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Abstract: Most of the established gait evaluation methods use inertial sensors mounted in the lower
limb area (tibias, ankles, shoes). Such sensor placement gives good results in laboratory conditions
but is hard to apply in everyday scenarios due to the sensors’ fragility and the user’s comfort. The
paper presents an algorithm that enables translation of the inertial signal measurements (acceleration
and angular velocity) registered with a wrist-worn sensor to signals, which would be obtained if
the sensor was worn on a tibia or a shoe. Four different neural network architectures are considered
for that purpose: Dense and CNN autoencoders, a CNN-LSTM hybrid, and a U-Net-based model.
The performed experiments have shown that the CNN autoencoder and U-Net can be successfully
applied for inertial signal translation purposes. Estimating gait parameters based on the translated
signals yielded similar results to those obtained based on shoe-sensor signals.
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1. Introduction

Recently, gait analysis has become an essential tool in healthcare, sports, and fitness.
It is especially prevalent in elderly care as the gait and balance deficits increase with
age. The gait analysis helps to estimate the risk of falls and screen for frailty [1]. Gait-
related parameters are also commonly used for intrinsic capacity (IC) and functional
ability evaluation [2] as they correspond to the performance of the older adults in the IC
locomotion domain.

Besides IC, there are several geriatric assessment tools based on gait speed and dy-
namic balance. The most renowned tests measure the time it takes to cover a given distance
in various conditions. The most straightforward, the 10-meter walk test, assesses walking
speed over a short distance [3]. More complex solutions assume following a defined path,
e.g., walking a figure eight shape [4] or moving along a narrow path between parallel
lines [5]. Others require passing over obstacles or keeping a straight walk while turning
the head to the right or left or tipping the head up and down [6].

As human movement can be accurately measured using inertial sensors, automati-
zation of such evaluation procedures with wearable sensors seems an obvious solution.
The application of inertial sensors to geriatric gait assessment is presented in many pub-
lications. In the survey [7], inertial sensor-based frailty and fall risk evaluation methods
are compared. They differ in the number of sensors used and their position. Six inertial
measurement units (IMUs) were even used in the most extensive test setups. The sensors
are typically attached to feet, instep, heels, the chest, the sternum, trunks, or the tibia or
combinations of these locations.

Most tests are performed in clinical conditions where numerous sensors on different
body parts can be easily placed. Unfortunately, such an experimental setup is hard to recre-
ate in everyday living conditions. In such applications, the sensors should fulfill several
requirements: they should be easy to operate and charge and should not cause the user any
significant discomfort while putting them on or taking them off. Otherwise, such solutions
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might not be accepted by the older adults. Despite the problems mentioned above, great
hope is being placed in such solutions as monitoring the gait of older adults during everyday
activities would provide data better reflecting their overall health state [8,9].

Another important area of gait analysis application is related to sports, fitness, and
rehabilitation. In these cases, most of the tests described in the literature utilize sensors
mounted in the lower limb area. In the comprehensive review [10] of running gait analysis
methods, out of 170 analyzed works, over 100 relied on measurements performed in
the lower limb area (tibia, shoe, insoles), whereas a mere 2 works obtained data with a
wrist-worn sensor.

Generally, regardless of the domain, most gait evaluation tests with inertial mea-
surement units are performed using shoe or tibia-mounted sensors. Although giving
accurate results in laboratory environments, such sensors are unsuitable for daily monitor-
ing. Shoe-based sensors are fragile and require the same pair of shoes to be worn all the
time. Tibia-mounted sensors are usually uncomfortable, and their orientation might shift if
not tightly attached. A much better solution would be to use inertial measurement units
embedded in smartwatches or smart bands worn by the users.

The motivation for the following study is to find a method that would enable the
translation of signals recorded by an inertial sensor worn on the wrist to signals that would
be recorded by sensors placed in the lower limb area: tibia and foot. The main contributions
of this study are the following:

• We analyzed four different neural network architectures for wrist-to-tibia and wrist-
to-shoe translation of inertial signals (acceleration and angular velocity),

• We gathered a dataset comprising inertial measurements registered using the wrist,
tibia, and shoe-worn sensors collected over several hours of walking.

• Our experiments have proved that the U-Net-based model and the CNN autoencoder
can be successfully applied to solve IMU signal translation problems.

The structure of the rest of the paper is as follows. Section 2 describes the current state
of the art concerning neural-network-based signal translation methods. The problem and
the proposed inertial signal translation model are outlined in Sections 3 and 4, respectively.
The experiments and results are presented in Section 5. Section 6 concludes the paper.

2. Related Work

Signal translation using neural networks is a vibrant field of research. Most of the
articles written on the matter concern image-to-image translation [11] including style
transfer [12] and generating semantic maps [13]. The research described in the literature
is mainly concerned with the conversion of photos or videos. The works that address
translating signals obtained through means other than visual are much less common. In
this section, we analyze works that employ machine learning (ML)-based signal translation
methods to solve relevant problems, converting the signals to those obtained using different
sensors or under different conditions.

There are different reasons to apply signal translation. In most cases, its purpose is
to transform a signal into another domain, which enables more efficient data processing,
for example, by using ML models trained on data gathered using a different sensor [14] or
to change the signal representation to one which is widely known and easier to interpret
by human experts [15]. Most of the signal translation methods use one of two network
architectures: autoencoders [16] or generative adversarial networks (GANs) [17]. The
employed models range from simple feed-forward networks to sophisticated architectures,
including several convolutional and LSTM (long short-term memory) layers.

The method proposed in [14] translates range-Doppler maps obtained using a newer
version of an ultra-wideband (UWB) radar to a domain associated with its older counterpart.
The main goal is to enable the use of ML models trained on data gathered using the previous
sensor version. The authors propose a novel Sig2Sig architecture that builds upon the
well-known Pix2Pix model [18]. The model consists of a U-Net-shaped generator [19]
with squeeze and excitation blocks used for information compression. The generator is
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followed by a multi-channel attention selection module, which allows the model to obtain
uncertainty maps for calculating losses, in which more important pixels are taken with
greater consideration. The experiments have shown that the translated signals can be
successfully used with previously trained ML models. The performance classification
model was very close to that obtained using the data collected with the older sensor.

Signal translation can solve a similar problem when the results returned by the sensor
are harder to interpret by human experts than their standard counterparts. In [15], an
adapted version of the CycleGAN model [20] is proposed to transform raw ECG (electro-
cardiography) measurements from a novel 11-channel contactless capacitive sensor into the
standard output of 12-channel wet electrode ECG. As the original CycleGAN architecture
was intended for 2D image processing, the authors propose a simplified architecture in
which the convolution and residual blocks in both generator and discriminator are omitted
(the tests performed by the authors have shown that their presence slows the model’s
performance without significantly enhancing its performance). The model is compared
against three typical architectures: MLP, PIX2PIX, and LSTM. For most leads, the obtained
ECG measurements are more accurate. The quality of the resulting ECG measurements
enables their use by medical professionals for heart health assessment.

A similar problem is solved in [21], where the seismocardiogram signals are translated
into the domain of ECG distance transform. The authors propose the SeismoNet architec-
ture, which is a modification of the U-Net model [19]. The U-Net model is prepended with
a convoluted ensemble averaging block consisting of several convolutional layers, whose
purpose is to reduce the signal jitter. At the U-Net output, a denoising block is appended.
The obtained signals’ quality allows for high-accuracy heart rate parameter estimation.

Another blood-flow-related application is presented in [22], where photoplethysmo-
gram (PPG) signals are converted to blood pressure (BP) waveforms, which are easily
interpretable by doctors. The proposed method uses the generalized regression neural
network (GRNN) [23] as a basis. The GRNN consists of four subsequent layers: input,
pattern, summation, and output. The pattern layer uses a radial basis activation function.
The signal is processed in the following manner: First, a single period of the PPG is encoded
into N harmonics. The harmonics are fed into the GRNN model, which converts them into
N harmonics of the BP signal, which are then decoded into the BP waveform signal. The
network achieved high signal reconstruction accuracy, conforming with restrictive medical
device requirements.

Signal translation has been applied in processing medical images. In [24], a modifica-
tion of the Cycle-GAN network [20] called Cycle-MedGAN is used to translate positron
emission-computed tomography (PET) to computer tomography (CT). Cycle-MedGAN
introduces novel non-adversarial loss functions, which are calculated using a pre-trained
feature extractor. The new loss function is supposed to capture the perceptual aspects of
the generated image quality, which pixel-wise loss analysis does not cover sufficiently. The
experiments showed that the proposed architecture performs better in a PET-CT transla-
tion scenario than the original Cycle-GAN network. A similar study, where CT images
are converted to magnetic resonance (MR), is presented in [25]. The authors propose a
GAN-based translation model in which an additional U-Net-like segmentation network
is used to improve the semantic content consistency between the generated images. The
demonstrated results proved the proposed model’s effectiveness.

Signal translation also has uses in brain activity monitoring, where it is used to
interpret brain signals. In [26], a novel MSATNet (Multi-Scale Activity Transition Network)
model is proposed to mitigate the translation problems that occur in convolutional neural
networks (CNNs). The proposed network consists of several subsequent activity structure
blocks (including multiple convolutional layers) followed by pooling layers. The features
returned by each block are processed with activity transition blocks (composed of LSTMs)
and then are concatenated prior to the final fully connected layer. The proposed model is
used for electroencephalogram (EEG) decoding. The results have shown that the proposed
solution is superior to the analyzed counterparts.
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A different application of brain signal translation is presented in [27], where 3D
continuous hand movement is predicted based on the time-frequency features of electro-
corticography signals. For this purpose, the authors consider five network architectures:

• CNN-FC (fully connected);
• CNN-LSTM, outputting a single sample;
• CNN-LSTM, outputting a part of the signal trajectory;
• CNN-LSTM-FC, where the outputs of the LSTM layers are subject to an additional

time-based convolution prior being fed to the fully connected layer;
• CNN-FC, where 3D convolutions are applied to process whole signal sequences at the

same time.

The results of the experimental evaluation are not consistent, as some of the models
perform better for some axes than others. The best overall performance was achieved using
the CNN-LSTM model, translating a part of the signal trajectory.

Signal translation can also be used in other scenarios, e.g., assessing structural damage
suffered by large-scale objects. In [28], a model based on the transformer architecture [29]
is used to translate acceleration measured by sensors mounted on a bridge to live load
displacement caused by passing cars. The model consists of two modules: the encoder
and the decoder. The layers used in the modules include self-attention followed by fully
connected and normalization sub-layers. The decoder layers include an additional
encoder–decoder attention sub-layer, which allows the self-attention mechanism to be
applied over the encoder output. The tests performed at a highway showed that the
displacement estimate obtained with the proposed model is much more accurate than in
the case of the alternative free vibration method.

Gait-based user authentication is another area where converting the signals may be
required. In such methods, the inertial sensors worn by the user are used to analyze
their gait and movement patterns and extract their unique features, which allow for user
identification and subsequent authentication, making the wearable systems more secure.
One of the main problems of such solutions is the high dependence between the sensor
readings and its location. Calibrating the authentication for one sensor location might
result in misidentification when the sensor is worn differently.

In [30], the authors propose to use an ML model, which translates the signals from a
device worn in an unusual location to a standard one. The proposed model is an autoen-
coder including several dense layers and is trained in a supervised setting. The model is
finely tuned to the particular users using the transfer-learning approach. The model was
tested for different sensor location translation scenarios (chest to waist, head, shin, thigh,
and upper arm). The results showed that the translated signals can be successfully used for
authentication key generation. The problem of user identification in the case of variable
sensor location scenarios is also addressed in [31], where a method based on a unified
autoencoder framework is used. The AE directly extracts discriminative features of the
user’s gait and simplifies the whole authentication algorithm. To consider the geometry of
the data, the authors propose to use the spectral angle distance instead of the traditional
mean squared error (MSE).

Signal translation can also find its application in gait parameter analysis for medical
purposes. For example, the gait parameters may be calculated by analyzing a video feed of
a walking person. In such algorithms, the subsequent frames are analyzed to obtain the
user’s pose and location of limbs. In [32], a model of stacked progressive autoencoders
(SPAEs) is employed to convert the gait energy images (GEIs) registered for people dressed
in untypical, complicated clothes, e.g., down jacket or long coat, to images of people in
typical clothing. The model consists of two stacked autoencoders that aim to map the
GEIs of persons in unconventional clothing to typical conditions while keeping the typical
GEIs unchanged.

A more traditional way to analyze gait parameters is to use inertial sensors. In the
literature, many methods and ML models require the sensors to be mounted on shoes
or user’s tibias. In order to apply these methods in scenarios where the user wears a
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smartwatch, the obtained signal must be translated. In [33], a neural network is used
to translate the readings of the wrist-worn accelerometer to readings of accelerometers
mounted on each of the ankles. The proposed network model consists of three types
of layers: CNN, LSTM, and dense. The model takes a sequence of acceleration samples
from a wrist sensor and outputs six samples corresponding to readings in three axes of
right and left ankle-worn sensors. The obtained results are superior compared to a simple
feed-forward network. Although the model gives satisfactory results, it comes with certain
significant limitations. First, as the model outputs samples instead of whole sequences,
translating longer signals requires repeatedly calling the model using the sliding window
technique. The model also has high computational complexity as the layers have nearly
12 million trainable parameters. Such complexity and the use of slow LSTM lowers its
applicability to more powerful units and prevents it from being implemented directly in the
wearables. Additionally, the network translates only the acceleration measurements. It does
not consider the angular velocity, which allows for accurate evaluation of gait parameters
due to exhibiting significant changes even when the movements are less intensive.

3. Inertial Measurements at Different Locations

Most wearable gait evaluation systems utilize measurements from IMUs including
a tri-axial accelerometer and a tri-axial gyroscope. The amplitudes and shapes of the
signals are highly dependent on how and where the sensor is worn. In order to illustrate
the differences, a small set of inertial measurements registered concurrently in three loca-
tions was gathered. The placements of the sensors during the experiments are presented
in Figure 1.

(a) (b) (c)

x

y
z x

y

z

xy
z

Figure 1. Sensor placement during the initial tests on (a) a wrist, (b) tibia, (c) shoe.

The measurements were taken with the sensors attached in three places: to a wrist, to a
tibia, and mounted on a shoe. The direction of the axes differ between the sensor placements.
Therefore, the measurements registered with those sensors are not easily interchangeable.
Exemplary six-second acceleration and angular velocity sequences recorded for a walking
person are presented in Figures 2 and 3, respectively.

In the case of both acceleration and angular velocity, the signals differ significantly.
The results gathered in the same sensor axes differ due to different sensor orientations.
In the case of acceleration measurements, both the tibia and shoe-mounted sensor return
signals with higher amplitudes. The waveforms are also sharper and include distinct short
peaks, making it easier to perform gait timing measurements. The most evident peaks are
in the shoe-sensor signals due to the high acceleration measured during the heel strike.

The angular velocity measured does not significantly differ in terms of the signal
amplitude. However, the difference in waveform shapes is significant. For the wrist sensor,
the waveforms for y z axes and the resultant values are sine-like, which makes it hard
to distinguish the stride phases, and only steps can be efficiently counted. In the case of
the tibia and shoe sensors, the shapes are more distinct, and we can observe positive and
negative peaks in the signal, which correspond to the boundaries between the stance and
swing phases.
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(a) (b) (c)

Figure 2. Exemplary acceleration in x, y, z axes and its resultant value measured for a sensor placed
on (a) a wrist, (b) a tibia, (c) a shoe.

(a) (b) (c)

Figure 3. Exemplary angular velocity around x, y, z axes and its total value measured for a sensor
placed on (a) a wrist, (b) a tibia, (c) a shoe.
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The different shapes of the waveforms make it impossible to find an analytical solution,
allowing for a straightforward translation between them. In this case, the most viable option
is to train an ML algorithm to establish their relationships and dependencies.

4. Translation Algorithm

The main aim of the translation algorithm is to convert the signals obtained with a
wrist-worn sensor to signals that would be observed with a tibia or a shoe-mounted device.
In Section 3, it was established that due to the complex relationships between those signals,
it would be nearly impossible to find an analytical solution for a straightforward conversion,
and ML should be used. The employed ML solution should fulfill two conditions. First,
it should be relatively simple to ensure its deployability to the sensor device. Second, it
should translate a whole piece of the signal trajectory at one time, as repeatably running
the model using the sliding window technique is energy-inefficient.

4.1. General Idea

The general idea of the proposed signal translation algorithm is presented in Figure 4.

signal
translation
model

wrist
signals

tibia/shoe
signals

scalingscaling

Figure 4. The general idea of the signal translation algorithm.

The signal translation is performed using a neural network which takes six sequences
measured with the wrist-worn inertial sensors. The sequences are acceleration (ax, ay, az)
and angular velocity (ωx, ωy, ωz) measured in three axes. The sequences contain 256 samples,
which, in the case of a 50 Hz sampling rate, correspond to 5.12 s, a period in which at least
two full strides should be observed. The measurement results are scaled so the values are
in the 0–1 range.

The neural network’s output is six translated sequences, which are then scaled to their
standard measurement units. The results can then be processed with algorithms or ML
models relying on lower limb inertial measurement results.

4.2. Neural Network Architectures

The works referenced in Section 2 include the description of several neural network
architectures used for signal translation. In our work, we tested four different neural
network architectures, some of which are similar to those that yield satisfying results in the
referenced works. The adopted architectures are not overly complicated, so they could be
implemented directly on wearables.

In the study, four different architectures were considered:

• a dense fully connected autoencoder (DNN—dense neural network),
• a convolutional autoencoder,
• a CNN-LSTM network,
• a U-Net-based network.

The simplified architectures of the models are presented in Figure 5.
The autoencoder network consists of two parts: the encoder and the decoder. In the

case of the fully connected dense autoencoder, both parts comprise dense layers. The
input sequences are flattened into a one-dimensional vector, which the encoder processes
to extract features and represent the input in the latent dimension. The decoder layers
are responsible for signal reconstruction. The network’s last layer reshapes the output
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into six 256-point sequences. The implementation details of the network are presented in
Table 1. For all of the architectures, the layer parameters were chosen manually based on
initial tests.

Reshape

Dense

Fla�en

1D convolutionLSTM

1D Transposed Conv.

1D MaxPooling

Concatenate

(a) dense autoencoder

(c) CNN-LSTM network (d) U-Net network

(b) convolutional autoencoder

Figure 5. Architectures of the tested neural network models.

Table 1. Parameters of the dense Autoencoder layers.

Layer Units Activation Function

Encoder

Flatten - -
Dense 512 ReLu
Dense 256 ReLu
Dense 128 ReLu

Decoder

Dense 256 ReLu
Dense 512 ReLu
Dense 1024 sigmoid
Reshape - -

The Convolutional autoencoder has a similar structure to the fully connected one. The
only difference is that the dense layers were replaced with 1D convolutions in the encoder
and 1D transposed convolutions in the decoder. The layer details are presented in Table 2.

The CNN-LSTM network used in the study is based on the solution presented in [27],
where such a solution yielded good results for hand motion prediction based on brain
signals. The network consists of a single 1D convolution layer, which extracts features from
the inertial signals. The temporal relations between the features were analyzed using two
LSTM layers. The network parameters are stored in Table 3.

The U-Net architecture is typically used for image reconstruction in image segmenta-
tion tasks [19]. The network has a similar structure to the autoencoder, where the signal is
encoded into the latent dimension and then reconstructed. U-Net employs additional skip
connections between layers, which allow the signals’ high-level features to be passed to
the reconstructing layers. The features are concatenated with the previous reconstruction
layer output and fed to the next layer. Such an approach allows the network to take into
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consideration both high- and low-level features while rebuilding the signal. The details of
the implemented layers are presented in Table 4.

Table 2. Parameters of the convolutional autoencoder layers.

Layer Filters kernel Size Activation Function

Encoder

1D Convolution 64 3 ReLu
1D MaxPooling - 2 ReLu
1D Convolution 128 3 ReLu
1D MaxPooling - 2 ReLu
1D Convolution 256 3 ReLu

Decoder

1D Transp. Convolution 256 3 ReLu
1D Transp. Convolution 128 3 ReLu
1D Transp. Convolution 64 3 ReLu
1D Convolution 6 3 sigmoid

Table 3. Parameters of the CNN-LSTM network layers.

Layer Filters/Units Kernel Size Activation Function

1D Convolution 64 3 ReLu
LSTM 64 - tanh
LSTM 6 - tanh

Table 4. Parameters of the U-Net network.

Layer Filters Kernel Size Activation Function

Contraction

1D Convolution 64 3 ReLu
1D MaxPooling - 2 ReLu
1D Convolution 128 3 ReLu
1D MaxPooling - 2 ReLu
1D Convolution 256 3 ReLu

Expansion

1D Transp. Convolution 256 3 ReLu
Concatenate - - -
1D Transp. Convolution 128 3 ReLu
Concatenate - - -
1D Transp. Convolution 64 3 ReLu
1D Convolution 6 3 sigmoid

5. Experiments
5.1. Gait Sensors

Photographs of the gait sensors used in the study are presented in Figure 6

Figure 6. Sensors used in the study: (a) the wrist-worn sensor, (b) the tibia-worn sensor, (c) the
shoe-mounted sensor.

The gait sensor used in the study is a small wearable device intended to estimate gait
parameters. The sensor is controlled with a BLE-enabled nRF52833 Nordic Semiconductor
microcontroller and includes one Bosch Sensortec BMI270 Inertial Measurement Unit and
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one BMP250 barometer. In the study, only the outputs of the IMU were used. The sensors
were placed in custom 3D-printed cases. The wrist sensor (Figure 6a) used a smart band
strap compatible case. For the tibia (Figure 6b) and shoe sensors (Figure 6c), a special case
that could be attached using Velcro straps or strings was designed.

The IMU used in the sensor was set to measure the acceleration and angular velocity
in three axes with a 50 Hz frequency. The 50 Hz sampling frequency is lower than recom-
mended for gait analysis (at least 120 Hz [34]) but keeps energy usage at acceptable levels.
The results are stored in the device’s internal memory and then are copied to the tablet
over a USB connection. For the experiment, the device’s firmware was updated to enable a
synchronized start of measurements after BLE advertisement packet reception.

5.2. Datasets and Training

The process of model training depended on its architecture. The feature detector
parts of the autoencoder models and U-Net were pre-trained using a large dataset of
wrist-sensor measurements in an unsupervised learning scenario where the wrist signals
were both inputs and labels. The feature extraction layers were then frozen, and only
the reconstruction layers were trained using the custom wrist-to-tibia and wrist-to-shoe
translation datasets. The CNN-LSTM model was directly trained using the translation
dataset. The wrist-only measurements dataset comprised 7200 samples (corresponding to
about 10 h of constant walking). The results were collected during the initial tests of the
gait sensor both in inside and outside scenarios.

The wrist-to-tibia and wrist-to-shoe translation datasets included 1000 samples each,
which corresponded to roughly 85 min of constant walking. The datasets, for the most part,
were registered during different measurement sessions, as all three sensors were rarely
used simultaneously. During the training of the models, the datasets were divided into
three parts: training, validation, and testing, with a 70/15/15 proportion. The proposed
models were implemented using TensorFlow [35]. The mean squared error loss function
and the Adam optimizer with 1 × 10−3 learning rate were used for all of the models. The
encoders and the U-Net network were finely tuned by unfreezing the encoder part and
training the model with a lower 1 × 10−4 learning rate.

5.3. Model Evaluation

The model was evaluated based on the mean average error and root mean square of
the reconstructed signals. The comparison of the metrics for the analyzed architectures
and wrist–tibia and wrist–shoe scenarios are presented in Tables 5 and 6, respectively. The
exemplary reconstruction is shown in Figures 7 and 8.

Table 5. Mean absolute and root mean squared errors for tibia-sensor signal reconstruction. The
acceleration a and angular velocity ω values are in g and degrees per second, respectively.

Architecture ax ay az ωx ωy ωz

MAE

DNN 1.0358 0.9056 0.7317 4.1434 3.6224 2.9268
CNN 0.2980 0.3138 0.3318 1.1919 1.2551 1.3274
LSTM 0.3826 0.4525 0.5424 1.5303 1.8099 2.1696
U-Net 0.2840 0.2913 0.3092 1.1358 1.1651 1.2367

RMSE

DNN 1.2142 1.0862 1.0045 4.8566 4.3447 4.0181
CNN 0.4636 0.4398 0.5037 1.8546 1.7592 2.0146
LSTM 0.6527 0.6322 0.7800 2.6108 2.5288 3.1202
U-Net 0.4425 0.4128 0.4765 1.7699 1.6512 1.9062

The most accurate translation between the wrist and tibia inertial measurements was
achieved by U-Net, closely followed by the CNN autoencoder. The LSTM-generated signals
were less accurate, as the applied architecture had problems reproducing the sharp peaks
occurring during heel strikes. The worst accuracy was observed for the DNN network.
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For shoe-sensor measurements, the best translation algorithm was the CNN autoen-
coder, followed by DNN and U-Net. The problems with proper replication of signal spikes
by the LSTM network were more noticeable due to their higher amplitudes compared to
the tibia-registered signals.
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Figure 7. Translated tibia-worn sensor signals obtained using the U-Net network.

Table 6. Mean absolute and root mean squared errors for shoe-sensor signal reconstruction. The
acceleration a and angular velocity ω values are in g and degrees per second, respectively.

Architecture ax ay az ωx ωy ωz

MAE

DNN 0.2541 0.1899 0.2082 1.0165 0.7596 0.8327
CNN 0.2104 0.2049 0.1901 0.8416 0.8196 0.7602
LSTM 0.3776 0.2521 0.2854 1.5106 1.0082 1.1415
U-Net 0.2434 0.2218 0.2105 0.9735 0.8873 0.8418

RMSE

DNN 0.3648 0.2851 0.3034 1.4592 1.1405 1.2134
CNN 0.3436 0.3446 0.3209 1.3742 1.3785 1.2836
LSTM 0.7510 0.4759 0.5560 3.0040 1.9035 2.2242
U-Net 0.4218 0.3907 0.3692 1.6871 1.5629 1.4769

In both wrist-to-tibia and wrist-to-shoe translation, the biggest challenge was properly
reconstructing the signal peaks. Such difficulties might result from a relatively low 50 Hz
IMU sampling rate. It might pose a problem in threshold-based step detection methods.
However, it should not be a critical issue for gait investigation methods depending on peak
detection and analysis of periods between them.
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Figure 8. Translated shoe-worn sensor signals obtained using the CNN autoencoder.

5.4. Gait Parameter Estimation

The translated data were used to calculate the user’s gait frequency. Gait frequency
can be directly associated with gait speed, which is one of the main parameters used to
evaluate the IC in the locomotion domain. The results were compared to those obtained
based on the acceleration measured with the shoe-mounted sensor. For this purpose, a short
test, during which a person walked along a straight 10 m line, was executed. During the
test, the person walked the path twice (there and back), and the time taken was measured.

For this test, we used the gait frequency estimation method described in [36]. In
this approach, the gait parameters are estimated through analysis of the y-component of
the angular velocity and its signal vector magnitude. The y-component and the vector
magnitude were filtered using a Butterworth low-pass filter. In [36], a 12 Hz cut-off
frequency was used. In our test, we used a narrower filter of 5 Hz to remove possible noise
resulting from the signal reconstruction. The y-component and the resultant value of the
angular velocity measured with the shoe sensor are presented in Figure 9.

The gait temporal parameters were established through the detection of two types of
characteristic gait events: toe-off points and heel strikes. Both of those events correspond to
peaks in the y axis angular velocity. In order to determine which peak corresponds to which
category, the edge of the resultant angular velocity was analyzed. The peaks, closer to a
moment when the signal passes a threshold, correspond to the toe-off events. The detected
toe-off and heel strike events are marked on the translated signal and are presented in
Figure 10.

The heel strikes and toe-off points divide the individual strides into the swing and
stance phases, which enables a more detailed gait analysis. The comparison of the temporal
gait parameters calculated based on the actual shoe-measured angular velocity and the
translated signals is presented in Table 7.

The calculated mean stride and gait durations are close to each other—the difference
between the obtained values is 28 and 14 ms, respectively. There was an observable
difference in the stride phase length estimation. The differences were 80 and 44 ms.
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Figure 9. Angular velocity in the y axis and the resultant value registered using the shoe sensor
during a 10 m walk. The y-component of the angular velocity was inverted to match the orientation
assumed in [36].

Figure 10. The filtered y-component and the resultant value of the angular velocity translated with
the CNN autoencoder. The detected toe-off moments are marked with a triangle and the heel strikes
with diamonds.

Table 7. Temporal gate parameters determined based on shoe-worn sensor measurements and
translated results.

Parameter Shoe Sensor Translated

mean stride duration [s] 1.136 1.108
mean gait duration [s] 0.568 0.554

mean stance duration [s] 0.573 0.493
mean swing duration [s] 0.564 0.608

6. Conclusions

The paper presents and evaluates the concept of inertial measurement translation
between different sensor locations. For this purpose, four different neural network archi-
tectures were implemented and tested on a custom dataset. The analyzed architectures
included FC and CNN autoencoders, a CNN-LSTM network, and a U-Net network. The
most accurate signal translation was achieved using the U-Net and CNN encoder networks.
In the case of the DNN, the results were less accurate but still usable for wrist-to-shoe
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translation. The CNN-LSTM architecture proved to be unsuitable for such a task due to
severe problems with proper signal spike reproduction. The translation to the tibia-worn
sensor signals proved more challenging for all tested architectures. This might be caused by
less consistent tibia sensor placement and orientation. An efficient translation to the tibia
sensor signals might require using more advanced ML models or expanding the training
dataset with additional examples.

The results of the performed experiments are promising. The translated results were
successfully used to assess the gait parameters of a person walking a 10 m straight path.
The differences between the obtained gait and stride durations based on the translated
and shoe-worn sensor registered signals were small. The proposed translation algorithm
opens an opportunity to use much more common and comfortable wrist-worn sensors
(smartwatches or smart bands) and still apply the proven, high-accuracy methods relying
on lower limb measurements.

The proposed translation algorithm is a simple one and was used mainly to prove sig-
nal translation’s efficiency in gait estimation. There are several areas in which the proposed
solution could be improved. First, the translation could be made more accurate by employ-
ing other more advanced neural network architectures processing some additional data,
e.g., atmospheric pressure. The models could also be modified to output only the selected
signals needed by the particular methods instead of all of the components. Additionally,
the training efficiency might be improved by using custom loss functions more targeted
at the problem. For example, when the method requires signal peaks to be reconstructed
with high accuracy, the loss function should focus on that while relaxing the requirements
for idle moments. The introduced improvements, however, should be carried out with the
algorithm complexity in mind, as excessive complexity might prevent its deployment to
wearable devices.
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The following abbreviations are used in this manuscript:

BP Blood pressure
CT Computer tomography
CNN Convolutional neural network
DNN Dense neural network
ECG Electrocardiography
EEG Electroencephalogram
FC Fully connected
GEI Gait energy image
GRNN Generalized regression neural network
IC Intrinsic capacity
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IMU Inertial measurement unit
LSTM Long short-term memory
MAE Mean average error
ML Machine learning
MLP Multi layer perceptron
MR Magnetic resonance
MSATNet Multi-scale activity transition network
MSE Mean squared error
PET Positron emission-computed tomography
PPG Photoplethysmogram
SPAE Stacked progressive autoencoder
UWB Ultra-wideband
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