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Abstract: To address the challenges of balancing accuracy and speed, as well as the parameters and
FLOPs in current insulator defect detection, we propose an enhanced insulator defect detection algo-
rithm, ML-YOLOv5, based on the YOLOv5 network. The backbone module incorporates depthwise
separable convolution, and the feature fusion C3 module is replaced with the improved C2f_DG
module. Furthermore, we enhance the feature pyramid network (MFPN) and employ knowledge dis-
tillation using YOLOv5m as the teacher model. Experimental results demonstrate that this approach
achieved a 46.9% reduction in parameter count and a 43.0% reduction in FLOPs, while maintaining
an FPS of 63.6. It exhibited good accuracy and detection speed on both the CPLID and IDID datasets,
making it suitable for real-time inspection of high-altitude insulator defects.
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1. Introduction

Insulators are essential components of high-voltage transmission lines, providing
insulation and mechanical support. Insulator faults are primarily caused by high leakage
current and harsh working conditions [1], jeopardizing the stability of transmission lines
and posing safety risks. Therefore, regular inspection of insulator faults is of significant
importance for ensuring the stability of the electrical power system [2].

The common faults of insulators include flashover and broken. Broken is mainly
caused by external forces during transportation, installation, construction, and other pro-
cesses, leading to injury to the insulator. Flashover is mainly caused by lightning or
overvoltage, which can easily result in flashover and breakdown faults, affecting the op-
eration of power systems. Hammer are designed to reduce vibrations caused by wind,
preventing conductor vibration. High-voltage overhead line poles are positioned at a con-
siderable height, with large spans. When the conductor is subjected to wind forces, it may
experience vibration. Due to repeated vibrations, the conductor undergoes fatigue damage
due to periodic bending. Therefore, the daily detection of insulator broken, flashover, and
the effectiveness of hammer is of great significance.

Traditional insulator inspection primarily relies on manual methods such as ground
patrols, instrument measurements, and pole climbing, which are time-consuming, labor-
intensive, and costly. With the widespread adoption of drones, high-altitude inspections are
now commonly conducted using unmanned aerial vehicles (UAVs). These UAVs employ
algorithms to accurately detect and address insulator defects [3].

Dai et al. [4] improved deep convolutional neural networks (DCNNs), using adaptive
strategies to enhance the efficiency of drone inspections. Ghashghaei et al. [5] performed defect
detection on insulator images captured by drones using Faster R-CNN, achieving increased
accuracy at the cost of significantly increased model complexity. Zhou et al. [6] introduced
attention mechanisms and rotation mechanisms into the backbone network and loss functions
of Mask R-CNN, employing multi-angle rotations to enhance localization accuracy.
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However, given the vast scale of the power grid and the intricate structures between
transmission lines in China, the use of UAVs for inspections cannot guarantee accuracy and
safety. As a result, object detection algorithms have been introduced and widely applied in
UAV-based insulator defect detection [7].

Object detection algorithms can be primarily categorized into two types: single-stage
object detection and two-stage detection algorithms. Single-stage object detection directly
identifies objects in images and is better suited for real-time requirements. Classical single-
stage detection algorithms include the YOLO series [8–10] and the SSD series [11–13].

In the realm of insulator defect detection, Liu et al. [14] improved the YOLO network
by employing multiple-scale detection heads and multi-scale feature fusion to enhance insu-
lator detection accuracy, particularly in complex backgrounds. Sadykova et al. [15] achieved
precise insulator localization using YOLOv2 and conducted conditional classification based
on factors such as cleanliness, water, and snow conditions. Adou et al. [16] employed the
YOLOv3 network for insulator localization and bundle detection. Li et al. [17] proposed
an insulator detection method for power grids based on light calibration enhancement
and YOLOv5. Feng et al. [18] presented an automatic insulator detection approach using
YOLOv5. Han et al. [19] conducted real-time insulator defect detection using YOLO-v3.
Wang et al. [20] proposed an insulator detection model, Siamese ID-YOLO. The model
enhances semantic information using the Canny operator and further introduces a Siamese
network based on the Darknet53 architecture to improve the accuracy of insulator detection.
Chen et al. [21] proposed an insulator defect detection method called INSU-YOLO. The
approach utilizes ResNet101 to extract features at different levels. It incorporates the feature
pyramid network (FPN) with the path aggregation network (PAN) from YOLOv4 for fea-
ture transfer, employing a bottom-up structure. Finally, a detector is used for classification.
Liu et al. [22] proposed a cross-stage partial dense YOLO (CSPD-YOLO) model based on
YOLO-v3 and a cross-stage partial network. Han et al. [23] proposed a cascaded model for
detecting multiple insulator faults in aerial images. Firstly, they introduced a new spatial
pyramid pooling (SPP) improved network structure for detecting insulator strings. Sec-
ondly, the YOLOv3-tiny network was employed to detect insulator missing faults. Souza
et al. [24] proposed a hybrid approach that combines the optimal insulator detection model
YOLOv5x with the optimal insulator state classification ResNet-18 structure, providing a
method superior to the standard model.

To reduce system losses and computational complexity, lightweight networks are com-
monly adopted for insulator defect detection. Xu et al. [25] improved YOLOv1 by utilizing
the Mobilenet-V4 backbone network and introduced depthwise separable convolutions to
reduce feature redundancy. Liu et al. [26] proposed an enhanced YOLOv3 model based
on SPPNet [27] and multi-scale predictions to improve insulator detection accuracy under
different aerial imaging backgrounds. Lan et al. [28] introduced Ghost lightweight modules
and attention mechanisms into YOLOv5 for insulator defect detection. Zhang et al. [29]
proposed an insulator defect detection algorithm based on YOLOv7. The approach incorpo-
rates ECA, utilizes PConv in the backbone network, and employs Normalized Wasserstein
Distance (NWD) to prevent feature loss. Guo et al. [30] replaced the YOLOv5 backbone
network with Transformer-CSP to reduce computational complexity. Additionally, they
introduced an insulator defect segmentation head network for defect segmentation. Chen
et al. [31] proposed an enhanced insulator defect recognition algorithm, Insu-YOLO, based
on the latest YOLOv8 network. By introducing the GSConv module and employing the
lightweight CARAFE structure in the neck network, the accuracy of detecting small targets
was improved. Shuang et al. [32] proposed an enhanced network, YOLOv4++, based
on the improvements made to YOLOv4. The backbone network utilizes MobileNetv1
with depthwise separable convolution, and the model’s effectiveness is further enhanced
through improvements in the loss functions. The aforementioned deep learning-based
methods outperform traditional algorithms. However, these methods typically demand
substantial computational resources, especially in scenarios with complex backgrounds and
a small proportion of defects. This poses significant challenges for real-time applications
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and environments with limited resources. Therefore, there is an urgent need to address the
trade-off between detection speed and accuracy, reducing computational requirements to
meet the efficiency and accuracy demands of daily inspections in the power industry.

To address the challenges of balancing the speed and accuracy in insulator defect
detection, as well as the FLOPs and parameter burdens, we propose an enhanced network,
ML-YOLOv5, based on YOLOv5. The main contributions of this work are as follows:

1. Introducing depthwise separable convolution (DSC) into the backbone network of the
YOLOv5 model to reduce feature redundancy. In the feature fusion component, an
improved C2f_DG is employed to construct a lightweight structure, significantly reducing
the model’s parameter count and computational complexity while maintaining accuracy.

2. The enhanced feature pyramid, designated as MFPN (modified feature pyramid network),
strengthens the original FPN structure by increasing the number of concatenate layers
from two to three. It incorporates shallow-level feature maps and substitutes the C3
module corresponding to the shallow-level features of the backbone network with C2f.

3. Utilizing the sibling deep network YOLOv5m as the teacher network, knowledge
distillation [33] was applied to train the improved lightweight network. This approach
significantly enhances detection accuracy while keeping the model size unchanged.

4. This method exhibits high accuracy and detection speed on two open-source datasets,
ensuring real-time performance while maintaining excellent detection precision. It
can be employed for real-time detection of high-altitude insulator defects.

2. Insulator Defect Detection Algorithm
2.1. YOLOv5 Algorithm

YOLOv5 offers five models of varying scales: n, s, m, l, and x, each with distinct depths
and widths. To achieve efficient detection of small insulator defects, this study adopts the
simplified YOLOv5s architecture. The original YOLOv5 network architecture is illustrated
in Figure 1.
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Figure 1. YOLOv5 model structure diagram. 
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traction, and SPPF is used for multi-scale feature fusion. The neck module comprises FPN 

and PAN, which combine deep- and shallow-level semantic features. The head is designed 

with multiple detection layers for different sizes, and the detection results are obtained 

through loss calculation and non-maximum suppression. 
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Sensors 2024, 24, 204 4 of 19

YOLOv5 consists of three modules: feature extraction (backbone), neck, and head. The
backbone includes the CBS (Conv-BatchNorm-SiLU), C3, and SPPF modules, where CBS
is employed for feature extraction, C3 deepens the network to enhance feature extraction,
and SPPF is used for multi-scale feature fusion. The neck module comprises FPN and
PAN, which combine deep- and shallow-level semantic features. The head is designed with
multiple detection layers for different sizes, and the detection results are obtained through
loss calculation and non-maximum suppression.

2.2. DWconv and Ghostconv

In this work, depthwise separable convolutions and Ghost Models are introduced in
the backbone network and the enhancement module to replace conventional convolutions,
reducing feature redundancy.

As shown in Figure 2, depthwise separable convolution divides feature extraction into
depthwise convolution and pointwise convolution, targeting the extraction of spatial and
channel features from the input data. In depthwise convolution, each kernel is responsible
for one channel, and the number of generated feature maps matches the number of input
data channels, with each channel corresponding to an output feature map.
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tion, forming the DWBS module (DWConv-BatchNorm-SiLU). This module allows the 

Figure 2. Depthwise separable convolution structure.

As a result, channelwise convolution alters the size of feature maps without changing
the number of feature map channels. Since depthwise convolution independently convolves
each channel of the input data, subsequent pointwise convolution is used to reassemble
these independent feature maps, aiding in the extraction of channel features from the input
data. In contrast to depthwise convolution, it does not change the size of feature maps but
only alters the number of channels.

As shown in Figure 3, the Ghost Model obtains feature maps in two steps. First, it
uses half of the convolutions to acquire the intrinsic feature maps, reducing the parameter
count by half. Then, it employs cheap operations denoted by Φ to subject the feature
maps to depthwise separable convolution individually, resulting in the Ghost feature maps.
Finally, the intrinsic feature maps and Ghost feature maps are identity-concatenated to
yield the Output.
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2.3. C2f and Its Improved Modules

In this study, the bottleneck module integrates the C2f module from YOLOv8 with
the option shortcut = False, indicating the absence of residual connections. This design



Sensors 2024, 24, 204 5 of 19

choice aims to reduce the model’s parameter count and computational load, as illustrated
in Figure 4. This module draws inspiration from the ELAN architecture of YOLOv8 and the
C3 module of YOLOv5, introducing cross-layer branching and gradient flow information
to enhance robust feature representation.
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In this paper, we have designed three modified C3 modules, namely C2f_D, C2f_G,
and C2f_DG, to replace the original feature fusion C3 module in YOLOv5. The improved
C2f structure is depicted in Figure 5, Among them, shortcut = False means that there is no
residual connection.
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Figure 5. C2f improves modules C2f_D, C2f_G, and C2f_DG.

C2f_D is an enhancement of the C2f module in YOLOv8, inheriting its advantages. It
employs depthwise separable convolution (DWConv) instead of conventional convolution,
forming the DWBS module (DWConv-BatchNorm-SiLU). This module allows the indepen-
dent extraction of spatial and channel features from input data, effectively reducing feature
redundancy. C2f_G replaces the bottleneck in the original C2f with a Ghost Bottleneck,
which incorporates cross-layer fusion and gradient truncation mechanisms to facilitate
cross-level feature extraction, reduce model size, and enhance training performance. The
structure of the Ghost Bottleneck consists of two Ghost modules. The role of the first Ghost
module is to increase the channel number of the input feature map, providing extension
for subsequent operations. The role of the second Ghost module is to reduce the channel
number of the output feature map to match the network’s diameter structure, and it fa-
cilitates information transmission between the two Ghost modules through the diameter
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structure. Additionally, from the diagram, it can be observed that the difference between
the two Ghost modules lies in the fact that the first Ghost module is followed by the ReLU
activation function, while subsequent layers are all subjected to batch normalization. This
structural approach not only effectively reduces model parameters and computational
complexity but also optimizes feature maps through the Ghost modules, thereby enhancing
the model’s detection efficiency. C2f_DG combines the improvement strategies of both
C2f_D and C2f_G, achieving a balance between reducing parameters and maintaining
network performance.

2.4. Improved Feature Pyramid MFPN

In order to enrich feature information without introducing additional parameters, we
expanded the number of cascaded feature maps in the feature pyramid network (FPN)
structure from the original two layers to three layers. Furthermore, the C3 module of the
backbone network corresponding to the added shallow feature maps was replaced with C2f.
We designed an enhanced multi-scale feature pyramid network (MFPN) for this purpose.
Comparison images before and after the improvements to the FPN and MFPN are shown
in Figure 6.
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Figure 6. Comparison of FPN and MFPN modules before and after improvement.

As depicted in the figure above, the FPN structure involves concatenating only the
upsampled feature maps from the lower layers with the deep- or mid-level feature maps of
the backbone network. In contrast, the improved MFPN, building upon the FPN framework,
introduces shallow-level feature maps, increasing the number of concatenated layers from
two to three. To ensure consistency in feature map sizes, depthwise separable convolutions
are introduced to expand the number of channels. Shallow networks contain more target-
specific information, enabling better expression of feature map positional information.
However, they have a smaller receptive field and weaker semantic expressive capability.
In contrast, deep networks possess stronger expressive capabilities but have the opposite
characteristics. The improved feature pyramid fusion incorporates richer information
from deep, intermediate, and shallow layers, facilitating the comprehensive identification
of multi-defect insulator images and preventing the loss of information regarding small
target defects.

2.5. Knowledge Distillation

Knowledge distillation is a technique that leverages knowledge transfer to train a
lightweight student network from a larger teacher network. In this study, we apply the
knowledge distillation method proposed by Mehta et al. [34] to distill the improved model.
The knowledge distillation process is illustrated in Figure 7.
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As shown in the figure above, the output values of the Softmax function, with an added
variable T, are used as soft targets to prevent minimal contributions to the loss function
when the probability distribution has low entropy. The Softmax function is defined by the
following equation:

qi =
exp(zi/T)

∑j exp(zj/T)
(1)

In the equation, qi represents the true probability, z is a vector, and zi and zj are
elements of the vector. T represents the temperature, where higher T values result in a
larger entropy in the Softmax distribution, increasing the focus on training negative labels.

The overall loss consists of algorithmic and knowledge distillation losses, with λD
used to balance these two types of losses. The total loss function is expressed as shown in
Equation (2).

Lfinal = LYOLO + λD.LDistillation (2)

In this study, we made improvements to the YOLOv5s, a lightweight network model,
and YOLOv5m, a deeper network model, as follows:

(1) Integrated depthwise separable convolutions into the backbone.
(2) Replaced the C3 module in the neck with an enhanced C2f_DG.
(3) Replaced the feature pyramid network (FPN) with the modified feature pyramid

network (MFPN).

The improved models based on YOLOv5s and YOLOv5m are, respectively, named
M-YOLOv5s and M-YOLOv5m. We employed M-YOLOv5m as a teacher network to train
the student model M-YOLOv5s. Through knowledge distillation, we improved model
accuracy without adding extra parameters.

2.6. Improved ML-YOLOv5 Algorithm

In response to the current challenges of low insulator defect detection accuracy and
prolonged computation times, this paper introduces an enhanced insulator defect detection
model, ML-YOLOv5, based on YOLOv5s. The architecture of the ML-YOLOv5 network is
illustrated in Figure 8, and it incorporates the following improvements:

(1) The backbone integrates depthwise separable convolution;
(2) The C3 module in the neck is replaced with the improved C2f_DG;
(3) Enhancement of the feature pyramid network (MFPN);
(4) Knowledge distillation.
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3. Experiment
3.1. Data Preprocessing

(1) The Chinese Power Line Insulator Dataset (CPLID) [35] comprises a total of
848 aerial images of composite insulators, divided into two categories: 600 images of
normal insulators and 248 images of damaged insulators. The dataset was randomly split
into training, testing, and validation sets in a 7:2:1 ratio. Manual annotations of the images
were performed using LabelImg, and the label distribution is summarized in Table 1.

Table 1. Label number distribution of CPLID and IDID datasets.

Label Name CPLID
Label Number

IDID
Label Number

strings 848 5155
broken 248 3095

flashover \ 5736
hammer \ 1182

(2) Lewis et al. [36] collected and curated the Insulator Defect Image Dataset (IDID),
which comprises 487 original images classified into four categories: insulator strings, dam-
aged insulators, flashover insulators, and hammer. The dataset was randomly partitioned
into training, testing, and validation sets in a 7:2:1 ratio. Data augmentation techniques
such as flipping, mirroring, and random cropping were applied to augment the dataset,
enhancing model generalization. Ultimately, a total of 4600 images were obtained, and
manual annotation was performed using LabelImg. The label distribution is summarized
in Table 1.
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3.2. Experimental Environment and Evaluation Indicators
3.2.1. Experiment Platform

The experiments were conducted using the PyTorch deep learning framework on
Windows 11, with an Intel® Core™ i5-12500H 2.50 GHz CPU and an NVIDIA GeForce
RTX 3050 Laptop GPU with 4 GB of RAM. During training, the input image size was set to
480 × 480, and a batch size of 16 was used. The optimization was performed using SGD
with a momentum of 0.937, and the learning rate was scheduled to decrease from the initial
value of 0.01 to 0.001 using cosine annealing.

3.2.2. Evaluation Indicators

To assess the performance of the insulator defect detection algorithm, several widely
used evaluation metrics were employed, including precision (P), recall (R), average pre-
cision (AP), and mean average precision (mAP0.5). The definitions of these metrics are
provided below:

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

AP =

1∫
0

P(R)dR (5)

mAP =
∑N

i=1 AP(i)
N

(6)

In Equations (3)–(6), TP represents the number of correctly predicted insulator defect
classes, FP represents the number of incorrectly predicted negative samples, FN represents
the number of undetected insulator defects, AP denotes the integral of precision values at
different recall rates, N represents the number of label categories, and mAP represents the
average AP across different categories.

Parameters and FLOPs are utilized as metrics for assessing the model’s complexity,
while frames per second (FPS) reflects the model’s detection speed.

3.3. Comparative Experiment

To validate the performance of the improved ML-YOLOv5 algorithm for insulator
defect detection, we compared it with other YOLO algorithms within the same series using
the CPLID and IDID datasets. Additionally, we replicated the work of Zhang et al. [37],
where they introduced the Ghost module and a small object detection layer based on
YOLOv5, referred to as YOLOv5-Gh, for small object detection on insulators. At the
same time, we reproduced the improved BC-YOLO network proposed by Bao et al. [38].
We integrated the CA attention mechanism into the backbone module and introduced Bi-
FPN [39] in the neck module to replace the original PANet, thereby enhancing the network’s
capability for detecting small objects. Ding et al. [40] proposed a novel model, GC-YOLO,
based on the improvement of YOLOv5s. GC-YOLO integrates the Ghost convolution
module into the backbone network, adds the CA attention mechanism, introduces the
EVCBlock module in the neck layer, and includes an additional small object detection head
in the detection layer. Luan et al. [41] introduced MI-YOLO, an improved network based
on YOLOv5, featuring a skip connection module with down-sampling in the backbone
network, a neck layer with a spatial pyramid dilated convolution module, and the addition
of a novel serial-parallel spatial-channel attention module. The evaluation metrics included
precision (P), recall (R), mAP0.5, model parameters, FLOPs (Floating-Point Operations Per
Second), and frames per second (FPS). The comparative experimental results are presented
in Table 2.
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Table 2. Comparative experimental results of different models.

CPLID IDID
Method P/% R/% mAP0.5/% P/% R/% mAP0.5/% FPS/s Parameters 106/M FLOPs/G

YOLOv3-tiny 96.6 95.6 96.2 80.7 67.5 74.1 63.4 8.67 12.9
YOLOv3s 97.7 94.2 96.7 87.5 75.8 81 61.4 9.31 23.1

YOLOv4-tiny 93.4 92.9 94.2 76 67.2 72.5 63.1 3.07 6.3
YOLOv4s 97.6 96 96.6 90.3 75.4 81.5 42.7 10.07 21.4
YOLOv4 96.6 96.2 96.9 86.4 77.1 82.2 16.2 60.4 130.7
YOLOv5s 97.7 95.4 96.7 87.7 74.2 81.4 64.1 7.02 15.8

YOLOv5-Gh [38] 96.9 94.2 96.1 86.4 71.4 78.1 47.1 3.74 8.2
BC-YOLO [39] 96.8 94.6 96.7 90.7 73 82.3 57.6 7.16 16.6
GC-YOLO [40] 94.7 90.9 94.9 79.9 65 73.3 57.4 8.83 27.8
MI-YOLO [41] 97.9 93.8 96.6 84.4 70.8 78 34.1 25.4 73.1
YOLOv7-tiny 92.2 93.5 92.6 86.3 72 76.5 62.5 6.02 13

YOLOv7 78.3 89.6 95.4 91.7 78.6 79.9 30.5 36.5 103.2
YOLOv8s 96.3 92.5 96.4 84.5 74.1 81.5 56.9 11.1 28.4

ML-YOLOv5 96.5 94.7 97 86.1 77.7 82.8 63.6 3.73 9

As shown in the table above, in terms of mean average precision at (mAP0.5), ML-
YOLOv5 exhibits the best performance, achieving 97.0% and 82.8% on the CPLID and IDID
datasets, respectively. This performance is notably superior to that of similar lightweight
algorithms of the same category. Compared to the latest model YOLOv8s, it demonstrates
significant advantages in both accuracy and computational efficiency. The algorithm also
maintains a high FPS of 63.6, only slightly lower than the original YOLOv5, ensuring real-
time processing. Furthermore, the improved algorithm exhibits reduced model complexity,
with parameters totaling 3.73 M and FLOPs of 9.0, nearly halving those of YOLOv5.
In summary, the algorithm proposed in this paper effectively balances the challenges
of detection accuracy and speed, reduces model complexity, and meets the real-time
requirements of power line inspection.

The relationship between the model parameters and mAP0.5 of the compared mod-
els is depicted in Figure 9. The x-axis represents the model parameters, and the y-axis
represents the detection performance indicator mAP0.5. In the context of insulator defect
detection tasks addressed in this paper, models positioned closer to the upper-left corner are
relatively superior. As shown in Figure 9a for the CPLID dataset and Figure 9b for the IDID
dataset, compared to other models, YOLOv4-tiny, YOLOv5-GH, and ML-YOLOv5 have
smaller model parameters, with ML-YOLOv5 exhibiting the highest detection accuracy. In
comparison to all the considered models, ML-YOLOv5 strikes a balance between detection
performance and the number of model parameters, making it more suitable for insulator
defect detection tasks.
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3.4. Ablation Experiment

To assess the impact of various improvement modules on network performance,
validation was conducted on the IDID test dataset. The ablation results are presented in
Table 3, where “

√
” indicates the inclusion of the respective improvement point.

Table 3. Ablation experimental results of different improved modules.

Method DSC C2f_DG MFPN KD P/% R/% mAP0.5/% Parameters 106/M FLOPs/G FPS/s

A 87.7 74.2 81.4 7.02 15.8 64.1
B

√
87.6 73.3 81.3 5.46 12.1 59.8

C
√

86 75.6 81 5.16 11.7 59.7
D

√
87.4 74.7 82.2 7.69 19.5 59.3

E
√ √

85.4 73.9 80.9 3.6 8 67.3
F

√ √ √
85 76.6 82.1 3.73 9 63.6

G
√ √ √ √

86.1 77.7 82.8 3.73 9 63.6

Model A represents the original YOLOv5s network architecture. Model B incorporates
depthwise separable convolution (DSC) into the main structure of Model A. Model C
replaces the C3 module in the neck structure of Model A with the improved C2f_DG
module. Model D enhances the feature pyramid in Model A using MFPN. Model E, built
upon Model B, substitutes the C3 module in the neck module with the improved C2f_DG
module. Model F, an extension of Model E, improves the feature pyramid with MFPN.
Finally, Model G applies knowledge distillation on top of Model F.

Table 3 presents the results of ablation experiments, demonstrating that the intro-
duction of DSC and the improved C2f_DG significantly reduce both model parameters
and computational complexity, resulting in a 0.5% decrease in mAP0.5, aligning with the
lightweight design principles. Subsequently, the incorporation of the enhanced feature
pyramid MFPN improves model accuracy. Finally, knowledge distillation using the deep
network YOLOv5m as the teacher model significantly enhances detection accuracy without
altering the model size.

Regarding the selection of the C2f_DG module, we conducted ablation experiments by
comparing the regular convolution improvement of C2f_D, which only enhances the C2f
with ordinary convolution, and C2f_G, which enhances C2f with bottleneck. The results
of the ablation experiments are shown in Table 4, where ‘

√
’ indicates the inclusion of the

corresponding improvement points.

Table 4. C2f_DG, the results of the ablation experiment of the module.

Method C2f_D C2f_G C2f_DG P/% R/% mAP0.5/% Parameters 106/M FLOPs/G FPS/s

A 87.7 74.2 81.4 7.02 15.8 64.1
B

√
86.6 75.2 81.1 6.3 15.4 54.7

C
√

87.6 74.4 81.4 6.3 14.2 57.6
D

√
86 75.6 81 5.16 11.7 59.7

As shown in the table above, replacing the C3 module of the original YOLOv5s with
C2f_DG yields the best results in terms of parameters, computations, and FPS performance.
It exhibits a slight decrease in accuracy but meets the requirements for lightweight design,
providing further evidence of the feasibility of the proposed improvement. Table 5 presents
a comparative analysis of experimental results before and after knowledge distillation. In
this study, the improved models, M-YOLOv5s and M-YOLOv5m, were employed as the
student and teacher networks for knowledge distillation. Prior to knowledge distillation,
the M-YOLOv5s network model, which is an enhancement of the baseline model YOLOv5s,
achieved an mAP0.5 value of 82.1% on the evaluation metrics. Subsequently, when the deep
network model YOLOv5m was used for knowledge distillation as the teacher network, the
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final model demonstrated improvements in mAP0.5 values of 1.4% compared to YOLOv5s.
These improvements were achieved while reducing the number of parameters and FLOPs
by 46.9% and 43.0%, resulting in a detection speed of 63.6 FPS.

Table 5. Knowledge distillation comparative experiment.

Method P/% R/% mAP0.5/% FPS/% Parameters 106/M FLOPs/G

YOLOv5s 87.7 74.2 81.4 64.1 7.02 15.8
YOLOv5m 89.4 76.8 83.7 48.3 20.9 47.9

M-YOLOv5s 85 76.6 82.1 63.6 3.73 9
M-YOLOv5m 89.8 76.7 84.1 53.8 11.3 29.3
ML-YOLOv5 86.1 77.7 82.8 63.6 3.73 9

The above data demonstrates the effectiveness of the proposed improvement method,
which achieves a lightweight network and improved prediction accuracy while ensuring
real-time on-site detection.

3.5. Comparison of Test Results

To validate the effectiveness of the improved algorithm, tests were conducted on
the YOLOv5 network models before and after improvement using the CPLID and IDID
datasets. The comparison results for mAP across different labels are presented in Table 6.

Table 6. mAP comparison of the original model and the improved model.

Label Name
CPLID IDID

YOLOv5 ML-YOLOv5 YOLOv5 ML-YOLOv5

strings 93.9 94.5 97.9 98.2
broken 99.5 99.5 70.3 74.8

flashover \ \ 73.2 74.5
hammer \ \ 84 83.4

As demonstrated in Table 6, the average precision of insulator strings in the CPLID
dataset has improved by 0.6%. In the IDID dataset, the average precision values for
insulator strings, damaged insulators, and flashovers have improved by 0.3%, 4.5%, and
1.3%, respectively. Due to factors such as complex backgrounds and small target defects,
issues like false positives and false negatives are prone to occur.

The confusion matrix is a specific two-dimensional matrix where rows and columns
represent actual and predicted defect categories, respectively. The values on the diagonal
represent the proportion of correct predictions, with higher diagonal values and darker
colors indicating better prediction performance. To assess the performance of the improved
model in detecting multi-label defects, the confusion matrices before and after improvement
are compared on the CPLID and IDID insulator datasets.

The comparison of confusion matrices for the CPLID dataset is illustrated in Figure 10.
Figure 10a presents the confusion matrix results for the original YOLOv5. In the first row
and first column, the probability of correctly predicting the insulator string is 93%. In the
second row and second column, the probability of predicting insulator damage is 100%.
Figure 10b displays the confusion matrix results after improvement using ML-YOLOv5. It
can be observed that in the first row and first column, the probability of correctly predicting
the insulator string increases to 99%. In the second row and second column, the probability
of predicting insulator damage remains at 100%.
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After improvement, the ML-YOLOv5 model exhibited a 6% increase in the probability of
correctly predicting the insulator string, validating the enhanced performance of the model.

The comparison of confusion matrices for the IDID dataset is illustrated in Figure 10.
The matrix comparison is illustrated in Figure 11. Figure 11a displays the original YOLOv5
confusion matrix results. In the first row and first column, the probability of correctly
predicting insulator strings is 90%. In the second row and second column, the probability
of predicting insulator damage is 64%. In the third row and third column, the probability
of correctly predicting insulator flashing is 71%. In the fourth row and fourth column, the
probability of predicting insulator shock absorbers is 81%.
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Figure 11b shows the confusion matrix results after improvement with ML-YOLOv5. It
can be observed that in the first row and first column, the probability of correctly predicting
insulator strings has increased to 93%. In the second row and second column, the probability
of predicting insulator damage has increased to 72%. In the third row and third column, the
probability of correctly predicting insulator flashing has increased to 78%. In the fourth row and
fourth column, the probability of predicting insulator shock absorbers has increased to 84%.

After improvement, the ML-YOLOv5 model exhibits an improvement in the proba-
bilities of correctly predicting insulator strings, insulator damage, insulator flashing, and
insulator shock absorbers by 3%, 8%, 7%, and 3%, respectively.

The loss function curves for different training epochs are shown in Figure 12. Com-
paring the open-source datasets CPLID and IDID, the improved model demonstrates a
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faster reduction in loss during the early stages of training compared to the YOLOv5s
baseline model. At the end of training, the loss value of ML-YOLOv5 is lower than that of
the original model, indicating that the improved network can optimize feature extraction
capabilities and effectively enhance the ability to identify minor defects, thereby improving
detection performance.
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Figures 13 and 14 present the comparison of precision–recall (PR) curves validated
on the CPLID and IDID datasets, respectively. The x-axis represents recall, and the y-axis
represents precision. The area surrounded by the PR curve and the axes indicates the
average precision (AP) value. As shown in Figure 13b, the mAP0.5 of the improved model
on the CPLID dataset increased by 0.3%, and in Figure 14b, the mAP0.5 of the improved
model on the IDID dataset increased by 1.4%. Across different datasets, there is a noticeable
improvement in the average AP of label categories in the ML-YOLOv5 model.
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On the CPLID insulator dataset, the detection results before and after improvement are
shown in Figure 15, with labels categorized as ‘strings’ and ‘broken’. Figure 15a presents
the original YOLOv5 detection results, while Figure 15b displays the results after YOLOv5
improvement. From the figures, it can be observed that there were no false positives or false
negatives before and after improvement. However, the improved ML-YOLOv5 exhibited a
significant improvement in precision, with detection accuracy reaching as high as 100%
for some defect images. This indicates the effectiveness and feasibility of the enhanced
lightweight model, ML-YOLOv5.

On the IDID insulator dataset, the defect detection results before and after improve-
ment are shown in Figure 16. Figure 16a displays the original YOLOv5 detection results,
where the leftmost image shows the failure to recognize the ‘hammer’, and false detection
of ‘hammer,’ and ‘broken’ is not identified. This is mainly due to the complexity of the
background, the small proportion of defects such as damage, and the overall low accuracy.
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In contrast, Figure 16b shows the results after the improvement of YOLOv5, with a signifi-
cant improvement in the detection of small target defects, an overall increase in accuracy,
and a reduction in the false-negative rate.
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In summary, the algorithm improvements presented in this paper have enhanced both
accuracy and model lightweightness, ensuring real-time processing requirements.

4. Discussion

The proposed ML-YOLOv5 model in this paper is primarily designed for recognizing
insulator defects, demonstrating potential applications in the identification of multiple
labels and small targets.

The decision to base our algorithm primarily on YOLOv5, rather than the latest version
YOLOv8, is motivated by several considerations. Firstly, YOLOv8 is relatively new and
may lack widespread adoption and comprehensive evaluation. In contrast, YOLOv5, as a
mature, stable, and widely used version, stands out, providing a reliable foundation for
our research. Secondly, our focus is on providing a practical solution for insulator defect
detection, striking a balance between accuracy, computational efficiency, and real-time
performance. Through our comparative experiments and analysis, particularly detailed in
Table 2 and Figure 9, YOLOv5 has demonstrated outstanding performance, making it an
ideal choice for our specific application requirements.

Despite making progress in this research, certain challenges persist. In comparison to
the baseline YOLOv5s model, the improved model shows enhancements in metrics such as
mAP0.5, achieving a balance between real-time performance, lightweight modifications,
and increased accuracy. However, instances of false negatives and false positives still
exist, indicating the need for more diverse datasets to enhance the training effectiveness
of the model. Subsequent efforts could involve capturing images from different angles
or acquiring more complex background images to further enhance the model’s accuracy
and generalization.

In this study, our aim is to achieve lightweight improvements and enhance accuracy
while ensuring real-time performance of the model. However, due to the complex back-
grounds of insulator defect images and the relatively small proportion of small target
defects, there is still room for improvement in accuracy. Therefore, our future work will
consider a two-step approach for insulator string detection and defect recognition. Initially,
we will use object detection algorithms to identify and crop images of insulator strings.
Subsequently, these images containing insulator defect images will serve as a new dataset
for recognizing or segmenting small target defects, eliminating background interference,
and enhancing detection accuracy.

In addition, we have observed outstanding performance in other advanced models.
For instance, Liu et al. [42] proposed a cascaded YOLO model for defect detection. Initially,
it recognizes insulators based on the YOLO model, and subsequently, the identified insu-
lator images are processed using the YOLOv4-tiny model for insulator defect detection.
Zhang et al. [43] introduced an insulator defect detection method based on YOLO and
SPP-Net. YOLOv5s was used to train original samples, and the classification network was
fine-tuned with cropped samples for model cascading. After insulator localization and
cropping, YOLOv5s sends the images to the classification network for defect detection.
Xiong et al. [44] presented a deep cascaded multitask framework, YOLO Unet, for a fully
automatic neural network framework for lung nodule detection and segmentation. These
works inspire us, and in the future, we will strive to explore and enhance more models to
achieve superior performance.

5. Conclusions

In this paper, we improve upon YOLOv5 to address the difficulties in efficiently
balancing the detection of the performance and speed of high-altitude insulators, as well as
the challenges related to parameters and FLOPs. Specifically:

(1) Introducing the DSC module into the backbone;
(2) Replacing the C3 module in the neck with the C2f_DG module;
(3) Enhancing the feature pyramid using MFPN;
(4) Conducting knowledge distillation on the improved lightweight model.
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The experimental results demonstrate that the improved ML-YOLOv5 network pre-
sented in this study achieved reductions in both parameter count and FLOPs, down to
3.73 M and 9.0, respectively, compared to YOLOv5. The frame rate per second (FPS) reached
63.6. This method exhibited excellent accuracy and detection speed on both the CPLID and
IDID datasets, and exhibited improvements in mAP0.5 values of 0.3% and 1.4% compared
to YOLOv5s, rendering it suitable for the real-time inspection of high-altitude insulator
defects. While the current detection models demonstrate the capability to accurately detect
defects, they face challenges when it comes to assessing the precise severity of multiple
defects, particularly in improving the recognition of small target defects. In future research,
the idea may be considered to combine object detection and semantic segmentation to fur-
ther enhance the accuracy of small object defect detection. This has significant implications
and promising prospects for the field of unmanned aerial vehicle (UAV) fault inspections.
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