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Abstract: Measuring the daily use of an affected limb after hospital discharge is crucial for hemiparetic
stroke rehabilitation. Classifying movements using non-intrusive wearable sensors provides context
for arm use and is essential for the development of a home rehabilitation system. However, the
movement classification of stroke patients poses unique challenges, including variability and sparsity.
To address these challenges, we collected movement data from 15 hemiparetic stroke patients (Stroke
group) and 29 non-disabled individuals (ND group). The participants performed two different tasks,
the range of motion (14 movements) task and the activities of daily living (56 movements) task,
wearing five inertial measurement units in a home setting. We trained a 1D convolutional neural
network and evaluated its performance for different training groups: ND-only, Stroke-only, and ND
and Stroke jointly. We further compared the model performance with data augmentation from axis
rotation and investigated how the performance varied based on the asymmetry of movements. The
joint training of ND + Stroke yielded an increased F1-score by a margin of 31.6% and 10.6% compared
to ND-only training and Stroke-only training, respectively. Data augmentation further enhanced
F1-scores across all conditions by an average of 11.3%. Finally, asymmetric movements decreased the
F1-score by 25.9% compared to symmetric movements in the Stroke group, indicating the importance
of asymmetry in movement classification.

Keywords: activities of daily living; classification; hemiparesis; human action recognition; range of
motion; stroke rehabilitation; upper extremity; deep learning

1. Introduction
1.1. Motivation

Hemiparesis, marked by the impairment of one side of the body due to a stroke,
often results in reduced use of the more affected limb [1,2]. A substantial majority of
stroke survivors (>85%) experience incomplete upper extremity (UE) motor recovery [3].
This often results in sustained low engagement of the more affected limb in activities of
daily living (ADL) in the home setting following hospital discharge [4,5]. Encouraging the
repetitive use of the more affected upper limb for ADL is a crucial aspect of rehabilitative
training, not only facilitating functional improvement but also initiating a virtuous cycle of
increased spontaneous use [6]. In this context, the combination of wearable sensors and
advanced deep learning methodologies presents a new approach for monitoring UE usage,
providing invaluable feedback on limb use [7,8].

There exist various methods for the monitoring of patient activities, including inertial
measurement units (IMUs), accelerometers, home video surveillance, and utilization of
applications for patient responses at designated times [9–11]. Accelerometers allow the
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relative assessment of the movement of the more affected upper limb compared to the less
affected limb; however, the raw data do not directly provide insights into the specific move-
ments performed [12]. Video surveillance has potential issues such as privacy infringement;
moreover, it restricts the patient’s location within the camera’s recording field if the camera
position is fixed [13]. Extended monitoring of patients’ activities via applications is chal-
lenging and usually depends on the patient’s willingness to participate [11]. Furthermore,
this makes it difficult to precisely identify the type of upper limb movement performed by
the patient. IMUs have limitations similar to accelerometers; however, recent advancements
in human activity recognition technology have enabled the classification of specific upper
limb movements using the raw time series data of IMU sensor channels [14]. The wide
availability of embedded IMU sensors in commercial wearables, such as smartwatches,
makes an IMU sensor-based algorithm or model easily deployable without relying on a
special device designed for a specific purpose.

1.2. Related Work

Traditionally, time series data from wearable sensors are preprocessed and feature-
engineered to be fed into machine learning algorithms for activity classification [15]. Feature
engineering is typically handcrafted based on the researchers’ domain expertise, and it can be
categorized into time-domain features [7,8,16], such as mean, variance, correlation, min, max,
and skewness, and frequency-domain features after the original time series is transformed
into a frequency domain [17,18]. However, feature engineering can be subjective and may
not generalize properly to unseen data distributions or novel movement classes. Therefore,
researchers are adopting deep learning methods to classify the movements of stroke patients
and non-disabled individuals [19–21]. In a deep learning architecture comprising multiple
layers, the initial layers work as a series of hierarchical feature extractors; however, the actual
features or model parameters are solely learned from the data, which boosts the model
performance and generalizability. For human activity recognition (HAR), one-dimensional
convolutional neural networks (1D-CNN) [21,22] and recurrent neural networks [23,24] are
the most common architectures used to extract temporal patterns from sensor time series.

Compared with the HAR of non-disabled individuals, recognizing the movements of
patients with stroke presents unique challenges. First, the movements of stroke patients
are distinctive and diverse compared to those of non-disabled individuals, thus making it
ineffective to train a model with non-disabled participants’ data and deploy it to classify the
movements of patients with stroke. However, training a model using only stroke patients’
data is challenging because of data sparsity [25]. Nonetheless, researchers have mostly used
only the data of patients with stroke, which are relatively small in terms of the number of
participants and movement types. For example, O’Brien et al. [7] investigated gait-related
activity recognition in patients with gait-impaired stroke and in healthy participants using
smartphone sensors. They found that when evaluating performance in the stroke group,
their random forest classifier performed better when trained with stroke patients’ data than
with healthy participants’ data. Second, stroke patients’ movements are heterogeneous not
only in their patterns but also in their duration. The same movement can have different
durations depending on the individual’s status, and different movements require different
completion times. This variability in duration is a significant challenge, especially for a
deep learning model, because the input signal usually requires a fixed length or dimension.
Third, the upper limb movement patterns of stroke patients are differently affected in
terms of the bilaterality and asymmetry of a given movement. Therefore, distinguishing
a movement’s bilaterality and asymmetry is important not only for activity classification
but also for effective rehabilitation [26–28]. However, most previous studies on activity
recognition did not consider how movement asymmetry affects classification performance.
Bailey et al. [29] measured bilateral upper limb activity and the ratio of non-disabled
adults to stroke patients using wrist-worn accelerometers. However, their measurement
of bilateral asymmetry was continuously recorded for approximately a day and did not
differentiate which activity was performed.
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2. Materials and Methods

In the present study, to investigate an efficient method for recognizing stroke patients’
movements in daily life, we collected movement data from hemiparetic stroke patients and
non-disabled individuals. The participants performed two distinct tasks: a range of motion
(ROM) task that involves isolated unimanual movements and an ADL task comprising
daily activities in a home-like environment. To address the above-mentioned challenges
of variability and asymmetry, we first fixed the length of the input signal using linear
interpolation. Afterward, we trained a deep learning model using different combinations
of training groups (ND and Stroke) and compared the results. Furthermore, we adopted a
data augmentation technique for time series data [30] to further enhance the performance.
Finally, we investigated how the asymmetry of movements affects model performance
when evaluated using stroke data. These methods and findings provide practical guidelines
for classifying the movements of stroke patients when using deep learning models, which
is essential in developing a home rehabilitation system. Furthermore, to facilitate further
research, we open-sourced our dataset, Jeonju University IMU human action recognition
(JU-IMU; https://github.com/youngminoh7/JU-IMU, accessed on 23 November 2023).

2.1. Experiments
2.1.1. Participants

Fifteen patients with subacute to chronic stroke (four females; Stroke group) and 29
non-disabled (ND) young volunteers (19 females; ND group) participated in this study
(Table 1). Nine patients had right hemiparesis and six patients had left hemiparesis.
The inclusion criteria for the Stroke group were as follows: (1) age ≥ 21, (2) ischemic
or hemorrhagic stroke in the subacute to chronic stage, (3) impaired upper extremity
movement (Fugl–Meyer Assessment for Upper Extremity (FMA-UE) score ≥ 19 out of 66),
(4) intact cognitive functions to understand the experimental process and communicate
with the instructor (Korean version of Mini-Mental State Exam score > 24), and (5) absence
of vision problems or previous orthopedic surgeries on the upper extremity that would
interfere with movement [31]. The inclusion criteria for the ND group were (1) age ≥ 21
and (2) no history of neurological or orthopedic surgeries that would affect the movement
of the upper extremities. All participants were right-handed (or right-handed before the
stroke in the Stroke group), as assessed using the Edinburgh Handedness Inventory [32].
The Institutional Review Board of Jeonju University approved this study (jjIRB-171115-HR-
2017-1109).

Table 1. General characteristics of participants with stroke.

ID Handedness
(R a/L b)

Affected Side
(R/L)

Gender
(F/M)

Age
(Years)

Stroke Onset
(Months) FMA-UE c MMSE-K d EHI e

Stroke1 R R M 68 19 56 28 90
Stroke2 R R F 86 44 58 30 100
Stroke3 R R M 73 13 42 27 70
Stroke4 R R M 73 14 44 30 100
Stroke5 R L M 63 26 59 29 100
Stroke6 R L M 69 12 51 30 100
Stroke7 R L M 63 44 35 26 70
Stroke8 R R M 76 3 33 25 100
Stroke9 R L M 59 78 43 28 80
Stroke10 R L F 34 13 54 30 100
Stroke11 R R F 54 28 63 30 100
Stroke12 R R F 61 49 56 30 100
Stroke13 R R M 61 29 55 30 100
Stroke14 R L M 52 10 66 30 100
Stroke15 R R M 65 21 44 30 100

a R: right, b L: left, c FMA-UE: Fugl–Meyer Assessment for Upper Extremity, d MMSE-K: Korean version of
Mini-Mental State Examination, e EHI: Edinburgh Handedness Inventory.

https://github.com/youngminoh7/JU-IMU
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2.1.2. Selection of Upper Extremity Movements

The movements selected for the experiment included movements of the upper ex-
tremities during ADL in various locations at home (e.g., bathroom, bedroom, living room,
or kitchen), as well as motions used for clinical tests, such as the FMA-UE, the Wolf Mo-
tor Function Test (WMFT), and the Actual Amount of Use Test (AAUT) [33–35]. These
selected movements were divided into two tasks: the ROM and ADL tasks. The ROM
task comprised simple ROM movements at each joint of the upper extremity, such as the
shoulder (flexion/extension, abduction/adduction, and internal rotation), elbow, and wrist
(flexion/extension), and grasping of small items. Meanwhile, the ADL task included move-
ments in ADL such as combing hair, opening a book, and folding a towel [2,34,36]. These
activities require purposeful movements at different locations in the home. Movements in
the ADL task were further divided into three movement types: unimanual (UNI), bimanual
asymmetric (BIA), and bimanual symmetric (BIS). UNI movements involved the use of one
arm by the participants, whereas BIA and BIS movements involved the use of both arms
simultaneously but with different symmetries. In BIA movements, each arm and hand
played a specific role in movement control (e.g., holding a paper with the left hand and
writing with the right), whereas in BIS movements, both arms moved symmetrically. A
panel of two physical therapists and one occupational therapist classified UNI, BIA, and
BIS movements based on a previous study [1]. When stroke patients performed BIA move-
ments, we instructed them to use the more affected limb for major or delicate movements
and the less affected limb for the holding of objects. For example, in the movement of
writing on paper, patients with right hemiparesis used their right hand to write with a pen
and their left hand to hold the paper; patients with left hemiparesis used the opposite limb,
although all were right-handed before the onset of stroke.

Table 2 summarizes the information regarding our movement sets, and Tables S1 and S2
in the Supplementary Materials describe all movements in the ROM and ADL tasks. Most
selected movements were from clinical tests based on the International Classification of
Function and Disability (ICF Model). To assess the level of impairment, items in the FMA-
UE were used; to assess the activity level, WMFT, action research arm test, arm motor
ability test, motor evaluation scale for the upper extremities in stroke patients, and “Test
D’evaluation des Membres Suprrieurs des Personnes Agées” were used. For the participa-
tion level, the French Activities Index, Barthel index, Functional independence measure,
Motor Activity Log, and AAUT were used [37].

Table 2. Example movements in the upper limb motor tasks.

Task Movement Type Example Movements

ROM

UNI a

Shoulder flexion/extension, external/internal rotation,
abduction/adduction
Elbow and wrist flexion/extension
Forearm supination/pronation
Scaption, reaching forward, Ggrasping

ADL
UNI Open the door, turn on the light, brush one’s hair

BIA b Put in envelope, fold a towel, open the laptop
BIS c Lift the box up, wash one’s face, type on a keyboard

a UNI: unimanual movement, b BIA: bimanual asymmetric movement, c BIS: bimanual symmetric movement. All
movements in the ADL task belong to a category of “activities of daily living”, drawing upon the examples and
definitions cited in the previous research [2,38]. We did not further categorize these ADL movements into “basic”
or “instrumental” subsets, as the distinction between these two categories was not a focal point of our study.

2.1.3. Experimental Environments

To encourage the participants to perform realistic movements at home, we set up a
dedicated studio for the experiment (Figure 1, left panel). This studio had a single room
that included a restroom, veranda, kitchen, and an entrance hall with a shoebox. We
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ensured the availability of the necessary materials for each movement, such as a set of
chopsticks for handling chopsticks and dishes for washing. Additionally, we provided
the appropriate furniture, including desks, chairs with backrests, refrigerators, closets,
sinks, laundry machines, clothes dryers, and vacuum cleaners, as required for each move-
ment. These provisions allowed the participants to perform actions in accordance with the
scenario provided.
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Figure 1. Experimental studio space (left panel) and sensor attachment locations (right panel). The
studio was divided into sleeping areas, study room, bathroom, veranda, kitchen, and living room,
distinguished by the arrangement of furniture. Participants wore five sensors on their bodies (two on
the wrists, two on the upper arms, and one on the trunk) and performed range of motion and activities
of daily living tasks according to a predetermined scenario. The experimenters demonstrated each
movement to the participants in advance, and the participants were instructed to replicate that
movement exactly.

2.1.4. Sensors

We used five IMU sensors to collect data (Figure 1, right panel). These sensors were
50 × 100 × 20 mm3 and weighed 200 g. The IMU sensors included an accelerometer, a
gyroscope, and a magnetometer, each with three perpendicular axes (x, y, and z). Three
YI 4 K Action Cameras (YI Technology, Shanghai, China) were mounted on the walls of
the studio to record the experiment. Video recordings were combined with IMU sensors to
segment and annotate the participants’ upper limb movements. During the experiment, all
the participants wore IMU sensors at five specific body locations: the wrists and upper arms
on both sides of the upper limb and the center of the trunk (Figure 1, right panel). To ensure
consistency, each sensor was placed in the same location for all participants. Specifically,
sensor 1 was positioned on the right wrist, sensor 2 on the left wrist, sensor 3 on the trunk,
sensor 4 on the right upper arm, and sensor 5 on the left upper arm. The IMU sensors had
a mean sampling rate of 80 Hz and transmitted the IMU signal wirelessly to a smartphone
via Bluetooth. The data were saved as comma-separated value (CSV) files, where each row
contained a timestamp and sensor values from 45 channels (five sensors × nine channels:
x, y, z for the accelerometer, gyroscope, and magnetometer). Similarly, video data captured
by the action cameras were saved on a mobile phone using Bluetooth wireless technology.
Following the completion of the experiment, the CSV and video files were exported from
the mobile phone to a computer for further analysis.

2.1.5. Experimental Procedures

The participants were engaged in the experiment for a maximum of 1–2 h. The IMU
sensors were attached to five body locations using elastic bands. Participants sequentially
performed movements in the ROM and ADL tasks, repeating each movement five times.
All the participants followed the same order of movement for both tasks. To clearly
mark the start and end of each movement, the participants clapped their hands between
movements. Hand clapping was also used to annotate each movement. The experiment
was conducted by three researchers. One researcher verbally explained the motion, the
second demonstrated the motion, and the third monitored the video and real-time data
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stream from the IMU sensors. ND participants were given a 5 min rest period between tasks,
whereas stroke patients had a maximum rest period of 10 min. However, if the participants
reported fatigue, they were allowed to take a break at any time or stop the experiment. In
these cases, the experiment was resumed on another day to complete the task.

2.2. Data Analysis
2.2.1. Data Annotation and Exclusion

A custom Matlab code (Mathworks, Natick, MA, USA) was developed to segment and
annotate each movement based on the synchronized IMU and video data. The raw data
from the IMU sensors (in CSV format) were synchronized with the video recordings that
captured all the movements during the experiment. The researchers manually labeled each
movement by observing the synchronized IMU and video data. Erroneous trials in which
participants were unable to successfully complete the motions (e.g., scratching one’s nose
or hair due to tickling or performing the wrong sequence) were excluded.

Additionally, because we trained and evaluated the model on an individual basis, we
excluded a participant’s data if they missed more than one movement segment. Missing
segments occurred during the experiment either because a participant could not perform a
movement or because the recorded data were corrupted during the transmission process.
Of the 15 patients in the Stroke group, data from one participant (Stroke11) were excluded
on both ROM and ADL tasks. Of the 29 participants in the ND group, the data of two
participants (ND9 and ND13) were excluded from the ROM task (N = 27), and the data of
one participant (ND10) were excluded from the ADL task (N = 28).

2.2.2. Preprocessing and Asymmetry Score

Each movement segment consisted of five repetitions. For each segment, we extracted
the segment means from all channels and subtracted the channel means from the channel
values, making the segment means of all the channels zero. For the subsequent analyses,
we took six out of nine channels from each sensor—x-, y-, and z-axes of the accelerometer
and gyroscope, excluding magnetometer channels—because these values depend on the
orientation of the participants relative to the Earth’s magnetic fields.

To estimate the asymmetry of movements, we defined an asymmetry score that
measures the log ratio of the right-side energy to the left-side energy. The right-side energy
ER and left-side energy EL are defined as follows:

ER = 1
NR

∑
c ∈ RC

T
∑

t=1

1
T (xc, t)

2,

EL = 1
NL

∑
c ∈ LC

T
∑

t=1

1
T (xc, t)

2 ,

(1)

where NR and NL are the number of channels c corresponding to the right-side RC and
left-side LC; xc, t is the zero-averaged value of channel c at time t; and T is the length (time
points) of a segment, which is a constant across all segments. The asymmetry score Sasym is
defined as

Sasym = log
(

ER + ϵ

EL + ϵ

)
, (2)

where log is the natural logarithm and ϵ = 0.001 is a small positive constant to make the
computation stable when the denominator is close to 0. By definition, Sasym is positive
and increases when ER is larger than EL, zero when ER = EL, and negative and decreases
when ER is smaller than EL. We will sometimes report the absolute value of Sasym in the
Results section when only the degree of asymmetricity is important, regardless of which
side’s energy is larger. Patients in the ND group and patients with right hemiparesis used
their dominant right hands when performing the UNI and BIA movements. In contrast,
patients with left hemiparesis performed the same movements with their affected, non-
dominant left hand and were expected to have negative asymmetry scores. We exchanged
the sensor numbers between the right and left sides when the sensor data were fed into the
neural network model for training and evaluation. We performed this process to make the
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data distribution among the sensors similar across all participants for easy capture of the
dominant patterns by the model.

2.2.3. Linear Interpolation and Sliding Windows

The segments of different movements of different participants have various lengths in
terms of time points. To assign a fixed-length input to a neural network model, we applied
the sliding window technique that slices a segment into several pieces or “windows”
(Figure 2). Starting from the beginning of a segment, a sliding window cuts out a fragment
of the segment with a fixed length called “window size”, and then it jumps forward by
a step length called a “stride” until the remaining length is less than the window size.
However, there are two critical problems in applying the sliding window technique to
our data with variable segment lengths. First, for a fixed window size, shorter segments
produce fewer segments, whereas longer segments result in more segments. This leads
to a class imbalance in machine learning, which causes biased learning to favor classes
with larger sample sizes, making objective evaluation difficult. Second, a fixed window
size would capture different proportions of the original segment. The same length window
contains a relatively smaller portion of a longer segment and vice versa. This makes it
difficult for a neural network model to discover common temporal patterns from variable-
length segments of the same activity. These problems are particularly critical for our dataset
because the inter-participant and inter-activity segment lengths vary significantly (see
the Section 3.1). To solve the issue of variable segment lengths, we adopted a simple
linear interpolation to ensure that all segments had the same average length. After linear
interpolation, we applied a sliding window to obtain the same number of windows for all
the segments. The window size and stride were determined to produce exactly 20 windows
per segment for ROM and ADL tasks.
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2.2.4. Model

We adopted the 1D-CNN [22] to classify participants’ movement in our dataset. The
1D-CNN applies convolution along the temporal dimension to the time series of the sensor
values. Specifically, we shaped the window data to have dimensions of [time, channel],
where the channel corresponded to 30 channels from a combination of five sensors and six
corresponding channels (three accelerometer channels and three gyroscope channels). As
shown in Figure 2, we stacked four convolutional layers followed by three dense layers for
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movement classification. The four convolutional layers function as feature extractors, and
each convolutional layer extracts local temporal patterns from the input features. For all the
convolutional layers, the size of the convolution kernel was five, and the stride of the kernel
was two. The numbers of kernels and output features of the convolution layers were 32,
64, 128, and 256 for the four layers, respectively. These progressively increasing numbers
of features were inspired by 2D convolutional neural networks [39,40]. For the ROM task,
with an input window length of 200, the lengths of the features became 98, 47, 22, and 9
after being transformed by each convolutional layer. The corresponding feature lengths
for the ADL task with an input window length of 740 were 368, 182, 89, and 43. With this
design of increasing feature numbers and shrinking feature lengths, convolutional layers
can transform the input data into more diverse and abstract representations in the latter
layers, which makes them efficient feature extractors. After the features were extracted by
the convolutional layers, they were flattened and fed into the dense layers that work as
classifiers. The first two dense layers contained 800 and 200 neurons, respectively. The final
dense layer had a neuron number equal to the number of movements: 14 for the ROM task
and 56 for the ADL task and was activated using the softmax function. All layers, including
the convolution layers and the last dense layer, were activated using a rectified linear unit
(ReLU) [41]. Additionally, the first two dense layers were applied with Dropout [42] with a
probability of 0.7.

2.2.5. Data Augmentation

Data augmentation applies certain transformations to the original data to increase the
amount of training data by supplementing uncovered space in the feature space. Data
augmentation has been widely adopted in other fields of deep learning such as image
recognition, comprising random translation, resizing, cropping, flipping, and rotation [43].
These geometrical transformations on image datasets improve model training, resulting
in better generalizability to unseen images during testing. However, it is unclear what
types of transformations are beneficial for human activity recognition using time series
data, although some studies [30] have suggested certain categories of transformations,
including scaling, rotation, permutation, and cropping, may work for time series-based
action recognition. The extent of improvements associated with these transformations
depends on the type of motion and structure of the dataset. Our dataset consisted of
complex ADL activities, often exhibiting strong asymmetry and diversity among different
participants. These characteristics encouraged us to apply axis rotation as a method of data
augmentation. The axis rotation rotated sensor values by a random angle (sampled from −90
to +90 degrees) with respect to a randomly selected axis in a 3-dimensional space that the x,
y, and z components of sensor values constitute (Figure 3). The axis rotation simulates the
variability in hand and arm orientations during movements. To evaluate the performance
boost of data augmentation, we trained our model using two different datasets: the original
dataset and the original dataset plus its randomly rotated dataset (the augmented set).
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Figure 3. Axis rotation. (A) Visualization of axis rotation. The sensor values form a vector (“original”)
and are rotated by a random angle with respect to a randomly chosen axis. (B) Rotation example.
Black solid lines indicate x, y, and z components of an accelerometer and red dashed lines denote
rotated components.
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2.2.6. Training and Evaluation

As this study aimed to enhance the classification of the movements of stroke patients,
we first examined how different combinations of ND and Stroke training groups affected
the evaluation results of stroke patients. Therefore, according to the study design, the Stroke
group must be included in both the training and evaluation sets. Because any machine
learning model should not have the same data in the training and evaluation sets, we
adopted leave-one-subject-out cross-validation (LOSO-CV) as the main evaluation method
(Figure 4). In LOSO-CV, only one participant from the target group (the Stroke group in our
case) is kept from the training group, and the model performance was evaluated using the
remaining participant after the model was trained using the other participants’ data. This
process was repeated as many times as the number of participants, and the evaluation result
for each participant was averaged to obtain the LOSO-CV evaluation result. For our study
design, we tested three different training conditions: ND only, Stroke only, and ND + Stroke.
For ND-only training, the training group was the ND group and the evaluation group was
the Stroke group, in which the ordinary separate training and test groups were applied
without the use of LOSO-CV. For Stroke-only training, the training group comprised only
the Stroke group, and LOSO-CV was applied. Finally, for the ND + Stroke training, the
training group was a combination of the ND and Stroke groups, whereas the evaluation
was estimated in the Stroke group using LOSO-CV.
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Figure 4. Training and evaluation conditions. Subject boxes filled with colors are used for train-
ing/evaluation, and those unfilled (white background) are not used. Evaluation metric is calculated
for each subject in the Stroke group and then averaged for all subjects. (A) Training with ND (Split).
(B) Training with Stroke (LOSO-CV). (C) Training with ND + Stroke (LOSO-CV).

For optimization, we adopted the AdamW optimizer (learning rate = 0.001, betas = (0.9,
0.999), eps = 1 × 10−8, and weight decay = 0.01) [44] with a cross-entropy loss. The batch
size was 256 (windows) and the training epoch was 40. The training results were evaluated
by F1-score on individual movement segments for each participant as the harmonic mean
of precision and recall for each class. Thus, we have one F1-score corresponding to each
pair of participants and classes. Group-averaged F1-scores were calculated based on patient
groups and movement types.

2.2.7. Statistical Analysis

To determine the impact of the training group and augmentation method on model
performance, a mixed-effect model with categorical variables [45] was used in the R soft-
ware package (version 4.3.2) [46]. For each ROM and ADL task, the training groups (ND
and Stroke) and augmentation conditions (the original and the augmented data) were set as
categorical variables of the fixed effects, and each participant was set as a random intercept.
Four analytical models were constructed as follows: The first two models included only
one factor (training group or augmentation), whereas the last two had two factors with
and without interaction terms (e.g., training group + augmentation for Model 3, training
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group × augmentation for Model 4). To define the best-fit model, the ANOVA function in R
was applied. When necessary, Tukey’s post hoc test was performed. In addition, the effect
of movement types (UNI, BIA, and BIS) in the ADL task on F1-scores across the training
groups was studied via linear regression, where the factors were movement types (BIA,
UNI, and BIS) and training groups (ND and Stroke). All significance levels were set at
p < 0.05.

3. Results
3.1. Data Exploration

First, we present sample plots of the segments annotated from the ADL task (Figure 5).
Sample plots in Figure 5 provide examples of three different types of movements—UNI,
BIA, and BIS—by the same participant (ND20). The asymmetric nature of each movement
type was reflected in the magnitudes and patterns on both sides of the sensors.
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the total number of segments was 2352 − 6 = 2346 segments. Figure 6 shows the variability 
in the segment lengths of movements. The ROM task had relatively uniform segment 
lengths compared with the ADL task because its movements were simpler and less varia-
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Figure 5. Sample plots of three movements of the same participant (ND20) in the ADL task.
(A) OpenRefrig—UNI, (B) OpenNewspaper—BIA, (C) LiftUpDownBox—BIS. Red lines: accelerom-
eter channels, blue lines: gyroscope channels. Note that the scales of the horizontal (time points)
and vertical (sensor values) axes across panels are different. OpenRefrig: open and close refrigerator,
OpenNewspaper: open a newspaper; LiftBox: lift the box up and down; UNI: unimanual; BIA:
bimanual asymmetric, BIS: bimanual symmetric; R: right; L: left.
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Table 3 summarizes the segment length statistics. For the ROM task, 41 participants × 14
movements produced 574 segments. For the ADL task, 42 participants × 56 movements
made 2352 segments, but there were six missing segments from the data. Therefore, the
total number of segments was 2352 − 6 = 2346 segments. Figure 6 shows the variability
in the segment lengths of movements. The ROM task had relatively uniform segment
lengths compared with the ADL task because its movements were simpler and less variable.
However, the movements in the ADL task varied significantly in terms of length and pattern.
The maximum segment length of the ADL task was approximately 100 times the minimum
length on an individual-segment basis. This significant variability in segment lengths was
the main reason we applied linear interpolation to adjust the segment lengths to a fixed
value close to the mean length. The adjusted segment length was fixed at 1000 time points
for the ROM task and at 3700 time points for the ADL task. The interpolated segment
length was intended to produce exactly 20 windows per segment. The corresponding
window size and stride length were 200 and 42 for the ROM task and 740 and 150 for the
ADL task, respectively.

Table 3. Statistics of segment lengths in time points. Statistics were rounded to integers.

Task Mean STD a Min b Median Max c

ROM 1016 492 240 912 3715
ADL 4229 3072 262 3415 25,401

a STD: standard deviation. b Min: minimum. c Max: maximum.
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Figure 6. Average segment length of each movement of all participants. Segment length is in time
points. Error bars represent standard errors. Each segment consists of five repetitions of the same
movement. Movements are divided into three groups according to their asymmetricity: UNI, BIA,
and BIS. UNI, unimanual; BIA, bimanual asymmetric; BIS, bimanual symmetric. Note that scales of
the vertical axes are different between the two tasks. (Up) ROM task. (Down) ADL task.

Table 4 summarizes the asymmetry of movements represented by the absolute asym-
metry score (AAS), and Figure 7 shows the mean AAS across participants. As expected,
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more asymmetrical movements resulted in higher AAS. Among the three movement types,
the UNI movement had the highest AAS, followed by the BIA and BIS movements. It is
important to note that “symmetry” is primarily determined by the relative energy level
of both sides (Equations (1) and (2)) and may not necessarily reflect similarities in move-
ment patterns. Therefore, some movements had distinct AAS values compared with other
movements in their group.

Table 4. Absolute asymmetry score by movement type.

Task UNI a BIA b BIS c

ROM 4.71 ± 0.80 d – –
ADL 2.88 ± 0.92 0.51 ± 0.30 0.22 ± 0.09

a UNI: unimanual, b BIA: bimanual asymmetric, c BIS: bimanual symmetric. d Numbers in a cell represent
mean ± standard deviation.
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Figure 7. Absolute asymmetry score (AAS) of each movement averaged across participants. Regard-
less of right- or left-dominated, higher AAS indicates more asymmetrical movements, whereas lower
AAS represents symmetrical movements in terms of energy. Note that scales of the vertical axes are
different between the two tasks. (Up) ROM task. (Down) ADL task. UNI, unimanual; BIA, bimanual
asymmetric; BIS, bimanual symmetric.

3.2. Training Results

Table 5 summarizes the mean F1-scores evaluated in the Stroke group using three
different combinations of training groups: ND, Stroke, and ND + Stroke training groups.
F1-scores were averaged across all movements for each participant in either task (ROM or
ADL). In the ROM task, ND + Stroke or Stroke training performed better than ND training
(p < 0.001 for both groups), but there was no significant difference between the ND + Stroke
and Stroke groups (p = 0.164). In contrast, performance improved in the following order:
ND, Stroke, and ND + Stroke in the ADL task. Specifically, ND + Stroke training performed
significantly better than Stroke (p = 0.003) or ND (p < 0.001). Stroke training also showed a
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better performance than ND training (p < 0.001). In addition, the augmented data showed
consistent improvement over the original data in both the ROM (p = 0.014) and ADL
(p < 0.001) tasks. Overall, ND + Stroke training showed the best performance in both tasks,
as well as on the original and augmented data.

Table 5. Evaluated mean F1-scores of the Stroke group trained using three combinations of training
groups.

Task Training Groups
ND
(Split a)

Stroke
(LOSO-CV b)

ND + Stroke
(LOSO-CV)

ROM
Original data 0.553 ± 0.238 c 0.676 ± 0.105 0.721 ± 0.168
Augmented data 0.627 ± 0.176 0.709 ± 0.102 0.747 ± 0.126

ADL
Original data 0.454 ± 0.162 0.526 ± 0.123 0.603 ± 0.137
Augmented data 0.512 ± 0.123 0.631 ± 0.096 0.681 ± 0.119

a Split: trained on separate ND data, b LOSO-CV: trained on leave-one-subject-out cross-validated data. c Numbers
in cells represent means ± standard deviation.

Figure S1 in the Supplementary Materials shows the F1-scores for individual partic-
ipants. This result was obtained from the ND + Stroke training group using the original
data. This shows the cross-validated evaluation of each participant in both the ND and
Stroke groups. Table 6 summarizes the results with the group mean, standard deviation,
and minimum and maximum values for the corresponding participants. Except for a
single participant, ND32, who had the lowest F1-score in the ROM task, the ND partic-
ipants showed consistently higher performance in both the ROM and ADL tasks, and
within-subject variability was relatively small. In contrast, stroke patients showed high
within-subject variability. In the ROM task, some stroke participants (e.g., Stroke 3, 4, 5,
12, and 13) performed as well as the ND participants, whereas the others performed far
below the level. In the ADL task, similar within-subject variability was observed in the
stroke group. However, the overall mean performance decreased because the number
of movement classes in the ADL task (56 movements) was greater than that of the ROM
task (14 movements). This also affected the minimum and maximum values. However,
ND participants performed slightly better in the ADL task than they did in the ROM
task despite the larger number of classes, as described above. This suggests that the deep
learning model has sufficient capacity to extract features from over 61 movement classes if
the movements were performed in ordinary patterns. In contrast, the performance drop
in the Stroke group suggests that the patients in the group must have had distinct and
unusual movement patterns compared to the ND participants.

Table 6. F1-score by evaluation group in ND + Stroke training with original data.

Task Evaluation Groups
ND Stroke

(mean ± std) (min/max) a (mean ± std) (min/max)

ROM 0.913 ± 0.076 0.575 (ND32)/
0.980 (ND8) 0.721 ± 0.168 0.465 (Stroke8)/

0.939 (Stroke12)

ADL 0.929 ± 0.042 0.829 (ND4)/
0.980 (ND22) 0.603 ± 0.137 0.359 (Stroke9)/

0.817 (Stroke12)
a (min/max): the minimum and the maximum F1-scores within each group, along with the corresponding
participant IDs.

Additionally, to test a practical use scenario, the results from the ND + Stroke training
were evaluated and compared with two sub-datasets: data from all channels (accelerometer
+ gyroscope) of Sensor 1 (attached to the right wrist; Figure 1, right panel) and data from the
accelerometer channels of Sensor 1. We named the first subset S1-all and the second subset
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S1-acc. For the ND group, compared to the full-sensor data, F1-scores of S1-all decreased by
4.17% and 2.80% for ROM and ADL tasks, respectively, and by 11.6% and 11.3% with S1-acc
for ROM and ADL tasks, respectively. However, the performance drop was more salient
in the case of the Stroke group. F1-scores of S1-all decreased by 15.9% and 22.5% for ROM
and ADL tasks, respectively, and by 25.8% and 33.9% with S1-acc for ROM and ADL tasks,
respectively. In summary, the results suggest that a single IMU device attached to a wrist,
such as a smartwatch, would suffice for activity recognition in the daily living of non-disabled
populations, while stroke patients would benefit from additional body-worn sensors.

Figure 8 shows a colormap of the F1-scores of the individual segments in the ADL
task with the corresponding participants (columns) and movements (rows). Again, these
F1-scores were obtained from the ND + Stroke training group using the original data. The
color map is divided into six subregions according to the combination of subject group
and movement type to which each segment belongs (denoted by white bold letters and
bordered by white dashed lines): ND × UNI, ND × BIA, ND × BIS, Stroke × UNI, Stroke
× BIA, and Stroke × BIS. Table 7 summarizes the mean and standard deviation of the F1-
scores of the windows in each subregion. The ND group exhibited no significant difference
in the F1-scores among the three movement types. In contrast, in the Stroke group, the
F1-score of the BIS movement was significantly higher than that of the other two movement
types (p < 0.001 for all). However, the BIA and UNI for the Stroke group did not differ in
F1-score (p = 0.226). This indicates that the symmetricity of movement affects the model
performance only when movement patterns are abnormal, as in patients with stroke.
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Figure 9 shows the confusion matrices of the Stroke group for ROM and ADL tasks. 
The training condition was the same ND + Stroke as that of the original data. In the con-
fusion matrix, the movements in the row represent true classes and those in the column 
represent the model inference. Therefore, the diagonal elements (row index = column in-
dex) are the “right guess”, whereas all off-diagonal elements are considered as the model’s 
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Figure 8. F1-score of individual segments by participants (columns) and movement (rows) for the
ADL task. The training group was ND + Stroke with the original data. The areas were divided
into six subregions by the combination of the evaluation groups and movement types: ND × UNI,
ND × BIA, ND × BIS, Stroke × UNI, Stroke × BIA, and Stroke × BIS.
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Table 7. F1-score by movement types and evaluation groups from the ADL task.

Movement Types Evaluation Groups
ND Stroke

UNI 0.918 ± 0.151 a 0.581 ± 0.342
BIA 0.936 ± 0.134 0.541 ± 0.336
BIS 0.938 ± 0.167 0.757 ± 0.266

a Numbers in a cell represent mean ± standard deviation.

Figure 9 shows the confusion matrices of the Stroke group for ROM and ADL tasks.
The training condition was the same ND + Stroke as that of the original data. In the
confusion matrix, the movements in the row represent true classes and those in the column
represent the model inference. Therefore, the diagonal elements (row index = column index)
are the “right guess”, whereas all off-diagonal elements are considered as the model’s
“confusion” or wrong answers. Confusion matrices provide information not only on the
global performance metric but also on which movement class was mostly confused with
another class by the trained model. Table 8 shows some of the most confused movement
pairs for each task.
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Table 8. Top 10 confusion pairs.

Task True a Inference b Proportion c

ROM
FrontWrstExt (UNI) WrstExt (UNI) 0.33
Scaption90 (UNI) ShAbd90 (UNI) 0.29
SupPro (UNI) FrontSupPro (UNI) 0.24
ShRot (UNI) ShHorAdd (UNI) 0.22
ShHorAdd (UNI) ShRot (UNI) 0.20
FrontWrstFlex (UNI) WrstFlex (UNI) 0.19
ShFlex90 (UNI) ShAbd90 (UNI) 0.18
ShFlex90 (UNI) Scaption90 (UNI) 0.17
FrontSupPro (UNI) SupPro (UNI) 0.15

ADL
UseRemote (UNI) Scissors (BIA) 0.32
Eraser (BIA) Knife (BIA) 0.31
RinseBody (UNI) WashBody (BIA) 0.27
PressPIN (UNI) LiftDoorlock (UNI) 0.25
TurnOnLight (UNI) LiftDoorlock (UNI) 0.20
OpenNewspaper (BIA) WearSocks (BIS) 0.20
FoldTowel (BIA) WearSocks (BIS) 0.20
TurnOnLight (UNI) PressPIN (UNI) 0.20
WringDishcloth (BIA) WashHand (BIS) 0.19

a True: the ground-true movement, b Inference: the model inference, c Proportion: the proportion of the confused
pair from sum of all inferences.

In the ROM task, the machine learning model encountered difficulties distinguishing
between similar movements executed in varying postures. Specifically, in movements
involving wrist flexion/extension, discrepancies in posture, such as positioning the elbow
bent at 90◦ adjacent to the torso versus extending the arm fully forward, led to classification
inaccuracies even though the movements were simple. In addition, patients with stroke
often exhibit abnormal intersegmental synergy. For example, the shoulder and elbow
are flexed simultaneously when flexing or abducting the shoulder of the more affected
limb. It is difficult for patients to move each segment independently after a stroke. Thus,
movements, including shoulder flexion, abduction, and scaption, may be confusing to
dissociate. In contrast, in the ADL task, misclassification occurred among movements in
which the general actions for the upper and lower arms were similar, except for the distal
hand movement. Using a remote controller and using the scissors seemed to be different
movements. However, these movements required the upper limbs and forearms to hold the
objects while the hand moved in different ways, which was difficult to distinguish using
the IMU sensors because they were less sensitive to subtle hand and finger movements.

4. Discussion

In the present study, we designed and investigated methods to effectively train and
evaluate a deep learning model to classify the movements of stroke patients. Variability
in the duration and patterns of stroke patients’ movements leads to challenges in the
training and evaluation processes, such as class imbalance and overfitting owing to data
sparsity. To address these challenges, we first applied linear interpolation to adjust all
segment lengths to a fixed value such that all movement classes had the same number of
inputs for training and evaluation. Afterward, in the training process, we tested which
training combination of the ND and Stroke groups resulted in the best performance when
evaluated in the Stroke group. Contrary to the previous research [7] that a model trained
with data including ND does not generalize well to the Stroke group, we found that joint
training of ND and Stroke data outperformed the training of Stroke data only for the
ADL task. We speculate that the common patterns existing in the data of ND and Stroke
patients help reduce overfitting to a smaller volume of stroke data, thus enhancing the
generalizability of the trained model. In addition, our findings showed that axis rotation,
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as a data augmentation method, works effectively and universally across various training
and evaluation conditions. It is likely that the axis rotation mimics the variability in hand
and arm rotation of individual participants, thereby increasing the experimental data.
Finally, we systematically tested how the asymmetry of movements affects evaluation
performance in the ND and Stroke groups. The results indicated that for the Stroke group,
BIS movements showed better performance than asymmetric movements (BIA and UNI),
whereas the ND group did not show any dependency on movement asymmetry. This was
mostly because the stroke patients in this study had hemiparesis, and we instructed them
to perform asymmetric movements with the affected limb. Therefore, their movement
patterns must have been more distinct and diverse, with asymmetric rather than symmetric
movements. An investigation of confusion matrices revealed that the most confused pairs
of movements included asymmetric movements.

To address the challenges in the classification of stroke movement, we restricted
the applicability of the proposed method. To fix the segment lengths, we first manually
segment the movements in a continuous data stream. Thus, the model must consider the
input as segmented signals, which limits its real-time application when the data stream
flows continuously. In future studies, we plan to extend the model to include automatic
segmentation functionality. Furthermore, because we used only IMU data in our analysis,
our results do not directly indicate how the movement patterns of stroke patients differ
in terms of kinematics, such as the joint angle or trajectories of the limbs. The addition
of video or marker-based sensor information can complement the current approach. In
addition, we tested our methods on a relatively small population of stroke patients with a
narrow range of upper-extremity functions. In particular, we did not differentiate between
left and right hemiparesis when implementing deep learning. We instructed patients with
left hemiparesis to predominantly use their more affected left hand for both BIA and UNI
tasks. Some movements, such as writing and using chopsticks or scissors, are highly
dependent on the hands. Consequently, using the nondominant and affected left hand
could be awkward, resulting in movement patterns that differed from those using the
dominant right hand.

Although studies on the application of machine learning models to movement clas-
sification in stroke patients exist [7,19,20,47–50], they included a relatively small set of
movements. If the class number of a movement set is small, systematically validating the
generalizability of the model to unseen or differently distributed data is difficult. More-
over, a model trained using such small-class data may not be applicable to various daily
life activities. We tested our model with two movement sets of different characteristics,
ROM and ADL tasks, each containing 14 and 56 upper-extremity movements, respectively,
enabling the testing of our methods on diverse scenarios of ADL. A closely related topic is
the variability in movement duration. When the number of movement classes is small, the
duration tends to be less variable. Thus, the ordinary sliding window technique, which
most studies have adopted for deep learning, does not cause serious issues. However,
with a larger number of movements, the duration between different movements is more
variable; therefore, an imbalanced class distribution is a challenge. We directly addressed
this challenge with variable duration with a simple yet efficient linear interpolation to
adjust all movement segments to the same duration.

Although prior research has delved into quantifying asymmetric limb usage [27] and
examining the accuracy of various ADLs detection through machine learning algorithms in
wearable IMU sensors [48], to the best of our knowledge, no study has directly related the
asymmetry of movements to model classification performance in stroke populations, which
is crucial for hemiparesis rehabilitation. For example, many individuals with stroke tend to
use their upper extremities unimanually, particularly relying on the non-paretic side [4].
Correctly detecting UNI, BIA, and BIS activities and providing feedback about these arm
usage patterns may encourage increased involvement of the paretic arm and hand in real-
life situations. Moreover, the benefits derived from different treatment methods such as
constraint-induced movement therapy [1], a task-oriented approach [35], and intensive
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movement repetition [31] could be sustained after treatments if individuals with stroke
continue to use their paretic arm, guided by real-time feedback that results from accurate
motion classification.

5. Conclusions

The continuous use of the affected arm in daily activities is of significant importance
in stroke rehabilitation with hemiparesis. The correct classification of movements from
non-intrusive wearable sensor data is the first step for a home rehabilitation system with
monitoring and feedback functions. We investigated methods for preprocessing, training,
and evaluating a deep learning model to effectively classify the movements of stroke pa-
tients. Linear interpolation was used to address variability in movement duration. We
found that the joint training of a model with data from the ND and Stroke groups re-
sulted in the best performance compared to training with either group alone. In addition,
axis rotation effectively boosts the model performance as a data augmentation technique.
Finally, we observed that the model performance in the Stroke group was affected differ-
ently by movement asymmetry, suggesting the importance of considering bilaterality and
symmetricity when assigning home training movements. Future studies must include auto-
matic segmentation of movements for real-time applications as well as more diverse stroke
populations to further investigate the generalizability of the trained deep learning model.
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//www.mdpi.com/article/10.3390/s24010210/s1, Table S1: The label names and descriptions for the
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ADL task; Figure S1: F1-score of individual participants.
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