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Abstract: In order to achieve the automatic planning of power transmission lines, a key step is to
precisely recognize the feature information of remote sensing images. Considering that the feature
information has different depths and the feature distribution is not uniform, a semantic segmentation
method based on a new AS-Unet++ is proposed in this paper. First, the atrous spatial pyramid
pooling (ASPP) and the squeeze-and-excitation (SE) module are added to traditional Unet, such
that the sensing field can be expanded and the important features can be enhanced, which is called
AS-Unet. Second, an AS-Unet++ structure is built by using different layers of AS-Unet, such that
the feature extraction parts of each layer of AS-Unet are stacked together. Compared with Unet, the
proposed AS-Unet++ automatically learns features at different depths and determines a depth with
optimal performance. Once the optimal number of network layers is determined, the excess layers
can be pruned, which will greatly reduce the number of trained parameters. The experimental results
show that the overall recognition accuracy of AS-Unet++ is significantly improved compared to Unet.

Keywords: semantic segmentation; Unet; atrous spatial pyramid pooling; squeeze-and-excitation module

1. Introduction

Recently, how to automatically plan transmission lines for power has attracted many
researchers. Based on geographic information, such as houses, roads, forests, rivers, etc.,
selection algorithms can plan a reasonable transmission line. Hence, accurate geographic
information is essential for the automatic construction of transmission lines [1,2]. With the
progress of satellite technology, the image resolution acquired by remote sensing satellites is
constantly improving. The different types of feature information in remote sensing images
can satisfy the requirements for the planning of transmission lines [3]. In the literature, the
methods for feature recognition from remote sensing images can be divided into two kinds.
One is based on the classical image threshold segmentation technology and the manual
map marking. The other method is called image semantic segmentation, which is based on
deep learning.

The traditional image segmentation method is based on the color, shape, texture, and
other features of the image, which leads to the image content being divided into different
regions according to the edge features [4–6]. The classification results can be optimized
to some extent by extracting geometric information from the image and combining it into
class-by-class pixels [7]. However, the traditional image segmentation method can only
split the target and background of the image [8], which ignores other feature information
from remote sensing images [9].

With the development of computer technology, using deep learning for image recogni-
tion and semantic segmentation has become a research hotspot. Deep learning technologies
continue to advance, and existing methods are constantly optimized and improved, gradu-
ally improving performance and robustness. Pedestrian recognition in videos is interfered
with by many factors, such as environmental changes, occlusions, and so on. The adaptive
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interference elimination framework has been adopted to model the motion path of each
pedestrian in recent work, which can effectively solve these interference problems [10].
Capturing detailed and informative features from the input images, utilizing pixel-level
supervision to learn discriminative feature representations for forest smoke recognition [11],
introducing label relevance and multi-directional interactions to improve the recognition
accuracy, and using enhanced deformable convolution to extract more accurate feature rep-
resentations [12] has enhanced the recognition ability of forest smoke, effectively warning
of a forest fire.

With the progress of satellite technology, the image resolution of remote sensing satel-
lites is gradually increasing. In this case, with the development of deep learning and
graphics processing units [13,14], the semantic segmentation of remote sensing images
has become a hotspot in the study of transmission line planning [15]. Semantic segmen-
tation based on full convolutional neural networks (FCNN) can satisfy input images
with arbitrary size [16]. By modifying the FCNN, many different semantic segmentation
networks have been proposed in the literature, such as SegNet [17,18], Unet [19], and
Deeplab [20]. Although the segmentation accuracy of the target is improved, to some
extent, the detailed feature processing is still unsatisfactory. For example, in the struc-
ture of Deeplabv3+, the down-sampling operation leads to the loss of some of the image
information [21], which results in low recognition accuracy of the small targets in high-
resolution semantic segmentation.

Semantic segmentation has been widely applied in power line construction. Using
semantic segmentation to identify power equipment in high-voltage transmission lines and
substation scenarios can realize automatic inspection of power systems. Detecting power
transmission infrastructure from aerial images using deep learning [22] and identifying
objects like buildings, roads, forests, and rivers in remote sensing images using neural
networks [23] provides effective information for transmission line planning. However,
there is a relative lack of research on using neural networks to identify and segment
object elements in transmission line planning, and the neural networks used are mostly
basic ones, which have significant drawbacks. Improving neural networks and accurately
identifying objects like buildings, roads, forests, and rivers in transmission line planning is
of great significance.

Unet is an improved neural network based on (FCNN) [24]. Compared with FCNN,
Unet has higher sensitivity to image details, higher processing accuracy, and the ability
to realize spatial consistency by considering pixel-to-pixel relationships. However, in the
structure of Unet, due to the down-sampling methods of using convolution with step size
and pooling operations, there is a loss of targeted and detailed spatial information. Hence,
it is not ideal for the extraction of targets with a small pixel share in remote sensing images.
In addition, the Unet structure is a neural network with a fixed number of layers, which
can only extract features with a fixed depth [25]. That is to say that it is difficult to extract
features with different depths and shades of information in remote sensing images.

To conquer the down-sampling problem of Unet, in this paper, we firstly add the ASPP
(atrous spatial pyramid pooling) and the squeeze-and-excitation (SE) module [26] to Unet
such that the sensing field can be expanded and important features can be enhanced. This
improved Unet is called AS-Unet in this paper. Secondly, note that the information features
contained in remote sensing images are of different depths and the number of layers of the
network have different performances for the features of different depths. Meanwhile, the
selection of the number of layers will have a great impact on the performance of image
segmentation. To solve the problem, this paper combines AS-Unet with a different number
of layers in accordance with the network structure of Unet++, which is called AS-Unet++.
The advantage of an improved network is that it can automatically determine an optimal
performance depth for different depth features. Once the optimal number of network
layers is fixed, the redundant layers can be pruned, which greatly reduces the number
of trained parameters. Finally, by comparing and analyzing the experimental data, the
trained AS-Unet++ shows better recognition accuracy in the semantic segmentation of
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remote sensing images compared to Unet. It will provide reliable remote sensing image
data for the automatic planning of transmission lines.

2. AS-Unet++ for Remote Sensing of Images

In this section, we introduce the main construction process of the proposed AS-Unet++.
In practice, there are two main factors that affect image segmentation accuracy. One is

that the feature information from remote sensing images has different depths. The other
one is that the feature distribution is not uniform, and the proportion of different factors is
not the same. To this end, our proposed AS-Unet++ is built with the following steps.

Step 1: design of AS-Unet. Add the ASPP and SE modules to Unet such that the
sensing field can be expanded and important features can be enhanced.

Step 2: construction of AS-Unet++. Since the choice of the number of layers has a
great impact on the performance of image segmentation, the Unet++ is a network structure
that combines and connects 2 to 5 layers of Unet; compared to Unet, Unet++ allows the
network to automatically learn features of different depths and determine a depth with
optimal performance. Based on the same idea as the structure of Unet++, two to five layers
of AS-Unet are combined such that each AS-Unet shares a common left feature extraction
part. Each layer of AS-Unet is a Unet that incorporates the ASPP with the SE Model, which
becomes the AS-Unet++ studied in this paper. It is shown in Figure 1.

Figure 1. AS-Unet++ structure.

Next, we will give a detailed introduction to this new network structure.

2.1. Unet

Unet is an improved network of FCNN [27], and the structure is a symmetric U-shaped
structure. It mainly consists of two parts: feature extraction and feature enhancement,
which is shown in Figure 2. The feature extraction part is on the left side and the feature
strengthening part is on the right side. It has five layers.

The number above each layer in Figure 2 is the number of feature layers contained in
that layer, and the number to the left of each layer is the size of the layer.



Sensors 2024, 24, 269 4 of 22

Figure 2. Unet structure.

(1) The part of feature extraction

Different layers are connected to each other with a 2 × 2 max-pooling layer, which
is labeled by the green arrow in Figure 2. The size of the max-pooled image is halved
every time it passes through the max-pool. Since the padding is not set, some feature
information is lost if the size is odd. Therefore, it is required to carefully set the size of
the input image and keep the image length and width as an even number of pixel points.
With the increasing number of channels in the convolutional layer, the number of feature
channels in the image will increase.

(2) The feature enhancement

The layers are connected by a 2 × 2 inverse max-pooling up-sampling layer, which is
labeled by the purple arrow in Figure 2. The size of the image will be doubled after each
up-sampling. Each layer of the feature enhancement network will fuse the features from
the left feature extraction part, which is shown by the gray arrow. However, the image
on the left side is larger than that on the right side, so some shearing is needed before
feature fusion.

Each layer between the two parts will conduct a 3 × 3 convolution operation, which is
labeled by the brown arrow in Figure 2. Then, it is followed by a Relu activation function
layer. The operation mode of the convolution operation is a valid mode where the stride
is 1 and the convolution kernel is 3 × 3. Since the padding is also not set, the image size
will be reduced by two after each convolution operation. The last layer of the output is
classified by a 1 × 1 convolution layer, which is shown by the magenta arrow in Figure 2.

In the original structure of Unet, the down-sampling methods, such as convolution
and pooling with step size, will lead to the loss of target spatial information and detailed
features. Hence, the extraction of targets with small pixel proportions in remote sensing of
images is not ideal. The Unet structure is a neural network with fixed layers (usually five
layers) and can only extract features of a fixed depth. Therefore, it is difficult to adapt to
the information features of different depths in remote sensing images.

2.2. AS-Unet
2.2.1. AS-Unet Structure

Remote sensing images contain complex feature information, the feature distribution
is not uniform, and the proportion of different factors is not the same. In order to solve
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the problems in the original Unet structure that down-sampling methods create, such
as convolution and pooling with step size, which lead to the loss of targeted spatial
information and detailed information, the ASPP and SE models are added to Unet. This is
called AS-Unet, which expands the sensing field such that the loss of information can be
reduced and the important features can be enhanced. The structure of AS-Unet is shown
in Figure 3.

Figure 3. AS-Unet structure.

The SE model is added to the feature fusion part of each layer, which can automatically
evaluate the importance of each feature channel. Different weight coefficients can be added
to each channel such that important features are strengthened and unimportant features are
suppressed. After the convolution and activation function in the last layer of the network,
adding an ASPP module can expand the sensory field such that information loss can be
minimized and the network’s ability to capture multi-scale information is improved.

2.2.2. Atrous Spatial Pyramid Pooling (ASPP)

ASPP uses parallel null convolutional layers with multiple different sampling rates,
where the features extracted for each sampling rate are further processed in separate
branches and fused to generate the final result. This expands the sensor field while ensuring
that the resolution is not degraded by the Unet down-sampling operation. Meanwhile, it
enhances the ability to capture multi-scale contextual information. Figure 4 illustrates the
specific structure of ASPP. The r = 6, 12, and 18 in Figure 4 represent convolution kernels
with null rates of 6, 12, and 18, respectively.

ASPP constructs convolutional kernels with different receptive fields by different
atrous rates and obtains the multi-scale contextual information through parallel
structures [28]. The information of different scales is integrated by the concat method [29].
The structure can be given as:

O[j] = ∑
f

I[j + r • n] f [n], (1)

where O[j] is the output of the convolution operation performed on the pixel with index
j, I is the input feature mapping, r is the atrous rate of the convolution kernel, f is the
convolution kernel with weights, and n is the convolution kernel position index.
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The ability to change the receptive field (RF) size by varying the value of the cavitation
rate r is calculated as follows:

RF =
(

2r+1 − 1
)
×

(
2r+1 − 1

)
(2)

where r is usually chosen to be 6, 12, or 18. Too large of a value will lead to too sparse
sampling of the input signal, which results in no correlation between the remote information.

Figure 4. ASPP structure.

2.2.3. Squeeze-and-Excitation (SE)

The feature distribution of remote sensing images is not uniform. If the house elements
are divided, the training effect of this part of the training set will be poor due to the small
proportion of house elements in some training sets.

The squeeze and excitation can utilize the relationship between different channel
feature mappings such that the specific semantic features can be strengthened [30]. The SE
module can assign different weights to each channel, which means that channels containing
important information features are strengthened and the channels with non-important
information features are weakened [31] to optimize the training effect. The SE structure is
shown in Figure 5.

Figure 5. SE structure.

The SE module contains two main operations, squeeze and excitation, which are Fsq
and Fex in Figure 5. fc is the feature map with feature channel c, H is the height of the
feature map, and W is the width of the feature map. z is the feature vector of 1 × 1 × c,
s is the weight, and f̃c is the weighted feature channel. The compression operation is
represented by the following equation:

z = Fsq( fc) =
1

h • w

h

∑
i=1

w

∑
j=1

fc(i, j), (3)
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where fc is the feature map with feature channel c, h is the feature map height, and w is the
feature map width.

The squeeze operation can be performed by global average pooling based on the width
and height of the feature maps, and the scalar that represents the global receptive field [32].
The feature maps with dimensions w × h × c, which contain the global information, are
compressed into 1 × 1 × c feature vectors z, such that the generated channel statistic z
contains contextual information. It can alleviate the channel dependency problem.

The excitation operation is accomplished by fitting the nonlinear relationship between
the channels through two fully connected layers and an activation function. To reduce the
computational effort, the first fully connected layer compresses the c channels and then a
Relu function is used as the activation function. The second fully connected layer restores
the number of channels to c, and the weights s are obtained by activating the Sigmoid
activation function. s is calculated as follows:

s = Fex(z, ω) = σ(h(z, ω1)) = σ(ω2δ(z • ω1)), (4)

where ω represents the parameters of the fully connected layer, δ represents the Relu
activation function, and σ represents the sigmoid activation function.

The original channels are weighted by using the obtained weights, s. Valid fea-
ture channels have larger weights and invalid or unimportant feature channels have
smaller weights.

2.3. Unet++
2.3.1. Unet with Different Depths for Each Layer in Unet++

The feature information contained in remote sensing images is rich and the distributed
categories are not uniform, which means that the information is characterized by different
depths. Unet models of different depths will have different performances.

Unet++ is a network structure connected by a combination of different layers of Unet,
and different layers of Unet can realize the extraction of different depth features. Figure 6
shows the Unet structure with different depths.

(a) Two-layer Unet (b) Three-layer Unet

(c) Four-layer Unet (d) Five-layer Unet

Figure 6. Unet with different depths.

Forest element segmentation and lake element segmentation are performed on the
two remotely sensed images using different depths of Unet. The segmentation results are
shown in Figure 7.
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(b) Predicted results 

of  two-layer Unet

(c) Predicted results 

of  three-layer Unet

(d) Predicted results 

of  four-layer Unet
(e) Predicted results 

of  five-layer Unet

(a) original figure

Figure 7. Predicted results of Unet with different depths.

The MIoU obtained from the results of Figure 7 is shown in Figure 8.

M
Io
U
(%
)

60

70

80

90

Layer 2 Unet Network Layer 3 Unet Network Layer 4 Unet Network Layer 5 Unet Network

(a)forest (b)lake

Figure 8. Predicted MIoU for Unet of different depths.

As can be seen from Figure 8, the segmentation performance for forests can be im-
proved by adding the number of network layers. However, for lakes, the Unet with
four layers performs better than the Unet with five layers.

In the recognition of forest elements, there is a serious leakage of recognition in
the shallow Unet, and there is also misrecognition of non-forest elements in the Unet of
layers 2 and 3. As the number of network layers increases, the phenomenon of missed
recognition becomes less and less. The 5-layer Unet basically alleviates the phenomenon
of missed recognition and misrecognition. In the recognition of lake elements, the Unet
of layers 2 and 3 has the phenomenon of missed recognition. The Unet of layer 4 can
recognize the lake elements completely and accurately. However, the Unet of layer 5 has
the phenomenon of misrecognition of non-lake elements similar to the contours of a lake
with an increased number of layers. From the above analysis, it can be seen that remote
sensing images contain complex and rich information; the feature depth of the information
is not the same. The number of layers of the network will also have different performances
for features with different depths. An increase in the number of layers of the network may
not necessarily represent an improvement in the recognition performance.
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2.3.2. Unet++ Structure

The choice of the number of Unet layers has an important impact on the performance
of image segmentation. By combining the different layers of Unet, as shown in Figure 9,
different levels of features can be captured.

Figure 9. Combination of Unet with different depths.

However, because of the lack of connections in the middle region of the network
structure, the gradient cannot pass through this region. It implies that the backpropagation
breaks down here and the network cannot be trained. By adding connections to the middle
units, the problem can be solved. Connecting all the middle units is the structure of Unet++,
which is shown in Figure 10.

Figure 10. Unet++ structure.

From Figure 10, Unet++ is a network structure that combines 2 to 5 layers of Unet
together. Compared to Unet, Unet++ allows the network to automatically learn features
at different depths and determine a depth with optimal performance. Once the optimal
number of network layers is determined, the excess layers can be pruned, which greatly
reduces the number of trained parameters.

In addition, it can be seen from Figure 10 that the Unet feature extraction parts of
each layer are superimposed together. That is to say that the Unet ++ allows different
levels of Unet to share a left feature extraction unit, which reduces the training amount of
multiple Unets.

2.4. AS-Unet++

AS-Unet++ is based on the Unet++ structure, which combines an AS-Unet of 2 to
5 layers. Each AS-Unet shares a common left feature extraction part. Each layer of AS-Unet
is a Unet that joins ASPP with SE Model; its structure is shown in Figure 1.

Compared to Unet, due to the use of ASPP and SE models, AS-Unet++ enhances the
ability of neural networks to extract important feature information and capture multi-scale
contextual information. AS-Unet++ allows the network to automatically learn features at
different depths and determine an optimal performance depth. Once the optimal number of
network layers is fixed, the excess layers can be pruned to reduce the number of parameters
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to be trained. When the AS-Unet feature extraction portions of each layer are stacked
together, the AS-Unet of different layers share a common left-side feature extraction unit,
which reduces the amount of training for multiple AS-Unets.

3. Experiments
3.1. Data

The image data used in this paper are taken from high-resolution remote sensing
images of Fuyang City, Anhui Province, China. The image size is cut to 4000 × 4000 with
160 images in total, and vector semantic segmentation labels are made using QGIS software
(Version 3.10, Gary Sherman, Cedar Rapids, USA). Then, the remote sensing image is
cropped into 300 × 300 deep learning samples by the sliding window cropping method.
The categories of feature information in the remotely sensed images are houses, roads,
forests, and lakes.

All the data are divided into two sets, training set and validation set, and the ratio
of training data to validation data is 4:1. The training set images are fed into the network
for training, and then the validation set is fed into the trained network for prediction to
evaluate the results and performance of the training.

The labels of the images are created using QGIS, and different shades of gray are used
to refer to different things in the image. Pixels of the same type of things are labeled with a
fixed gray value, and the background is solid black. Figure 11 shows the images of houses,
roads, forests, and lakes along with the labels.

(a) House image (b) House label

(c) Road image (d) Road label

(e) Forest image (f) Forest label

(g) Lake image (h) Lake label

Figure 11. Remote sensing images and labels.

By randomly flipping the training data horizontally, vertically, diagonally, and with
appropriate linear stretching, the generalization ability of the model can be enhanced, and
the number of data sets can be expanded. In addition, blurring the image and adding noise
can prevent the model from learning unnecessary noise and inhibit overfitting. Among
them, 15% of the images were randomly rotated by 90°, 5% were flipped horizontally, 5%
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were flipped vertically, and 10% had blur and noise added to them. After cropping and
data enhancement, a total of 12116 remote sensing images with 300×300 resolution were
obtained as training data. To simulate the variable domain, the validation dataset is linearly
stretched by 0.8%, 1%, 1.5%, and 2% at random.

3.2. Environment and Parameter Configuration

The environment configuration for AS-Unet++ is shown in Table 1.

Table 1. Environment configuration.

Name Version

GDAL 3.3.3
segmentation-models-pytorch 0.3.2

torch 1.13.1
pytorch-toolbelt 0.4.1

CUDA 11.1.0

The training parameters used in the experiment are shown in Table 2.

Table 2. Parameter setting.

Parameter Value

Batch size 16
Initial learning rate 0.0001

Learning Momentum 0.9
Weight decay rate 0.001

Total number of iterations 100

3.3. Evaluation Indicator

The evaluation indicators are Precision, Recall, IoU, and MIoU. The evaluation indica-
tors are calculated on the basis of a confusion matrix, as shown in Table 3.

Table 3. Confusion matrix for classification results.

Reality
Predicted Results

Positive Negative

Positive TP FN
Negative FN TP

Precision represents the proportion of correctly predicted pixels in a certain category,
its calculation formula is as follows:

Precision =
TP

TP + FP
(5)

Recall represents the proportion of the total number of pixels in a certain category
that have been correctly recognized by the network, the calculation formula of which is
as follows:

Recall =
TP

TP + FN
(6)

IoU is the ratio of the intersection and union between the predicted result and the
true value of each class. MIoU can be obtained by adding the intersection ratio of each
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class to the average value. The larger the MIoU, the closer the predicted result is to the
true value [33]. The IoU and MIoU are calculated as follows:

IoU =
TP

TP + FP + FN
,

MIoU =
∑ IoU

n
,

(7)

where n is the number of categories for image segmentation.

3.4. Experimental Results

In order to better evaluate the performance of the network semantic segmentation
method based on AS-Unet++ proposed in this paper, we conducted three sets of exper-
iments. The first experiment was an ablation experiment, where AS-Unet++, Unet++,
A-Unet++ with only ASPP added, and S-Unet++ with only the SE model added are com-
pared with each other in the test set to verify the effectiveness of the two modules, the ASPP
and SE models. The second experiment is to compare AS-Unet++ with Unet and AS-Unet
model in the training set and test set, which can visualize the performance optimization of
the network. The third experiment compared AS-Unet++ with other network models in
the training and test sets, including CE Loss and regular data enhancement, to evaluate the
method of this paper through further comparative experiments.

(1) The ablation experiment

AS-Unet++ and Unet++ were compared with A-Unet++ with only ASPP added and
S-Unet++ with only the SE model added to validate the effectiveness of the two modules of
the ASPP and SE model.

A comparison of the predicted segmentation maps for houses, roads, forests, and lakes
realized by various networks is shown in Figure 12.

(a) House image (d) Houses predicted 

by S-Unet++

(f) Road image (i) Roads predicted 

by S-Unet++

(k) Forest image (n) Forests predicted 

by S-Unet++

(p) Lake image

(b) Houses predicted 

by AS-Unet++

(g) Roads predicted 

by AS-Unet++

(l) Forests predicted 

by AS-Unet++

(s) Lake predicted 

by S-Unet++

(q) Lake predicted 

by AS-Unet++

(c) Houses predicted 

by A-Unet++

(h) Roads predicted 

by A-Unet++

(m) Forests predicted 

by A-Unet++

(r) Lake predicted 

by A-Unet++

(e) Houses predicted 

by Unet++

(j) Roads predicted 

by Unet++

(o) Forests predicted 

by Unet++

(t) Lake predicted 

by Unet++

Figure 12. Predicted segmentation images for the ablation experiment.
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In the recognition of house elements, Unet++ has the phenomenon of missed recog-
nition of some houses due to the difference of light and color, and the edge segmentation
effect of houses is not good in recognition. In A-Unet++ with only the addition of ASPP,
although the edge segmentation effect of houses has been improved, the phenomenon of
missed recognition has not been improved. In S-Unet++ with only the SE model, although
the phenomenon of missed recognition has been improved, the edge segmentation effect of
houses has not been improved. The AS-Unet++ network with the addition of both mod-
ules improved in both missed recognition and the edge segmentation effect. Compared
with A-Unet++ with the addition of a single module, it was not improved in the recogni-
tion of houses. In S-Unet++ with only the SE model, although the omission recognition
phenomenon was improved, the edge segmentation effect of houses was not improved.

AS-Unet++ with both modules improved in both omission recognition and edge
segmentation effects, and the improvement was more obvious compared with A-Unet++
and S-Unet++ with a single module. In remote sensing images, the house element accounts
for a relatively small proportion, and the lack of SE model has poor performance in
capturing semantic features of the house, which leads to the phenomenon of missed
recognition. While the lack of ASPP leads to the loss of target spatial information and
detailed information caused by downsampling methods, such as convolution and pooling
with step size in the original structure of the Unet, it does not have much effect on the
house information, such as illumination and color differences, but causes the edge feature
information to be lost. Although it does not have much effect on the information of light and
color differences in the house, it will cause the loss of edge feature information, resulting in
an unsatisfactory edge segmentation effect.

In the recognition of road elements, Unet++ has the phenomenon of missing recog-
nition of some roads due to small widths, and the edge segmentation effect is also poor.
A-Unet++ improves the edge segmentation effect of roads, but the phenomenon of missing
recognition remains unimproved. S-Unet++ improves the phenomenon of missing recogni-
tion, but the edge segmentation effect has not been improved. AS-Unet++ improves the
phenomenon of missing recognition in both aspects. Similar to the house element, the road
element occupies a relatively small proportion in remote sensing images, and the lack of
SE model results in poor capture of road information, which leads to the phenomenon of
missed recognition. The lack of ASPP results in the loss of edge feature information, which
leads to unsatisfactory edge segmentation effects.

In the recognition of forest elements, Unet++ recognizes the surrounding forest pixels
poorly due to the interference of the wire pixels in the lower right corner. S-Unet++
completely recognizes the wire pixels as forest pixels compared with Unet++, with no
significant improvement in the recognition performance. A-Unet++ can split the wire
pixels and the forest pixels better than Unet++, and the recognition effect is closer to that
of AS-Unet++. The lack of SE model does not affect the network’s ability to capture forest
information in remote sensing images because the forest elements account for a large
proportion of the remote sensing image. The interference of power lines crossing from the
forest in remote sensing images become elements with a small proportion in the remote
sensing image, and the lack of ASPP results in the loss of interference information, which
in turn leads to poor anti-interference ability.

In the recognition of lake elements, the recognition performance of Unet++ and
S-Unet++ is similar, and the recognition in the edge part is not satisfactory enough. The
recognition performance of A-Unet++ and AS-Unet++ is similar, and both of them improve
in the recognition of edges. Same as the forest element, the lake element occupies a relatively
small proportion in the remote sensing image, and the lack of SE model does not affect
the network’s ability to capture the lake information. While the lack of ASPP leads to
the loss of edge feature information, which in turn leads to an unsatisfactory effect of
edge segmentation.

The Precision, Recall, and IoU of various networks for house, road, forest, and lake
predictions in the test sets are shown in Table 4.
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Table 4. Comparison results of different networks for the ablation experiment.

Elements Valuation
Indexs AS-Unet++ A-Unet++ S-Unet++ Unet++

House
Precision 0.961 0.912 0.932 0.903

Recall 0.978 0.934 0.955 0.914
IoU 0.971 0.926 0.943 0.908

Road
Precision 0.862 0.829 0.838 0.798

Recall 0.877 0.856 0.864 0.807
IoU 0.872 0.843 0.852 0.803

Forest
Precision 0.850 0.796 0.774 0.753

Recall 0.859 0.813 0.802 0.766
IoU 0.854 0.802 0.787 0.759

Lake
Precision 0.907 0.882 0.857 0.852

Recall 0.917 0.905 0.878 0.863
IoU 0.912 0.894 0.869 0.858

The MIoU of AS-Unet++ on the test set was 90.2%. Meanwhile, Unet++ had 83.2%
MIoU for the test set, A-Unet++ had 86.6% MIoU for the test set, and S-Unet++ had 86.2%
MIoU for the test set. Compared with Unet++, A-Unet++, and S-Unet++, the MIoU of
AS-Unet++ was improved by 7.0%, 3.6%, and 4.0%, respectively.

In the identification of house elements, AS-Unet++ improved the three metrics of
Precision, Recall, and IoU by 5.8%, 6.4%, and 6.3%, respectively, compared to Unet++,
and the three metrics of A-Unet++ improved by 4.9%, 4.4%, and 4.5%, respectively, com-
pared with S-Unet++, and the three metrics of S-Unet++ improved by 2.9%, 2.3%, and
2.8%, respectively.

In the identification of road elements, AS-Unet++ improved 6.4%, 7.0%, and 6.9% in
the three metrics compared to Unet++; 3.3%, 2.1%, and 2.9% in the three metrics compared
to A-Unet++; and 2.4%, 1.3%, and 2.0% in the three metrics compared to S-Unet++.

In the identification of forest elements, AS-Unet++ improved 9.7%, 9.3%, and 9.5% in
the three metrics compared to Unet++; 5.4%, 4.6%, and 5.2% in the three metrics compared
to A-Unet++; and 7.6%, 5.7%, and 6.7% in the three metrics compared to S-Unet++.

In the identification of lake elements, AS-Unet++ improved the three metrics by 5.5%,
5.4%, and 5.4%, respectively, compared to Unet++; improved the three metrics by 2.5%,
1.2%, and 1.8%, respectively, compared to A-Unet++; and improved the three metrics by
5.0%, 3.9%, and 4.3%, respectively, compared to S-Unet++.

In the recognition of house elements and road elements, S-Unet++ was higher com-
pared to A-Unet++, which shows that the SE model improves the performance of recog-
nition of elements with smaller pixel occupancy more significantly. In the recognition of
forest elements and lake elements, A-Unet++ was higher compared to the three metrics of
S-Unet++, and ASPP had better recognition performance in the recognition of elements
with large pixel occupancy because of better edge segmentation and better resistance to
interference with small occupancy.

(2) Comparison of AS-Unet++, Unet, and AS-Unet

Comparing AS-Unet++ with Unet and the AS-Unet model in the training sets and test
sets allows for visualization of the performance optimization of the network.

The graphs of MIoU in the three kinds of networks during the training of houses,
roads, forests, and lakes are shown in Figure 13.
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(a) IoU graph of the house (b) IoU graph of the road

(c) IoU graph of the forest (d) IoU graph of the lake

Figure 13. IoU graphs during training of AS-Unet++, Unet, and AS-Unet.

It can be seen that after training, the MIoU of the AS-Unet++ verification set reached
88.9%. However, the MIoU of Unet and AS-Unet on the verification set was 80.8% and
85.8%, respectively.

The Precision, Recall, and IoU of the verification sets of each network for road elements,
forest elements, and lake elements are shown in Table 5.

Table 5. Comparison results of different networks on different verification sets.

Elements Valuation
Indexs AS-Unet++ AS-Unet Unet

House
Precision 0.953 0.926 0.889

Recall 0.972 0.940 0.898
IoU 0.966 0.935 0.893

Road
Precision 0.870 0.845 0.777

Recall 0.879 0.858 0.783
IoU 0.874 0.852 0.781

Forest
Precision 0.847 0.779 0.702

Recall 0.856 0.788 0.718
IoU 0.851 0.784 0.711

Lake
Precision 0.902 0.857 0.842

Recall 0.911 0.865 0.853
IoU 0.905 0.862 0.848

It can be seen from the above data that the AS-Unet network is superior to the Unet net-
work in all indicators, and the AS-Unet++ network, as a further optimization of the AS-Unet
network, has improved in all aspects of accuracy compared with the AS-Unet network.

Compared with the AS-Unet and Unet network, the MIoU of the AS-Unet++ network
increased by 3.1% and 8.1%, respectively. In Figure 13, the overall convergence speed
of the three kinds of differences was small, and, only in the road elements recognition
training, the AS-Unet++ network convergence speed was slightly faster than the other
two networks. In addition, in the training process, AS-Unet++ compared with the other
two network oscillations was smaller, especially in the roads, forests, and lakes element
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recognition training. In the identification of house elements, the Precision index increased
by 2.7% and 6.4%, the Recall index increased by 3.2% and 7.4%, and the IoU index increased
by 3.1% and 7.3%, respectively. In the recognition of road elements, the Precision index
increased by 2.5% and 9.3%, Recall increased by 2.1% and 9.6%, and IoU increased by 2.2%
and 9.3%, respectively. In the recognition of forest elements, the Precision index increased
by 6.8% and 14.5%, Recall increased by 6.8% and 13.8%, and IoU increased by 6.7% and
14.0%, respectively. In the identification of lake elements, the Precision index increased by
4.5% and 6.0%, Recall increased by 4.6% and 5.8%, and IoU increased by 4.3% and 5.7%,
respectively. The improvement of forest identification accuracy was particularly obvious.

Figure 14 shows a comparison of the predicted segmentation images of houses, roads,
forests, and lakes achieved by the three networks.

(a) House image (d) Houses predicted 

by Unet

(e) Road image (h) Roads predicted 

by Unet

(i) Forest image (l) Forests predicted 

by Unet

(m) Lake image

(b) Houses predicted 

by AS-Unet++

(f) Roads predicted 

by AS-Unet++

(j) Forests predicted 

by AS-Unet++

(p) Lake predicted 

by Unet
(n) Lake predicted 

by AS-Unet++

(c) Houses predicted 

by AS-Unet

(g) Roads predicted 

by AS-Unet

(k) Forests predicted 

by AS-Unet

(o) Lake predicted 

by AS-Unet

Figure 14. Segmented images predicted by AS-Unet++, AS-Unet, and Unet.

As can be seen from Figure 14, although Unet is able to recognize the corresponding
elements, there is still some misrecognition and omission. In the recognition of houses,
a small number of roof pixels are incompletely recognized due to the difference in light
received by different surfaces of the roof. In the recognition of roads, there are omissions in
the recognition of roads with small widths. In the recognition of forests, the segmentation
interference of the power lines at the lower right side leads to the leakage of recognition of
the surrounding pixels. There is leakage recognition in the curved part of the lake edge.
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Compared with Unet, AS-Unet significantly improved the recognition and segmenta-
tion of various elements. In the recognition of houses, the missing recognition phenomenon
of Unet has been improved, but there are still a small number of pixels missing recognition
in places with large differences in house lighting, which leads to incomplete recognition
of all house pixels. In the identification of roads, the phenomenon of misidentification
of banded wasteland similar to roads has been significantly improved, but the problem
of the missing identification of roads with small widths still exists. In the recognition of
forest, the missing recognition is obviously improved, but there is also a phenomenon of
misidentifying grassland as forest. In lake recognition, the edge with a complex shape can
be segmented correctly, and the performance is obviously improved.

The segmentation effect of AS-Unet++ is improved compared with both Unet and
AS-Unet. In the recognition of houses, AS-Unet++ can identify the houses in the figure
more accurately. Moreover, there is no missing recognition phenomenon like Unet caused
by differences in lighting for a single house. In the road identification, the problem of road
leakage identification with small widths can be solved and the banded wasteland similar
to the road is not misidentified. In the forest identification of AS-Unet++, the missing
identification phenomenon caused by power lines in the lower right is solved, so that the
identification area is larger. In the recognition of lakes, the edges with complex shapes can
also be correctly segmented.

The Precision, Recall, and IoU of the test sets of each network for road elements, forest
elements, and lake elements are shown in Table 6.

Table 6. Comparison results of different networks on different test sets.

Elements Valuation Indexs AS-Unet++ AS-Unet Unet

House
Precision 0.961 0.928 0.891

Recall 0.978 0.943 0.899
IoU 0.971 0.937 0.896

Road
Precision 0.862 0.842 0.772

Recall 0.877 0.851 0.782
IoU 0.872 0.846 0.774

Forest
Precision 0.850 0.773 0.701

Recall 0.859 0.784 0.714
IoU 0.854 0.780 0.705

Lake
Precision 0.907 0.856 0.841

Recall 0.917 0.863 0.852
IoU 0.912 0.859 0.846

The MIoUs of AS-Unet++, Unet, and AS-Unet in the test set were 90.2%, 80.5% and
85.5%, respectively.

It can be seen from the above data that AS-Unet++ is superior to Unet and AS-Unet
in each index of the test sets. Compared with AS-Unet and Unet, the MIoU of AS-Unet++
increases by 4.7% and 9.7%, respectively. In the identification of housing elements, the
Precision index increased by 3.3% and 7.0%, the Recall index increased by 3.5% and 7.9%,
and the IoU index increased by 3.4% and 7.5%, respectively. In the recognition of road
elements, Precision index increased by 2.0% and 9.0%, Recall index increased by 2.6%
and 9.5%, and IoU index increased by 2.6% and 9.8%, respectively. In the recognition of
forest elements, the Precision index increased by 7.7% and 14.9%, Recall increased by 7.5%
and 14.5%, and IoU increased by 7.4% and 14.9%, respectively. In the recognition of lake
elements, the Precision index increased by 5.1% and 6.6%, Recall increased by 5.4% and
6.5%, and IoU increased by 5.3% and 6.6%, respectively.
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(3) Comparison of AS-Unet++, CE Loss, and Conventional Data Enhancement (CDE)

AS-Unet++, CE Loss, and CDE are compared in the training sets and test sets to
evaluate the method of this paper by further comparative experiments.

The graphs of IoU in the three kinds of networks during the training of houses, roads,
forests, and lakes are shown in the Figure 15.

(a) IoU graph of the house (b) IoU graph of the road

(c) IoU graph of the forest (d) IoU graph of the lake

Figure 15. IoU graphs during training of AS-Unet++, CE Loss, and CDE.

It can be seen that after training, the MIoU of AS-Unet++, CE Loss, and CDE on
verification sets is 88.9%, 78.4%, and 78.7%, respectively.

The Precision, Recall, and IoU of the verification set of each network for road elements,
forest elements, and lake elements are shown in Table 7.

Table 7. Comparison results of AS-Unet++, CE Loss, and CD on different verification sets.

Elements Valuation Indexs AS-Unet++ CE Loss CDE

House
Precision 0.953 0.768 0.751

Recall 0.972 0.785 0.776
IoU 0.966 0.779 0.765

Road
Precision 0.870 0.767 0.758

Recall 0.879 0.782 0.783
IoU 0.874 0.774 0.771

Forest
Precision 0.847 0.786 0.788

Recall 0.856 0.804 0.814
IoU 0.851 0.793 0.803

Lake
Precision 0.902 0.781 0.796

Recall 0.911 0.806 0.823
IoU 0.905 0.792 0.807

From the above data, it can be seen that AS-Unet outperforms the other two networks
in all accuracy metrics. Compared with CE Loss and CDE, the MIoU of AS-Unet++ is
improved by 10.5% and 10.2%, respectively. In Figure 15, AS-Unet++ has the fastest
convergence speed and is much faster than the other two networks in the training of
roads, forests, and lakes. In the training process, CE Loss and CDE have larger oscillations,
especially in the second half of the iteration of the training process, which is still obvious,
compared with which the oscillations of AS-Unet++ are smaller and the performance
is better.
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In the identification of house elements, the Precision index increased by 18.5% and
20.2%, the Recall index increased by 18.7% and 19.6%, and the IoU index increased by
18.7% and 20.1%, respectively. In the recognition of road elements, the Precision index
increased by 10.3% and 11.2%, the Recall index increased by 9.7% and 9.6%, and the IoU
index increased by 10.0% and 10.3%, respectively. In the recognition of forest elements, the
Precision index increased by 6.1% and 5.9%, the Recall index increased by 5.2% and 4.2%,
and the IoU index increased by 5.8% and 4.8%, respectively. In the identification of lake
elements, the Precision index increased by 12.1% and 10.6%, the Recall index increased
by 10.5% and 8.8%, and the IoU index increased by 11.3% and 9.8%. The improvement of
house, road, and lake identification accuracy is particularly obvious.

As can be seen in Figure 16, all of these networks can essentially recognize the corre-
sponding elements, but there are more significant differences in performance.

(a) House image (d) Houses predicted 

by CDE

(e) Road image (h) Roads predicted 

by CDE

(i) Forest image (l) Forests predicted 

by CDE

(m) Lake image

(b) Houses predicted 

by AS-Unet++

(f) Roads predicted 

by AS-Unet++

(j) Forests predicted 

by AS-Unet++

(p) Lake predicted 

by CDE
(n) Lake predicted 

by AS-Unet++

(c) Houses predicted 

by CE Loss

(g) Roads predicted 

by CE Loss

(k) Forests predicted 

by CE Loss

(o) Lake predicted 

by CE Loss

Figure 16. Segmented images predicted by AS-Unet++, CE Loss, and CDE.

Figure 16 shows a comparison of the predicted segmentation images of houses, roads,
forests, and lakes achieved by the three networks.

Although CE loss can basically recognize the corresponding elements, there are serious
misrecognitions in other non-element parts. In the case of houses, since they are generally
rectangular in the image, the network recognizes vehicles and other rectangular elements
as houses and also recognizes non-house pixels around the houses as houses. In the
recognition of road elements, the roads are distributed in bands, but the network recognizes
other non-road elements of the barren land distributed in bands in the image as roads. In
the recognition of forest elements, it will recognize some pixels of grass that have a similar
color to forest as forest. Lake element identification also suffers from misidentifying a large
number of non-lake elements.



Sensors 2024, 24, 269 20 of 22

In the recognition based on CDE, there are cases where pixels that should have
belonged to the corresponding element are not recognized. For example, some houses
are not recognized in the house element because the color of different houses varies
greatly. In the road element, a road with a small width is not recognized. In the forest
element, most of the elements around the lower right side are not recognized because of
the interference of power lines. The lake element is not identified because of the color
difference of some waters.

AS-Unet++ overcomes the phenomenon that CE Loss misidentifies other similar
elements, such as other non-house elements that also present rectangles in the identification
of house elements, other elements that also present banded distributions in the identification
of road elements, other grasslands similar to forests in the identification of forest elements,
and other similar non-lake elements in the identification of lake elements. AS-Unet++ also
overcomes the phenomenon of missing recognition in CDE, such as houses with large
color differences in house feature recognition, roads with smaller widths in road feature
recognition, and forests in forest feature recognition. The interference of the lower right
wire is overcome to identify the pixels belonging to the forest, and there is no omission
of different colored waters in the lake feature. Compared with the other two networks,
AS-Unet++ has better performance.

The Precision, Recall, and IoU of the test sets of each network for road elements, forest
elements, and lake elements are shown in Table 8.

Table 8. Comparison results of AS-Unet++, CE Loss, and CD on different test sets.

Elements Valuation Indexs AS-Unet++ CE Loss CDE

House
Precision 0.961 0.760 0.747

Recall 0.978 0.786 0.773
IoU 0.971 0.774 0.758

Road
Precision 0.862 0.761 0.774

Recall 0.877 0.776 0.783
IoU 0.872 0.769 0.767

Forest
Precision 0.850 0.772 0.780

Recall 0.859 0.804 0.811
IoU 0.854 0.788 0.796

Lake
Precision 0.907 0.767 0.793

Recall 0.917 0.798 0.817
IoU 0.912 0.783 0.804

The MIoUs of AS-Unet++, CE Loss, and CDE on the test set are 90.2%, 77.9%, and
78.1%, respectively.

It can be seen from the above data that AS-Unet++ is superior to CE Loss and CDE
in each index of the test sets. Compared with CE Loss and CDE, the MIoU of AS-Unet++
increases by 12.3% and 12.1%, respectively. In the identification of house elements, the
Precision index increased by 20.1% and 21.4%, the Recall index increased by 19.2% and
20.5%, and the IoU index increased by 19.7% and 21.3%, respectively. In the recognition of
road elements, the Precision index increased by 10.1% and 8.8%, the Recall index increased
by 10.1% and 9.4%, and the IoU index increased by 10.3% and 10.5%, respectively. In
the recognition of forest elements, the Precision index increased by 7.8% and 7.0%, the
Recall index increased by 5.5% and 4.8%, and the IoU index increased by 6.6% and 5.8%,
respectively. In the recognition of lake elements, the Precision index increased by 14.0%
and 11.4%, the Recall index increased by 11.9% and 10.0%, and the IoU index increased by
12.9% and 10.8%, respectively.

4. Conclusions

In order to achieve the automatic planning of power transmission lines based on
remote sensing images, this paper proposes a semantic segmentation method and designs
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a new AS-Unet++. Compared with the traditional Unet, the ASPP, and the SE Model are
added in AS-Unet++, which enhances the neural network’s ability to extract important
feature information and capture multi-scale context information. The AS-Unet feature
extraction parts of each layer are stacked together, which reduces the amount of training
for multiple AS-Unets. AS-Unet++ reduces the number of training parameters compared
with the Unet.

Experimental results have shown that the overall recognition accuracies of AS-Unet++
are significantly improved compared to Unet. In the prediction segmentation image, the
addition of ASPP improves the edge segmentation, and the addition of the SE model makes
the network perform better for the segmentation of houses and roads, which are small
elements in the image. In addition, AS-Unet++ can effectively reduce the occurrence of
misidentification and missed identification.

Although the method in this paper improves the segmentation accuracy to some
extent, the generalization condition is still a great challenge when facing complex and
variable remote sensing images, such as elements under different illumination conditions
or complex shapes. Future work should be focused on improving the model generalization
ability as well as improving the segmentation accuracy even further.
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