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Abstract: With the increasing demand from unmanned driving and robotics, more attention has been
paid to point-cloud-based 3D object accurate detection technology. However, due to the sparseness
and irregularity of the point cloud, the most critical problem is how to utilize the relevant features
more efficiently. In this paper, we proposed a point-based object detection enhancement network
to improve the detection accuracy in the 3D scenes understanding based on the distance features.
Firstly, the distance features are extracted from the raw point sets and fused with the raw features
regarding reflectivity of the point cloud to maximize the use of information in the point cloud.
Secondly, we enhanced the distance features and raw features, which we collectively refer to as
self-features of the key points, in set abstraction (SA) layers with the self-attention mechanism, so that
the foreground points can be better distinguished from the background points. Finally, we revised
the group aggregation module in SA layers to enhance the feature aggregation effect of key points.
We conducted experiments on the KITTI dataset and nuScenes dataset and the results show that the
enhancement method proposed in this paper has excellent performance.

Keywords: 3D object detection; distance features; SA layer enhancement

1. Introduction

With the development of unmanned driving and other technologies, understanding
3D scenes based on the point cloud has become a popular research topic. Compared to
traditional images, point cloud data have unique advantages. The strong penetration of
LiDAR makes the point cloud less susceptible to external factors such as weather and
light. However, point clouds are also characterized by sparseness and disorder, and the
reflectivity of LiDAR decreases as the measurement distance increases. This leads to poor
characterization of objects at a distance, causing a drop in detection accuracy. How to deal
with these characteristics of point clouds has become the key to improving accuracy in 3D
detection tasks.

In recent years, to efficiently utilize the information provided by the point cloud,
researchers have proposed a number of schemes, as shown in Figure 1. These are mainly
divided into two types based on different processing methods:

(a) Grid-based methods, which partition the sparse points into regular voxel or pillar
grids, and process them through 3D or 2D convolutional networks.

(b) Point-based methods, which directly perform feature learning on point sets with SA
which are most often utilized to sample the key points and aggregate features.

Compared to the point-based methods, the grid-based methods increase the computa-
tional speed of network inference, but also cause information loss during the voxelization.
Therefore, to ensure the full utilization of information in point sets, a point-based methods
enhancement network is proposed in this paper.
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Figure 1. Overview of related work.

The core of the point-based 3D object detection methods is the SA layer, which was
first proposed by Qi et al. [1]. In prior research, the SA layer has been revised using many
methodologies, and how to fully utilize the information of each point and reduce inference
time has become a priority in point-based methods. In 3DSSD [2], to speed up the inference,
researchers first adopted a 3D single stage object detector and proposed a feature-based
farthest point sample module (F-FPS). This module utilizes the feature information of the
point sets to sample key points in order to maintain adequate interior points of different
foreground instances. SASA [3] uses a semantic-segmentation-based farthest point sample
module (S-FPS), which utilizes point cloud features distinguish the foreground points from
the background points through a small semantic segmentation module to better access
key points. However, the point cloud features used by these algorithms only utilize the
raw features of the point cloud, i.e., the reflectivity and 3D coordinates that reveal spatial
information of each point in the point cloud, and distance characteristics are not taken into
consideration. In the actual measurement, due to the attenuation characteristics of LiDAR
and the limitation of the observation angle, the reflectivity of the measured point decreases
as the object moves further away, and the projection of the object in the point cloud also
decreases.

Therefore, based on the distance characteristics related to the point cloud, we propose
three feature enhancement modules to more efficiently utilize the semantic information
contained within the point cloud. Firstly, we propose the initial feature fusion module, in
which the distance feature is extracted from the point cloud and incorporated with the raw
features of each point. Secondly, we introduce a key point feature enhancement module.
During the group aggregation in SA, the self-characterization of the key points will be
weakened, but it is crucial for distinguishing whether the key point is a foreground or
background point. Therefore, after each sampling aggregation, the multi-attention mecha-
nism is used to strengthen the features of key points and fuse them with the aggregated
features. Finally, to enhance the effect of group aggregation in SA, we revised the original
grouping module. In the original module, multiple points nearest to the key points are
taken to participate in feature aggregation after sampling over the key points. However,
only the spatial location is considered, which may result in features belonging to different
categories being mixed together during the aggregation process. This leads to a decrease
in the performance of the semantic segmentation module before S-FPS, which in turn
degrades the sampling effect of S-FPS. Therefore, we optimize the grouping module by
selecting the points with the closest features as the aggregation points from among multiple
points closest to the key points.

In summary, the main contributions of this article are summarized as follows:
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• We propose a key points self-features enhancement module to enhance the self-features
of the key points. In this module, we introduce the multi-attention mechanisms to
enhance the raw features and distance features to retain the semantic information of
the key points as much as possible during each SA layer.

• We propose an initial feature fusion module to extract the distance features of the
point cloud and fuse the distance features into the raw features of the point sets. This
module makes the features of the distant points more significant and thus improves
the detection accuracy of the distant instances.

• We revise the group aggregation module in the set abstraction. We make a second
selection after the first selection of points within a fixed distance around the key point.
In second selection, we take the features into account to enhance the sampling effect
of S-FPS.

2. Related Work

Since the growing data on point clouds bring huge challenges to existing point cloud
processing networks, it is important to compress the point cloud before processing it.
Different compression algorithms used may affect the subsequent detection effect. For
example, Sun X et al. [4] optimized the processing of large-scale point cloud data and their
algorithm [5] further streamlines the network for point cloud processing. The algorithm [6]
makes the spatial distribution of the compressed point cloud more similar to the original
point cloud, which is very useful for subsequent point cloud processing.

The point cloud compression algorithms mentioned above play a significant role in
the point cloud detection algorithms we will discuss next.

2.1. Grid-Based Methods

Grid-based methods are mainly divided into two categories: voxel-based methods and
pillar-based methods. In voxel-based methods, an irregular point cloud is first con-verted
into regular voxels, which are then fed into the network. Voxel-Net [7] is a pioneering
network that converts point cloud into voxels, and then utilizes 3D convolutional networks
to predict 3D bounding boxes. Yan et al. [8] proposed 3D sparse convolution, which reduces
the computation of traditional 3D convolution and greatly improves the detection efficiency
of voxel-based detection networks. Voxel-Transformer [9] and Voxel Set Transformer [10]
introduce modules such as Transformer [11] and Set Transformer [12], respectively, on the
basis of voxels to improve the detection accuracy. SFSS-Net [13] is a unique algorithm to
filter background points before the voxelization to reduce computational complexity. Pillar-
based methods such as Point Pillars [14] divide the space into regular pillars, which are
compressed and then fed into a 2D convolutional network, greatly increasing the network
inference speed. Pillar Net [15] uses a sparse convolutional-based encoder network for
spatial feature learning, and the Neck module for high-level and low-level feature fusion
to improve the accuracy of pillar-based detection methods. Pillar Next [16] first compares
different local point aggregators (pillar, voxel and multi-view fusion) from the perspective
of computational budget allocation. Research shows that pillars can achieve better perfor-
mance compared to voxels. Grid-based methods lose more semantic information in the
process of converting an irregular point cloud into regular voxels or pillars. This may lead
to poor performance in the final detection accuracy.

2.2. Point-Based Methods

Point-based methods generally perform feature extraction directly on the point sets.
This approach obtains key points and aggregates points around them by means of sampling
and group aggregation for feature extraction. Point-based methods were first proposed by
Qi et al. [17] and later improved and refined by Qi et al. [1]. Shi et al. [18] first proposed
to extract the foreground points by segmentation and utilize the features of these points
for the bounding box regression to improve the detection accuracy. Yang et al. [2] utilized
one-stage detection to improve the inference speed and proposed the F-FPS, to make the
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sampled key points closer to the foreground instances. SASA [3] is used to predict scores of
each point by a small semantic segmentation module to make abstracted point sets focus
on object areas. Chen et al. [19] introduced density information from point clouds using
the Multilayer Perceptron (MLP) and integrated it with features extracted by grouping
operations in the point-based method.

Since point-based 3D object detection is directly processing the point sets, point-based
methods result in high computational consumption and long network inference time.
However, relative to the voxel-based methods, point-based methods can maximize the
retention of the semantic information of the point cloud and achieve higher detection
accuracy. Therefore, this paper adopts the point-based object detection network and aims
to utilize the original information of the point cloud more efficiently.

3. Proposed Methods

In this section, we will introduce in detail the network architecture of the SAE3D
proposed in this paper. This enhancement network consists of three main parts: an initial
feature fusion module, a key points self-features enhancement (KSFE) module and a revised
group aggregation (RGA) module.

As shown in Figure 2, the overall architecture is a one-stage point-based 3D object
detection network. Firstly, we define the raw points fed into the network as P; the initial
feature fusion module extracts the distance features and integrates initial features of each
point in P. After integration, we feed P into the backbone, which contains three SA layers,
and we refer to the input of each SA layer as P1. In SA layers, we first sample the key
points K from P1, and then we feed K into the key points feature enhancement module to
enhance the self-features of K. After enhancement, we obtain K1. Finally, the revised group
aggregation module is used to aggregate the points around K1 to obtain the aggregated key
points K2. K2 is the final output of each SA layer.
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Figure 2. Overall flowchart. The raw point cloud P goes through the initial feature fusion module to
get P1, P1 is input to the backbone, backbone consists of three SA (set abstraction) layers. P1 is first
put through the down sampling and then through the KSFE (key points self-feature enhancement
module) to get K1, and finally through the RGA (revised group aggregation module) to get K2.

After the backbone is complete, to improve the prediction accuracy, this paper adopts
the bounding box prediction mechanism in Vote-Net [20] to predict the bounding box
similarly to SASA [3].

We will explain each module in detail below.
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3.1. Initial Features Fusion Module

Before the SA layers, we utilize the initial features fusion module to extract the distance
features and integrate these with features of the raw point sets. The relevant features of the
raw point cloud are very sensitive to the measurement distance. In the actual measurement,
as the distance increases, the reflectivity of LiDAR decreases, which leads to the problem
that the features of the long-distance points are not obvious and thus reduce the detection
accuracy. Therefore, we believe that distance features are very important for improving
target detection accuracy.

3.1.1. Distance Features

Traditional algorithms often involve calculations such as squares and roots when
calculating distance. This costs a lot of computational resources if we directly let distance
represent the distance feature of each point in the point clouds. Therefore, our distance
feature is defined as follows:

DFp =

∣∣xp
∣∣+ ∣∣yp

∣∣+ ∣∣zp
∣∣

Scale
p ∈ P (1)

where P is the raw point set, DFp and (xp, yp, zp) represent the distance feature and the
coordinates of the p, respectively. Scale is the scaling factor. We utilize the sum of absolute
values of the three-axis coordinates of p to represent the distance of a point. The Scale will
be set in the experiment.

3.1.2. Feature Fusion

We process the initial feature fusion as shown in Figure 3. Since the reflectivity of each
point decreases with the increase of the measurement distance, we adopt the approach
of adding distance features with the initial features of the point cloud to strengthen the
representation of long-distance points. Finally, we perform fusion operations on the
coordinates and related features of the point cloud through the splicing operation. However,
these features have not been processed enough, so we use the Multilayer Perceptron (MLP)
to further extract the depth features.
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Figure 3. Initial features fusion module (where N stands for the number of input point clouds and
F stands for the number of feature layers for each point in the output. “C” represents the stitching
operation and “+” represents the numerical summing operation.).

3.2. Key Points Features Enhancement Module

In SA layers, the key points obtained from the sampling will undergo feature aggrega-
tion with the surrounding points, and the self-features of the key points will be diminished
after aggregation with max or average pooling. However, each key point has its own
unique features in the point cloud data, and these features contain important information
included where the key point is located in the point cloud and what kind of object the key
point represents. However, the feature aggregation will cause the loss of such information.



Sensors 2024, 24, 26 6 of 14

Therefore, we propose a key points self-feature enhancement module as shown in Figure 4,
which enhances the distance features and raw features of the key points, integrating them
into the aggregated features.
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Figure 4. Key points self-features enhancement module (where N1 is the number of key points
after sampling, and Ci is the number of feature channels in each stage. “C” stands for the stitching
operation and “+” stands for the numerical summing operation.).

Feature Enhancement Module

In order to make the self-features of the key points distinctive, we adopt the multi-
attention mechanism to enhance the distance features and raw features of the key points.
The features are strengthened through the multi-head self-attention mechanism; the self-
attention algorithm essentially uses matrix multiplication to calculate the relationship
between each patch and the other patches in the query. The specific formulas are as follows:

Attention(Q, K, V) = So f tmax(
QKT
√

dk
)V (2)

Q = F × Wq (3)

K = F × Wk (4)

V = F × Wv (5)

where F is the self-features of the key points, Wq, Wk and Wv are the learnable weight
matrices. Equations (3)–(5) represent that F obtains Q, K, and V through three separate
MLPs. After obtaining Q, K, and V, we use Equation (2) to finally obtain the attention
features. After that we employ the splicing method to combine them together. Finally, we
carry out the integration of the aggregated features of the key points with their self-features
using the MLP to accomplish the enhancement of self-features of key points.

3.3. Revised Group Aggregation Module

In the process of sampling key points, we follow the S-FPS and D-FPS combined
sampling strategy, which is similar to that of SASA [3]. A small semantic segmentation
module is adopted in the network structure to compute the classification score for each
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point to distinguish between foreground and background points in the point cloud. The
input features to the segmentation network are those obtained from grouping of the point
sets. In the general grouping operation, the selection of points used for aggregation around
the key points only considers the spatial location from the key points, not taking into
account the feature distance from the key points. In this paper, it is argued that this
aggregation operation diminishes the borderlines of the different instances and reduces
the effectiveness of the segmentation module in predicting the classification scores of each
point in the network, thus affecting the sampling performance of S-FPS. To avoid these
problems, we perform a second selection after selecting points within a certain distance
from each key point. In the second selection, we introduce the feature distance to ensure
that the features of the selected points are similar to those of the key point. By doing so, we
can enhance the performance of the segmentation in this network.

Group Aggregation Method

The particular operation is shown in Figure 5. First, we select N points as a point set
PN within the sphere with radius R around the key point, and calculate the feature distance
Df between the points and the key points, which we define as follows:

D f =
∣∣∣ fkeypoints − fn

∣∣∣ n ∈ N (6)

where fkeypoints and fn separately represent the features of the key points and the features
of the points around the key points. Before calculation, these features will go through a
simple MLP to ensure that the features channel is one-dimensional. After obtaining Df, we
select the Nk points with the smallest Dfk (k = 1, 2, . . ., Nk) in PN as a point set PNk. The
PNk will be used for subsequent features aggregation. In this way, we further strengthen
the semantic information of the key points. This can help S-FPS to better distinguish the
foreground points from the background points before sampling.
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3.4. Prediction Head

The overall architecture in this paper consists of three SA layers with a bounding box
prediction network. Similarly, our bounding box prediction network adopts the bounding
box prediction mechanism from Vote-Net [20]. The voting point indicating the center of
mass of the corresponding object is first computed from the candidate point features, and
then the points in the vicinity of each voting point are aggregated to estimate the bounding
box of the detected target.

3.5. Loss

The loss function in SAE3D is inherited from SASA [3]. The overall loss function is
expressed as follows:

L = Lv + Lc + Lr + Lseg (7)

where Lc and Lr are the losses for the classification and regression, Lv is the loss generated
when calculating the vote in the point voting head proposed in Vote-Net [20]. Lseg is the
total segmentation loss proposed in SASA [3].
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Lc and Lr are the traditional losses for object detection. They can help the network
better predict the bounding box and classification of the object to be detected. Lv mainly
serves to predict the center point of the object to improve the accuracy of bounding box
prediction. Lseg mainly serves to perform semantic segmentation before the S-FPS to better
differentiate between foreground and background points. This can improve the sampling
capability of the S-FPS. Therefore, we adopt these loss functions to better train our model.

4. Experiment
4.1. Datasets

The network we proposed is validated on the KITTI dataset and nuScenes dataset.

4.1.1. KITTI Dataset [21]

The KITTI dataset is a widely used public dataset in the field of computer vision,
which is primarily utilized to study and evaluate tasks such as autonomous driving, scene
understanding, and target detection. The dataset is based on the streets of Karlsruhe,
Germany, and comprises a wide range of urban driving scenarios. The KITTI dataset
has become the mainstream standard for 3D object detection in traffic scenes due to its
provision of data from real-world scenarios with a high level of realism and representative
value.

In the original KITTI dataset, each sample comprises multiple consecutive frames of
point cloud data. In our experiment, a total of 7481 point clouds are included along with
3D bounding boxes for training purposes, and 7581 samples are allocated for testing. We
adopt a general setup where the training samples are further subdivided into 3712 training
samples and 3769 testing samples. Our experimental network is trained on the training
samples and validated on the testing samples.

4.1.2. NuScenes Dataset [22]

The nuScenes dataset is one of the more challenging datasets for autopilot research.
It comprises 380,000 LiDAR scans from 1000 scenes and is labeled with up to 10 object
categories, including 3D bounding boxes, object velocities, and attributes. The detection
range is 360 degrees. The nuScenes dataset is evaluated using metrics such as the commonly
used mean Average Precision (mAP) and the novel nuScenes Detection Score (NDS), which
reflects the overall quality of measurements across multiple domains.

When transferring the nuScenes dataset, we combine LiDAR points from the current
key frame and previous frames within 0.5 s, which involves up to 400 k LiDAR points in a
single training sample. We then reduce the number of input LiDAR points. Specifically, we
voxelize the point cloud from the key frame as well as the stacked previous frames with
pixel sizes of (0.1 m, 0.1 m, 0.1 m), then randomly select 16,384 and 49,152 voxels from the
key frame and the previous frames, respectively. For each selected voxel, we randomly
select one internal LiDAR point. A total of 65,536 points were fed into the network with 3D
coordinates, reflectivity, and timestamps.

4.1.3. Evaluation Indicators

In the experiment on the KITTI dataset, two precision metrics are used. One is the
11-point interpolated average precision (AP) proposed by Gerard et al. [23], and the other is
the average precision AP|R40 for 40 recalled positions proposed by Simonelli et al. [24]. The
Intersection over Union (IoU) threshold for all precision calculations is 0.70. The specific
formulas of AP|R are as follows:

AP

∣∣∣∣∣R =
1
|R| ∑

r∈R
ρinterp(r) (8)

ρinterp(r) = max
r′ :r′≥r

p(r′) (9)
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where p(r) gives the precision at recall r. AP applies exactly 11 equally spaced recall levels:
R11 = {0, 0.1, 0.2, . . .,1} and AP|R40 applies recall levels: R40 = {1/40, 2/40, 3/40,. . ., 1}.
We mainly use AP as an accuracy indicator and AP|R40 will be applied in the ablation
experiment in Section 4.5.

In the nuScenes dataset, as mentioned above, we apply the NDS and mAP as the
evaluation indicator. The specific formulas for NDS are expressed as follows:

NDS =
1
10

[
5mAP + ∑

mTP∈TP
(1 − min(1, mTP))

]
(10)

where mTP is the mean True Positive metrics and consists of 5 metrics: average translation
error, average scale error, average orientation error, average velocity error, and average
attribute error.

4.2. Experimental Setting

SAE3D is implemented based on the Appended [25] and is trained on a single GPU.
All experiments were performed on Ubuntu 16.04 and NVIDIA RTX-2080Ti.

4.2.1. Setting in KITTI Dataset

During the training process, the batch size takes the value of 2, and 16,384 points are
randomly selected from the remaining points in each batch to input into the detector. In
terms of network parameters, the number of key points in the three SA layers is set to 4096,
1024, and 512, respectively, and the scaling factor Scale for the distance feature takes the
value of 120.

Adam optimizer [26] and a periodically varying learning rate were adopted in the
training for a total 80 epochs, with the initial value of the learning rate set to 0.001. Ad-
ditionally, we used three commonly used data augmentation methods during training:
randomly flipping the X-axis with respect to the Y-axis, random scaling, and randomly
rotating the Z-axis.

4.2.2. Setting in nuScenes Dataset

During the training process, the batch size takes the value of 1. Adam optimizer and
a periodically varying learning rate were adopted in the training for a total of 10 epochs,
with the initial value of the learning rate set to 0.001.

To handle the huge number of points in the nuScenes dataset, four SA layers are
adopted. The number of key points in these four SA layers is set to 16,384, 4096, 3072, and
2048, respectively.

4.3. Results

The detection performance of the SAE3D model is evaluated on the KITTI dataset and
nuScenes dataset against some existing methods proposed in the literature.

In the KITTI dataset, the test set is categorized into three levels of difficulty, i.e., “Easy”,
“Moderate”, and “Hard”, based on the difficulty of detection. We take the 3D bounding box
average precision (3D AP) of the “Car” category as the main evaluation, as this is usually
adopted as the main indicator in KITTI datasets. As shown in Table 1, compared with the
baseline network SASA, 3D AP is improved by 0.544% and 0.648% in the difficulty levels of
“Moderate” and “Hard”, respectively. The detailed precision improvements will be shown
in Section 4.5.

In the nuScenes dataset, as shown in Table 2, compared with the baseline network,
SAE3D achieved 3.3% and 1.7% improvement in the indicators of NDS and mAP, respec-
tively.
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Table 1. The detection results of 3D AP for “Car” in KITTI.

Methods
Car 3D AP (%)

Easy Moderate Hard

SECOND [8] 84.656 75.966 68.712
Voxel Net [7] 77.478 65.119 57.736

Point Pillars [14] 82.588 74.317 68.995
Point-RCNN [18] 89.023 78.246 77.554
Vox Set Tran [10] 88.869 78.766 77.576

SASA [3] 89.108 78.847 77.588

SAE3D 89.059 79.391 78.236

Table 2. Results from the nuScenes validation set. Evaluation metrics include NDS, mAP, and 10
classes. Abbreviations: pedestrian (PED.), traffic cone (T.C.), construction vehicle (C.V.).

Methods NDS mAP Car Truck Bus Trailer C.V. Ped. Motor Bicycle T.C. Barrier

Point Pillars [14] 45.2 25.8 70.3 32.9 44.9 18.5 4.2 46.8 14.8 0.6 7.5 21.3
3DSSD [2] 51.7 34.5 75.9 34.7 60.7 21.4 10.6 59.2 25.5 7.4 14.8 25.5
SASA [3] 55.3 36.1 71.7 42.2 63.5 29.6 12.5 62.6 27.5 9.1 12.2 30.4

SAE3D 58.6 37.8 72.4 44.1 62.7 31.2 15.9 60.4 30.1 12.8 10.1 31.6

4.4. Enhancement Validation

To verify the enhancement effect of the proposed network in this paper, we utilize
SASA [3] and Point-RCNN [18] as two baseline networks for testing in the KITTI dataset.
Both baseline networks are point-based 3D object detection networks, where SASA [3] is a
one-stage object detection network and Point-RCNN [18] is a two-stage object detection
network. The experiments introduce the enhanced network proposed in this paper into
both of these networks, effectively improving the detection performance of the original
benchmark network.

Table 3 shows the improvement in the accuracy of the 3D detection frames of the “Car”
category in the enhanced networks of SASA [3] and Point-RCNN [18], respectively.

Table 3. Enhancement effectiveness. Abbreviations: Distance features-based enhancement network
proposed in this paper (SAE3D).

Methods
Car 3D AP (%)

Easy Moderate Hard

SASA [3] 89.108 78.847 77.588
SASA [3] + SAE3D 89.059 79.391 78.236

Improvement −0.049 +0.544 +0.648

Point-RCNN [18] 89.023 78.246 77.554
Point-RCNN [18] + SAE3D 89.160 78.839 78.439

Improvement +0.137 +0.593 +0.885

After the introduction of the enhanced network in SASA [3], the 3D AP of the “Car”
decreases slightly in the “Easy” difficulty, but increases by 0.544% and 0.648% in the
“Moderate” and “Hard” difficulties, respectively.

After introducing the enhanced network in Point-RCNN [18], the accuracy of the
3D AP is improved by 0.137%, 0.593%, and 0.885% in “Easy”, “Moderate”, and “Hard”
difficulties, respectively.

4.5. Ablation Experiment

In this paper, ablation experiments are designed to verify the actual effect of each
module. All modules are trained on the training set of the KITTI dataset and evaluated on
the validation set for the “Car” category of the KITTI dataset.
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In this section we added BBox AP, BEV AP, and AOS AP alongside 3D AP as the
evaluation indicator. BBox AP represents the average precision of the 2D bounding box,
while BEV AP denotes the average precision of the detection boxes in bird’s-eye view.
These two indicators provide detection box accuracy from different perspectives, aiding
in a better understanding of the spatial precision of the detection boxes predicted by our
model. AOS AP stands for the average precision of the detected target’s rotation angle,
indicating the accuracy of the object orientation predicted by our model.

4.5.1. Initial Feature Fusion Module

As shown in Table 4, the initial feature fusion module proposed in this paper is
of great help to improve the precision of 3D bounding box. The improvement of this
module is most evident in the difficulty levels of “Moderate” and “Hard”. Compared to
the baseline network used in this paper, in the “Moderate” and “Hard” difficulty levels, the
3D bounding box accuracy improvement of this module is 0.551% and 0.811%, respectively.
Additionally, the improvement in 2D bounding box accuracy is 0.186% and 0.811%, while
the bounding box accuracy improvement in BEV view is 0.257% and 1.048%, respectively.

Table 4. Comparison table of the general accuracy enhancement effect of different modules. Abbrevi-
ations: initial feature fusion module (I), KSFE module (K), and RGA module (F).

+I +K +F
Car 3D AP (%) Car BBOX AP (%) Car BEV AP (%) Car AOS AP (%)

Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

89.108 78.847 77.588 96.742 89.855 89.036 90.199 87.855 85.993 96.71 89.75 88.88√
88.971 79.246 78.334 96.473 89.847 89.163 90.317 88.420 87.342 96.44 89.81 89.07√
89.213 79.324 78.114 96.813 90.171 89.412 89.876 89.397 86.976 96.54 90.08 89.11√
89.167 79.398 78.399 96.668 90.041 89.287 90.149 88.112 87.041 96.64 89.98 89.12√ √ √
89.059 79.391 78.236 96.758 90.169 89.382 89.978 88.382 86.824 96.71 90.10 89.22

As shown in Table 5, when using the AP|R40, the improvement in the accuracy of
the 3D bounding box is 2.549% and 2.582% for the difficulties of “Moderate” and “Hard”,
respectively. The improvement in the accuracy of 2D bounding box is 1.976% and 0.533%,
respectively, and the improvement in the accuracy of bounding box in BEV view is 0.295%
and 2.257%, respectively.

Table 5. Comparison table of the AP|R40 enhancement effect of different modules. Abbreviations:
initial feature fusion module (I), KSFE module (K), and RGA module (F).

+I +K +F
Car 3D AP R40 (%) Car BBOX AP R40(%) Car BEV AP R40(%) Car AOS AP R40(%)

Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

91.592 80.705 77.902 98.289 92.972 92.104 93.277 89.128 86.465 98.26 92.85 91.92√
91.457 83.067 80.369 98.111 94.583 92.469 95.055 91.034 88.832 98.09 94.52 92.35√
91.432 82.913 78.956 98.023 95.023 92.659 93.124 89.223 88.624 98.21 94.89 92.39√
91.555 83.254 80.484 98.097 94.948 92.637 93.197 89.423 88.722 98.08 94.85 92.44√ √ √
91.426 83.236 80.191 98.266 95.036 92.616 93.014 90.902 88.525 98.23 94.93 92.42

4.5.2. Key Points Self-Features Enhancement Module

As shown in Table 4, this module improves the detection accuracy of the 3D bounding
box and the accuracy of bounding box detection in BEV view. The detection accuracy of
the 3D bounding box is improved by 0.339% and 0.746% under the difficulty levels of
“Moderate” and “Hard”, respectively, and the detection accuracy of the bounding box in
BEV view is improved by 0.118%, 0.565%, and 1.349% in “Easy”, “Moderate”, and “Hard”
levels of difficulty, respectively.

As shown in Table 5, the accuracy of the 3D bounding box is improved by 2.362% and
2.467% for the “Moderate” and “Hard” levels of difficulty, respectively, when using AP|R40.
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The accuracy of the bounding box in BEV view is improved by 1.778%, 1.906% and 2.367%
for “Easy”, “Moderate”, and “Hard” levels of difficulty, respectively.

4.5.3. Revised Group Aggregation Module

As shown in Table 4, the detection accuracy of this module on BBOX is improved
by 0.316% and 0.376% under the difficulty levels of “Moderate” and “Hard”, respectively.
Additionally, compared with the baseline network, the module improves other metrics
such as 3D bounding box and steering angle accuracies.

As shown in Table 5, when AP|R40 is used, the detection accuracy improvement on
BBOX is 2.051% and 0.555% at “Moderate” and “Hard” levels, respectively.

4.6. Detection Effect

Figure 6 shows the actual detection effect. Although there is still a small part of the
missed detection problem, most of the vehicles are detected and the accuracy of the 3D
bounding box is high.
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5. Discussion

In this paper, we continue to explore the possibilities of the point-based 3D object
detection. Point cloud data are vast and contains a wealth of information, both useful and
redundant. We believe that there is still underutilized information within the point cloud.
Therefore, we proposed the SAE3D. The results demonstrate that extracting more useful
information and enhancing the relevant information in the point cloud can improve the
final detection accuracy.

6. Conclusions

In this paper, we proposed SAE3D with three enhancement modules: an initial feature
fusion module, a key points self-feature enhancement module, and a revised group aggrega-
tion module. We provide a detailed description of the design ideas and implementation of
these modules in this paper. We conducted testing using the KITTI and nuScenes datasets
and designed ablation experiments on the KITTI dataset to analyze the enhancement of
each module in detail. The results demonstrate that all three enhancement modules we
propose contribute to enhancing detection accuracy. Our SAE3D suggests that there are
still useful characteristics in point clouds that are not fully utilized, and some of them can
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assist in extracting information from the point clouds more effectively. We believe that
exploring additional potential characteristics of point clouds can further enhance 3D scene
understanding.
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