7327 2.9141
Pixel2point 1536 5.4261 4.7705

4608 4.9779 3.4979
9216 * *

13,824 * *
3D-SSRecNet 1536 5.5236 3.6830

4608 5.8300 2.7549
9216 5.8053 2.7639

13,824 5.7876 3.0988
* GPU out of memory.

4.4. Reconstruction Errors of Different Object Categories

Table 7 presents the EMD values of point clouds generated for various object categories
when the number of part segments is 3. At low resolutions, the three generators show
improved EMD values in only 1 or 2 categories. As the resolution increases, the model
parameter also rises, enhancing the point cloud generators’ ability to learn object details.
At a resolution of 4608, EMD values for three categories are improved in the point clouds
reconstructed by 3D-SSRecNet and 3D-ReconstNet. Pixel2point has too many parameters
to be executed, but it successfully generated point clouds after incorporating the Part2Point
framework. When the resolution reached 9216 and 13,824, all three generators were initially
unable to train and reconstruct point clouds due to excessively high model parameters.
However, adopting Part2Point, 3D-SSRecNet, and 3D-ReconstNet can successfully generate
point clouds.

Table 7. Reconstruction errors for different object categories.

Baseline Class

1536 4608 9216 13,824

EMD × 10−3 EMD × 10−3 EMD × 10−3 EMD × 10−3

w/o Part w Part w/o Part w Part w/o Part w Part w/o Part w Part

3D-
ReconstNet

airplane 2.2942 3.0801 2.4486 2.3944 * 2.4032 * 2.6453
bus 2.9452 4.2946 3.1775 3.9811 * 3.6653 * 3.8379

bicycle 4.3406 2.1741 4.6802 1.8245 * 1.8001 * 2.7155
motorbike 3.1908 3.1580 3.3843 2.9898 * 2.8782 * 4.0297

car 3.1127 5.0973 1.9555 3.4091 * 2.9618 * 4.0415

Pixel2point

airplane 3.5436 3.5937 * 3.2848 * * * *
bus 4.1336 6.1725 * 4.0799 * * * *

bicycle 7.9504 3.3159 * 2.2445 * * * *
motorbike 3.5840 4.4104 * 3.4684 * * * *

car 3.2411 6.1725 * 3.4585 * * * *

3D-SSRecNet

airplane 2.3918 2.5436 2.2183 2.2052 * 2.2142 * 3.2820
bus 3.1402 3.8450 2.8995 2.9512 * 3.3192 * 4.9274

bicycle 6.7063 2.3678 4.3667 2.2045 * 2.1010 * 5.4872
motorbike 3.5998 3.5922 3.5251 2.7118 * 2.3621 * 3.3876

car 3.2382 4.6990 1.9924 2.8603 * 2.8605 * 4.2428

* GPU Out of Memory.

Overall, the previous experimental results show that the proposed framework in this
paper effectively enhances the resolution and part details of generated point clouds with
lower computational costs and memory demands.
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5. Conclusions and Future Work

High-resolution 3D modeling is critical to the development of VR/AR and computer
vision applications. When the 3D reconstruction models proposed in past research are used
to generate high-resolution object models, they often face the problem of high memory
demand and computation cost and cannot even successfully work because their parameter
numbers extremely increase with model resolution. In this study, we have successfully de-
veloped a part-oriented point cloud generation framework called Part2Point to resolve this
problem. This innovative framework incorporates object part segmentation to reconstruct
point cloud models based on the local structure of objects. Through our experiments, we
have demonstrated several key findings. First, Part2Point effectively reduces the model
parameters of the point cloud generator architecture while achieving the same output
resolution. This approach eliminates the need for many fully connected layer parameters
in the decoder stage of the reconstruction network to output high-resolution point clouds.
Second, segmenting objects into individual parts allows us to reconstruct point cloud mod-
els for each part separately rather than reconstructing the entire high-resolution point cloud
simultaneously. This results in higher point cloud resolutions at a lower computational cost
and reduced memory demand while simultaneously enhancing reconstruction accuracy
by focusing on local structure. Third, increasing the number of segmented parts with the
same point cloud resolution leads to an overall increase in point cloud resolution. This
approach preserves more object details than previous methods that down-sample point
clouds to 2048 points, especially for dense point clouds with higher resolutions or complex
shapes. Fourth, part segmentation introduces computational time costs due to increased
batches fed into the generator. However, it also reduces the model parameters, ultimately
reducing point cloud reconstruction time, particularly as the resolution increases. Fifth,
the part-oriented reconstruction framework enables neural networks to focus on learning
object local structures, resulting in better point cloud reconstruction results, especially for
capturing object details.

Our experimental result shows that when the resolution reaches 9216 and 13,824, the
reconstruction quality improvement induced by part segmentation is insignificant. In the
future, we will adjust the architecture of the point cloud generators with part segmentation
to achieve better high-resolution reconstruction quality and evaluate the impact of the
proposed framework on other 3D reconstruction models. On the other hand, we will
address the time and resource-intensive process of manually annotating 2D and 3D parts by
exploring unsupervised or semisupervised learning methods to generate part-annotation
datasets. We also investigate using small amounts of unlabeled or partially labeled data to
improve part segmentation, resulting in more annotated data and robust training of point
cloud generator models. In addition, we will explore more efficient and discriminative
loss functions to alleviate computational complexity challenges associated with the Earth
mover’s distance (EMD) as point cloud resolution increases.
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