
Citation: Hsieh, T.-L.; Jhan, Z.-S.; Yeh,

N.-J.; Chen, C.-Y.; Chuang, C.-T. An

Unmanned Aerial Vehicle Indoor

Low-Computation Navigation

Method Based on Vision and Deep

Learning. Sensors 2024, 24, 190.

https://doi.org/10.3390/s24010190

Academic Editor: Alfio Dario Grasso

Received: 5 October 2023

Revised: 14 December 2023

Accepted: 19 December 2023

Published: 28 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Unmanned Aerial Vehicle Indoor Low-Computation
Navigation Method Based on Vision and Deep Learning
Tzu-Ling Hsieh, Zih-Syuan Jhan, Nai-Jui Yeh, Chang-Yu Chen and Cheng-Ta Chuang *

Department of Intelligent Automation Engineering, National Taipei University of Technology,
Taipei 10608, Taiwan
* Correspondence: ctchuang@ntut.edu.tw

Abstract: Recently, unmanned aerial vehicles (UAVs) have found extensive indoor applications. In
numerous indoor UAV scenarios, navigation paths remain consistent. While many indoor positioning
methods offer excellent precision, they often demand significant costs and computational resources.
Furthermore, such high functionality can be superfluous for these applications. To address this
issue, we present a cost-effective, computationally efficient solution for path following and obstacle
avoidance. The UAV employs a down-looking camera for path following and a front-looking camera
for obstacle avoidance. This paper refines the carrot casing algorithm for line tracking and introduces
our novel line-fitting path-following algorithm (LFPF). Both algorithms competently manage indoor
path-following tasks within a constrained field of view. However, the LFPF is superior at adapting
to light variations and maintaining a consistent flight speed, maintaining its error margin within
±40 cm in real flight scenarios. For obstacle avoidance, we utilize depth images and YOLOv4-tiny
to detect obstacles, subsequently implementing suitable avoidance strategies based on the type and
proximity of these obstacles. Real-world tests indicated minimal computational demands, enabling
the Nvidia Jetson Nano, an entry-level computing platform, to operate at 23 FPS.

Keywords: indoor; unmanned aerial vehicles (UAV); obstacle avoidance; path following

1. Introduction

In recent years, the development of unmanned aerial vehicles (UAVs) has gradually
progressed. UAVs have applications across diverse sectors, including agriculture [1,2],
architecture [3], and logistics [4]. The use of these devices within indoor settings is also
gaining traction. Facilities such as factories and warehouses employ UAVs for tasks such
as inventory management [5], inspection [6], surveillance [7], and intralogistics [8]. While
outdoor UAVs predominantly depend on well-established and highly accurate GPSs for
location detection, their functionality is compromised indoors. In such environments,
infrastructure often obstructs GPS signals [9], making GPS an unreliable positioning mech-
anism for UAVs. Consequently, several methodologies have been introduced for indoor
positioning, navigation, and obstacle detection. Historically, indoor UAVs have employed
simultaneous localization and mapping (SLAM) in conjunction with lidar [10] or monocu-
lar systems [11,12]. Numerous innovative solutions have been proposed, encompassing
VLC-based indoor positioning, multisensory fusion leveraging extended Kalman filters,
optical flow-centric systems, and the data amalgamation of the ultrawideband (UWB) and
IMU [13–16]. Notably, deep learning has recently emerged as a favored solution [17].

The main motivation for our work was to reduce both the computational demands
on the embedded computer and the costs associated with device construction and upkeep.
In settings such as factory inspections and intralogistics, UAVs navigate specific routes to
accomplish routine tasks. While techniques such as SLAM are advanced and accurately
determine position, they can be excessive in these contexts. This is due to their high
computational demands and associated high equipment maintenance costs. Therefore,

Sensors 2024, 24, 190. https://doi.org/10.3390/s24010190 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010190
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24010190
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010190?type=check_update&version=2

Sensors 2024, 24, 190 2 of 15

we introduce a streamlined approach for indoor UAV navigation that emphasizes path
following and obstacle avoidance.

Our initial approach leveraged a down-looking camera with a UAV navigating using a
fixed ground path and relying on real-time visual cues. This strategy, when contrasted with
SLAM, is more computationally efficient. Moreover, this approach offers the advantages
of lower setup and lower upkeep expenses. To enhance real-time visual path following
in indoor settings, we refined the carrot-chasing algorithm and introduced the line-fitting
path-following (LFPF) algorithm. For obstacle avoidance, we employed a depth camera in
tandem with YOLOv4-Tiny [18]. By processing depth labels and identifying obstacle types,
a UAV can effectively implement the most appropriate avoidance strategy.

By targeting indoor factories and warehouses, we developed an indoor line-tracking
and obstacle-avoidance system for UAVs. The key contributions of this research are
as follows:

1. We refined the carrot-chasing algorithm, enabling its indoor application with real-time
vision, and maintaining an acceptable proximity to the tracking line.

2. We propose the LFPF algorithm, which not only minimizes deviations from the
tracking line but also adeptly adjusts to light variations and ensures a consistent
indoor flight speed.

3. We streamlined the obstacle-avoidance technique proposed by Wang [19], identifying
obstacles using depth images, classifying them with YOLOv4-Tiny, and strategizing
flights based on these classifications.

4. We deployed the complete system on an NVIDIA Jetson Nano entry-level embedded
computer, achieving a rate of 23 FPS.

2. Related Work
2.1. Path-Following Algorithm

Path planning is crucial for UAVs. Given that the forces exerted on a UAV during flight
differ significantly from those on ground vehicles, numerous UAV-specific path-following
algorithms have been proposed. Brandao [20] presented a vision-based line-following
strategy designed for autonomous UAVs in agriculture. The nonlinear path following the
controller design ensures system stability. Tkachev [21] addresses the challenge of UAV
path tracking at a specified altitude, representing the target path as a planar curve. Silva [22]
introduced an innovative UAS approach for precise navigation over complex oil and gas
pipelines using image processing and a convolutional neural network (CNN). Sujit [23]
analyzed five readily applicable path-following algorithms for UAVs. The study revealed
that each algorithm offers a distinct balance between control effort and path accuracy,
contingent on the intended use. Notably, the carrot-chasing algorithm, pure pursuit, line-
of-sight-based path following (PLOS), and linear quadratic regulator-based path following
(LQR) require less control effort than the vector field path-following algorithm; however,
these algorithms surpass the nonlinear guidance law in terms of accuracy.

Given its efficiency in controlling effort and its high accuracy in path tracking, the
carrot-chasing algorithm was selected as our path-following method. This algorithm
establishes a virtual target point (VTP) along the path, guiding the UAV to pursue it.

As shown in Algorithm 1, Wi and Wi+1 are the two weight points on the path. The
midpoint of the two weight points was set as the VTP, and point p was the position of the
UAV. This algorithm outputs u, which is used to control the yaw rate.

Originally designed for outdoor use, this algorithm enables a UAV to execute turns
with a broader radius. Furthermore, the UAV prefers the entire path in this algorithm, with
GPS signals facilitating course corrections if significant deviations occur. However, indoor
spaces present constraints. The use of a down-looking camera to capture the path also
restricts the UAV’s maximum deviation. As such, we refined the carrot-chasing algorithm
to better fit this context. Moreover, this enhanced version serves as the benchmark for
tracking displacement, against which we assessed our proposed tracking algorithm, LFPF.

Sensors 2024, 24, 190 3 of 15

Algorithm 1 Carrot-chasing algorithm

Input: Wi = (xi, yi), Wi+1 = (xi+1, yi+1), p = (x, y), ψ

Output: u
1 while true do
2 Wi = (xi, yi)
3 Wi+1 = (xi+1, yi+1)
4 p = (x, y)
5 ψ = current angle
6 Ru = ∥Wi − p∥, θ = atan2(yi+1 − yi, xi+1 − xi)
7 θu = atan2(y − yi, x − xi), β = θ − θu

8 R =
√

R2
u − (Rusin(β))2

9 s = (x′t, y′t) = ((R + δ)cosθ + xi, (R + δ)sinθ + yi)
10 ψd = atan2(y′t − y, x′t − x)
11 u = κ(ψd − ψ), with κ > 0
12 End

2.2. Obstacle Detection Method Based on Vision

Object detection and avoidance empower UAVs to swiftly circumvent unexpected
obstacles, enhancing navigational safety. A cost-effective obstacle detection method [24]
uses DroNet [25] to assess crash probability, halting the UAV preemptively. While eco-
nomically efficient in terms of its computation and hardware, DroNet is subject to specific
environmental conditions. For accurate operation, the UAV must follow a strict trajectory
or the precision of DroNet must be diminished.

Wang [19] presented a solution amalgamating deep learning with a depth camera
capable of discerning not only the proximity of obstacles but also their characteristics. Thus,
a UAV can craft an avoidance strategy tailored to an obstacle’s attributes. While Wang [19]
used YOLOv3 [26] for object detection, this approach was resource intensive. To address the
issue of fast-moving drones, Liu [27] pruned the YOLOv4 model to increase the processing
speed. Simultaneously, a special augmentation technique was implemented to improve the
detection accuracy of small drones.

The YOLOv4-Tiny [28] method, an offshoot of YOLOv4, combined with NVIDIA
TensorRT [29], a C++ library optimized for NVIDIA GPUs, boosts object detection perfor-
mance [18]. Converting a deep learning model into the TensorRT format can expedite its
inference on NVIDIA GPUs. Jkjung-Avt [30] proposed a method for transitioning from
the Darknet framework to the TensorRT format. In our approach to obstacle detection, we
integrated YOLOv4-Tiny in TensorRT format with a depth camera.

3. Method

The UAV is outfitted with a downward-facing camera and a forward-facing depth
camera. For path tracking, the device gleans displacement data from the downward-facing
camera and harnesses either the enhanced carrot-chasing algorithm or the LFPF algorithm
to adjust its orientation. In tackling obstacle avoidance, the depth of an impediment can
be ascertained by applying thresholds to the depth image. Concurrently, the nature of the
obstacle is derived from the RGB image using YOLOv4-Tiny. Ultimately, the strategy for
avoidance is chosen by considering both the depth and type classifications of the obstacles.

Our proposed method can be separated into two parts: tracking and obstacle avoid-
ance. The first and second parts of this section introduce the hardware and the overall
workflow of our method. The tracking and obstacle avoidance methodologies are subse-
quently explained individually.

3.1. Hardware

The hardware and its relationships are shown in Figure 1. Table 1 lists the specifications
of the drone hardware components. Figure 2 shows the installation of the hardware. This

Sensors 2024, 24, 190 4 of 15

study utilized Pixhawk 6X as the flight controller and an Nvidia Jetson Nano B01 as the
embedded computer for the UAV.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 16

Our proposed method can be separated into two parts: tracking and obstacle avoid-
ance. The first and second parts of this section introduce the hardware and the overall
workflow of our method. The tracking and obstacle avoidance methodologies are subse-
quently explained individually.

3.1. Hardware
The hardware and its relationships are shown in Figure 1. Table 1 lists the specifica-

tions of the drone hardware components. Figure 2 shows the installation of the hardware.
This study utilized Pixhawk 6X as the flight controller and an Nvidia Jetson Nano B01 as
the embedded computer for the UAV.

To facilitate tracking and obstacle avoidance, three supplementary sensors were in-
corporated into the UAV. First, the Raspberry PiCamera V2 served as the downward-fac-
ing camera, enabling the UAV to discern its displacement from the tracking line. Second,
an Intel Realsense D455 was utilized as the forward-facing camera to capture both the
depth and RGB images of obstructions. Finally, the TFmini Plus LiDAR was integrated to
measure the vertical distance between the UAV and either the floor or any prominent ob-
stacle beneath.

Table 1. List of hardware components.

Hardware Specification

Pixhawk 6X
FMU Processor: STM32H753 (32 Bit Arm® Cortex®-M7, 480
MHz, 2 MB flash memory and 1MB RAM).

Jetson Nano
128-core NVIDIA Maxwell™ GPU
Quad-core ARM A57 @ 1.43 GHz
4 GB 64-bit LPDDR4|25.6 GB/s

Raspberry Pi Camera V2 1280 × 720 60 FPS

Intel RealSense D455
RGB: 424 × 240 30 FPS
Depth: 424 × 240 30 FPS

TFmin Plus LIDAR 0.1 m–12 m

(a) (b)

Figure 1. Installation of the hardware in (a) the bottom view of the UAV and (b) the front view of
the UAV.
Figure 1. Installation of the hardware in (a) the bottom view of the UAV and (b) the front view of
the UAV.

Table 1. List of hardware components.

Hardware Specification

Pixhawk 6X FMU Processor: STM32H753 (32 Bit Arm® Cortex®-M7,
480 MHz, 2 MB flash memory and 1MB RAM).

Jetson Nano
128-core NVIDIA Maxwell™ GPU
Quad-core ARM A57 @ 1.43 GHz
4 GB 64-bit LPDDR4|25.6 GB/s

Raspberry Pi Camera V2 1280 × 720 60 FPS

Intel RealSense D455 RGB: 424 × 240 30 FPS
Depth: 424 × 240 30 FPS

TFmin Plus LIDAR 0.1 m–12 m
Sensors 2024, 24, x FOR PEER REVIEW 5 of 16

Figure 2. Control relationship between hardware.

3.2. Implementing Workflow
The implementation architecture is shown in Figure 3a. For path tracking, UAV

ground displacement data are obtained from a downward-facing camera, and either the
enhanced carrot-chasing algorithm or the LFPF algorithm is used to adjust the orientation
of the UAV. In tackling obstacle avoidance, the depth of an impediment can be ascertained
by applying thresholds to the depth image. Concurrently, the nature of the obstacle is de-
rived from the RGB image using YOLOv4-Tiny. After mapping the depth and type classi-
fications of the obstacles, the strategy for avoidance is chosen. The rangefinder provides
the distance between the UAV and the ground or the obstacle below it. Ultimately, a new
attitude is generated by considering the tracking, obstacle avoidance, and current height
results. Figure 3b uses the control block in Figure 3a to demonstrate the implementation
flow chart.

(a) Implementation Architecture

(b) Implementation flow chart

Figure 3. Entire implementation flowchart.

Figure 2. Control relationship between hardware.

To facilitate tracking and obstacle avoidance, three supplementary sensors were incor-
porated into the UAV. First, the Raspberry PiCamera V2 served as the downward-facing
camera, enabling the UAV to discern its displacement from the tracking line. Second,
an Intel Realsense D455 was utilized as the forward-facing camera to capture both the
depth and RGB images of obstructions. Finally, the TFmini Plus LiDAR was integrated
to measure the vertical distance between the UAV and either the floor or any prominent
obstacle beneath.

Sensors 2024, 24, 190 5 of 15

3.2. Implementing Workflow

The implementation architecture is shown in Figure 3a. For path tracking, UAV ground
displacement data are obtained from a downward-facing camera, and either the enhanced
carrot-chasing algorithm or the LFPF algorithm is used to adjust the orientation of the UAV.
In tackling obstacle avoidance, the depth of an impediment can be ascertained by applying
thresholds to the depth image. Concurrently, the nature of the obstacle is derived from
the RGB image using YOLOv4-Tiny. After mapping the depth and type classifications of
the obstacles, the strategy for avoidance is chosen. The rangefinder provides the distance
between the UAV and the ground or the obstacle below it. Ultimately, a new attitude
is generated by considering the tracking, obstacle avoidance, and current height results.
Figure 3b uses the control block in Figure 3a to demonstrate the implementation flow chart.

Figure 3. (a) Implementation architecture; (b) Implementation flow chart.

3.3. Path Following

We refined the carrot-chasing algorithm and introduced the LFPF algorithm. For
efficiency validation, we initially tested both algorithms in a simulated environment,
followed by real-flight verification.

3.3.1. Simulation Environment

We constructed our simulation environment on Ubuntu 18.04 LTS using the VMware
Workstation 16 Player. This environment included ROS Kinetic, Gazebo, and Ardupilot
SITL. We created the tracking line within the simulation using Blender 4.0.2 software. A
ROS camera was positioned beneath the virtual UAV to simulate a real-world down-looking
camera. Figure 4 shows a UAV flying in the simulation environment.

Sensors 2024, 24, 190 6 of 15

Sensors 2024, 24, x FOR PEER REVIEW 6 of 16

3.3. Path Following
We refined the carrot-chasing algorithm and introduced the LFPF algorithm. For

efficiency validation, we initially tested both algorithms in a simulated environment,
followed by real-flight verification.

3.3.1. Simulation Environment
We constructed our simulation environment on Ubuntu 18.04 LTS using the VMware

Workstation 16 Player. This environment included ROS Kinetic, Gazebo, and Ardupilot
SITL. We created the tracking line within the simulation using Blender 4.0.2 software. A
ROS camera was positioned beneath the virtual UAV to simulate a real-world down-look-
ing camera. Figure 4 shows a UAV flying in the simulation environment.

Figure 4. UAV in the simulation environment with the view from the ROSCAM at the lower left
corner of the figure.

3.3.2. Improved Carrot-Chasing Algorithm
In Algorithm 2, the improved carrot-chasing algorithm, roll angle, and pitch angle

are generated according to the constants c1 and c2, pitch, and output of the carrot-chasing
algorithm, u. Physically, pitch refers to the velocity of the UAV, and u refers to the yaw
angle at which the UAV should turn to reach the VTP. In addition to u, the improved
carrot-chasing algorithm uses roll and pitch angles to control the UAV. The larger the yaw
angle is, the larger the roll angle needed to provide centripetal force, and the smaller the
pitch angle needed to reduce the speed of the turn. Owing to the centripetal force, the
UAV did not drift away from the tracking line.

The 𝑊௜ , 𝑊௜ାଵ, two way-points, and p, the position of the UAV, must be defined to
apply this algorithm. To obtain the 𝑊௜ and 𝑊௜ାଵ, the following processes must be
performed for each frame: after binarizing the image, 20 pixels were retained near the
boundary. The centers of the remaining two parts were labeled. The upper panel
represents 𝑊௜ାଵ and the lower panel represents 𝑊௜. The center of the image obtained by
the down-looking camera is represented by p.

Figure 4. UAV in the simulation environment with the view from the ROSCAM at the lower left
corner of the figure.

3.3.2. Improved Carrot-Chasing Algorithm

In Algorithm 2, the improved carrot-chasing algorithm, roll angle, and pitch angle
are generated according to the constants c1 and c2, pitch, and output of the carrot-chasing
algorithm, u. Physically, pitch refers to the velocity of the UAV, and u refers to the yaw
angle at which the UAV should turn to reach the VTP. In addition to u, the improved
carrot-chasing algorithm uses roll and pitch angles to control the UAV. The larger the yaw
angle is, the larger the roll angle needed to provide centripetal force, and the smaller the
pitch angle needed to reduce the speed of the turn. Owing to the centripetal force, the UAV
did not drift away from the tracking line.

The Wi, Wi+1, two way-points, and p, the position of the UAV, must be defined to apply
this algorithm. To obtain the Wi and Wi+1, the following processes must be performed for
each frame: after binarizing the image, 20 pixels were retained near the boundary. The
centers of the remaining two parts were labeled. The upper panel represents Wi+1 and the
lower panel represents Wi. The center of the image obtained by the down-looking camera
is represented by p.

Algorithm 2 Improved Carrot-Chasing Algorithm

Input: Wi = (xi, yi), Wi+1 = (xi+1, yi+1), p = (x, y), ψ

Output: u, roll, pitch
1 while true do
2 Wi = (xi, yi)
3 Wi+1 = (xi+1, yi+1)
4 p = (x, y)
5 ψ = current angle
6 u = Carrot Chasing algorithm(Wi, Wi+1, p)
7 roll = c1 × pitch × (e sin(u) − 1

)
8 pitch = c2 × pitch × (1 − cos(u))
9 End

3.3.3. LFPF Algorithm

The enhanced carrot-chasing algorithm exhibited strong performance within the
simulation environment. Nonetheless, during the actual flight, tracing lines near the image
boundary were not discerned due to fluctuations in lighting. Additionally, the UAV had to
sustain a high speed to correct any misalignment, posing a safety concern indoors. As a
solution, we introduce the line-fitting path-following (LFPF) algorithm.

This approach involves line-fitting on the binarized tracking line. Subsequently, the
M-estimator’s least square distance was used to gauge the slope and intercept of the drawn

Sensors 2024, 24, 190 7 of 15

line. As shown in Figure 5, the green line represents the fitted line, s is the midpoint of the
fitted line, and p is the center of the image, which refers to the position of the UAV.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 16

Algorithm 2 Improved Carrot-Chasing Algorithm

 Input: 𝑊௜ = (𝑥௜, 𝑦௜), 𝑊௜ାଵ = (𝑥௜ାଵ, 𝑦௜ାଵ), 𝑝 = (𝑥, 𝑦), 𝜓
Output: 𝑢, 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ

1 𝒘𝒉𝒊𝒍𝒆 𝑡𝑟𝑢𝑒 𝒅𝒐
2 𝑊௜ = (𝑥௜, 𝑦௜)
3 𝑊௜ାଵ = (𝑥௜ାଵ, 𝑦௜ାଵ)
4 𝑝 = (𝑥, 𝑦)
5 𝜓 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑛𝑔𝑙𝑒
6 𝑢 = 𝐶𝑎𝑟𝑟𝑜𝑡 𝐶ℎ𝑎𝑠𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(𝑊௜, 𝑊௜ାଵ, 𝑝)
7 𝑟𝑜𝑙𝑙 = 𝑐ଵ × 𝑝𝑖𝑡𝑐ℎ × (𝑒௦௜௡(௨) − 1)
8 𝑝𝑖𝑡𝑐ℎ = 𝑐ଶ × 𝑝𝑖𝑡𝑐ℎ × (1 − cos(𝑢))
9 𝑬𝒏𝒅

3.3.3. LFPF Algorithm
The enhanced carrot-chasing algorithm exhibited strong performance within the sim-

ulation environment. Nonetheless, during the actual flight, tracing lines near the image
boundary were not discerned due to fluctuations in lighting. Additionally, the UAV had
to sustain a high speed to correct any misalignment, posing a safety concern indoors. As
a solution, we introduce the line-fitting path-following (LFPF) algorithm.

This approach involves line-fitting on the binarized tracking line. Subsequently, the
M-estimator’s least square distance was used to gauge the slope and intercept of the
drawn line. As shown in Figure 5, the green line represents the fitted line, s is the midpoint
of the fitted line, and p is the center of the image, which refers to the position of the UAV.

(a) (b)

Figure 5. (a) The concept of the LFPF algorithm; (b) the curve captured by the ROSCAM with a fitted
line, point s (red dot), and p (yellow dot).

As shown in Algorithm 3, the slope and displacement from p to s generate the yaw
rate, roll angle, and pitch angle. These are subsequently used to control the UAV. The
fourth line in Algorithm 3 gives the relationship between the xi and the roll. When the
error was close to zero, the roll changed significantly. As the error increases, the roll
changes slightly. We observed a time lag between the control command of the UAV to
change its flight direction and the actual flight direction. The fourth line allows the precise
adjustment of the x-axis displacement and prevents the UAV from surging in the other
direction.

Figure 5. (a) The concept of the LFPF algorithm; (b) the curve captured by the ROSCAM with a fitted
line, point s (red dot), and p (yellow dot).

As shown in Algorithm 3, the slope and displacement from p to s generate the yaw
rate, roll angle, and pitch angle. These are subsequently used to control the UAV. The
fourth line in Algorithm 3 gives the relationship between the xi and the roll. When the error
was close to zero, the roll changed significantly. As the error increases, the roll changes
slightly. We observed a time lag between the control command of the UAV to change its
flight direction and the actual flight direction. The fourth line allows the precise adjustment
of the x-axis displacement and prevents the UAV from surging in the other direction.

Algorithm 3 Line-Fitting Path-Following Algorithm.

Input: p = (x, y), s = (xi, yi)
Output: roll, pitch

1 while true do
2 vx, vy, xi, yi = f itLine(all points o f line)
3 θ = yaw = 180

π × tan−1
(

vy
vx

)
4 roll = c1 ×

(
1

1+e
(xi−x)

80

− 0.5
)

5 pitch = c2 × |sinθ|+ b
6 End

vx, vy, xi, yi is the result of the line-fitting algorithm using all points of the line. vy
vx

is
the slope of the fitted line, and (xi, yi) is the midpoint of the line.

3.3.4. Evaluation

To evaluate the algorithms, we designed two line patterns. The first entails a 10 m
straight tracking line, while the second features a bend with 1 m straight lines preceding
and following it. This bend has a curve radius of 1.5 m and a rotation angle of 45◦.

The evaluation of the algorithms hinged on two primary factors: speed and accuracy.
We monitored the pitch because it directly affects the UAV’s speed. For gauging accuracy,
we measured the UAV’s displacement from the tracking line along the x-axis, noting this
as an error. Throughout the flight, we charted the variations in these two parameters.
For the x-axis error, both the range and mean values were documented. The mean value
computation was grounded on Equation (1), where x denotes the error at time t, and n
signifies the cumulative count of x.

mean =
∑n

t=0 x
n

(1)

Sensors 2024, 24, 190 8 of 15

3.4. Obstacle Avoidance

In this study, we utilized an Intel Realsense D455 as the forward-facing camera to capture
a real-time image stream in front of the UAV, comprising both RGB and depth images. Based
on these images, the UAV can determine an appropriate obstacle avoidance strategy.

3.4.1. Depth Detection

Obstacles are categorized as “near” or “far” based on their distance from the UAV.
Images were binarized using threshold values of 1.2 m and 2 m to classify these obstacles.
Notably, if the 2 m threshold contour encompasses the 1.2 m threshold contour, it is labeled
“near”. The contours, along with their distance labels, are processed as depicted in Figure 6.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 16

Figure 6. “Near” (red) and “far” (green) labels for the image.

3.4.2. Obstacle Detection
We employed YOLOv4-Tiny to identify obstacle types. Our classification includes

“people”, “boxes”, “carts”, and “stackers”, which are common entities in indoor factory
settings. To efficiently run the model on an NVIDIA Jetson Nano with a satisfactory FPS,
we converted the model from darknet to a TensorRT format. This transformation reduced
the number of layers from 77 to 50 due to TensorRT’s ability to merge the convolution
layer with the batch normalization layer and omit some route layers. The resulting model
provides both the type label and the center position of the detected obstacles.

3.4.3. Mapping Obstacle Type to Depth
To correlate the type and depth labels, each depth contour is examined to determine

whether it contains the center of an obstacle. If a contour encloses the center of a
recognized type, it adopts that type label. Conversely, if a depth contour does not
correspond to any obstacle center detected by YOLOv4-Tiny, it is labeled “Unidentified”.
In cases where multiple centers are contained within a single contour, the obstacle type is
determined in the sequence of “people”, “boxes”, “carts”, and “stackers”.

3.4.4. Avoiding Strategy
As shown in Table 2, by knowing the obstacle type and distance from the UAV, the

corresponding obstacle avoidance strategy can be chosen. Priorities I to IV are
simultaneously set for several contours. A smaller value indicates a higher priority. Figure
7 shows how the UAV flies upward to avoid known obstacles in priority III.

Table 2. Depth and type of obstacle and the corresponding avoidance strategy.

Obstacle
Contour

Obstacle Type

Unidentified People Known Obstacle (Boxes, Carts, or
Stackers)

D
epth

Near
I. Hover and
notify the ground
station.

II. Hover and
alarm the people
until they leave.

III. Fly upward to avoid the ob-
stacle.

Far IV. Slow down.

Figure 6. “Near” (red) and “far” (green) labels for the image.

3.4.2. Obstacle Detection

We employed YOLOv4-Tiny to identify obstacle types. Our classification includes
“people”, “boxes”, “carts”, and “stackers”, which are common entities in indoor factory
settings. To efficiently run the model on an NVIDIA Jetson Nano with a satisfactory FPS,
we converted the model from darknet to a TensorRT format. This transformation reduced
the number of layers from 77 to 50 due to TensorRT’s ability to merge the convolution
layer with the batch normalization layer and omit some route layers. The resulting model
provides both the type label and the center position of the detected obstacles.

3.4.3. Mapping Obstacle Type to Depth

To correlate the type and depth labels, each depth contour is examined to determine
whether it contains the center of an obstacle. If a contour encloses the center of a recognized
type, it adopts that type label. Conversely, if a depth contour does not correspond to any
obstacle center detected by YOLOv4-Tiny, it is labeled “Unidentified”. In cases where
multiple centers are contained within a single contour, the obstacle type is determined in
the sequence of “people”, “boxes”, “carts”, and “stackers”.

3.4.4. Avoiding Strategy

As shown in Table 2, by knowing the obstacle type and distance from the UAV, the
corresponding obstacle avoidance strategy can be chosen. Priorities I to IV are simultane-
ously set for several contours. A smaller value indicates a higher priority. Figure 7 shows
how the UAV flies upward to avoid known obstacles in priority III.

Table 2. Depth and type of obstacle and the corresponding avoidance strategy.

Obstacle Contour

Obstacle Type

Unidentified People Known Obstacle
(Boxes, Carts, or Stackers)

D
epth

Near
I. Hover and notify the ground

station.
II. Hover and alarm the people until

they leave. III. Fly upward to avoid the obstacle.

Far IV. Slow down.

Sensors 2024, 24, 190 9 of 15Sensors 2024, 24, x FOR PEER REVIEW 10 of 16

Figure 7. Explanation of steps for a UAV to avoid known obstacles.

4. Results
The experiment consisted of two sections. First, we conducted an experiment to eval-

uate the speed and accuracy of the improved carrot-chasing and LFPF algorithms in a
simulation environment. Second, to verify our obstacle-avoiding strategy, actual flights
with tracking and obstacle-avoiding tasks were performed.

4.1. Tracking Task in the Simulation Environment
To evaluate the speed and accuracy of the algorithm, the pitch angle and x-axis error

of the UAV were recorded. The parameters used in this experiment are listed in Table 3.

Table 3. Parameter List for Different Tracking Algorithms.

Simulation Environment Actual Flight
Improved CC LFPF SIM LFPF 𝑐ଵ = 0.0013 𝑐ଵ = 1.2 𝑐ଵ = 1.2 𝑐ଶ = 0.016 𝑐ଶ = 0.01 𝑐ଶ = 0.01

δ = 100 b = 0.14 b = 0.72

4.1.1. Straight Line
These algorithms have distinct initial pitch angles because the concept of each

algorithm varies. The initial pitch angle of the improved carrot-chasing algorithm is −1°,
which is large enough for the UAV to chase the target point, whereas the initial pitch angle
of the LFPF algorithm is only −0.19°. Figure 8 shows the probability density function (PDF)
of the x-axis error of the UAV during a straight-line flight. For the improved carrot-chasing
algorithm, the maximum x-axis error was 60 cm, and the mean x-axis error was 18.59 cm.
In contrast, for the LFPF algorithm, the maximum x-axis error was 30 cm, and the mean
x-axis error was 6.17 cm. The values of the LFPF algorithm are more concentrated than
those of the improved carrot-chasing algorithm. In the straight-line test, the LFPF
algorithm exhibited better accuracy.

(a) (b)

Figure 7. Explanation of steps for a UAV to avoid known obstacles.

4. Results

The experiment consisted of two sections. First, we conducted an experiment to
evaluate the speed and accuracy of the improved carrot-chasing and LFPF algorithms in a
simulation environment. Second, to verify our obstacle-avoiding strategy, actual flights
with tracking and obstacle-avoiding tasks were performed.

4.1. Tracking Task in the Simulation Environment

To evaluate the speed and accuracy of the algorithm, the pitch angle and x-axis error
of the UAV were recorded. The parameters used in this experiment are listed in Table 3.

Table 3. Parameter List for Different Tracking Algorithms.

Simulation Environment Actual Flight

Improved CC LFPF SIM LFPF

c1 = 0.0013 c1 = 1.2 c1 = 3.2
c2 = 0.016 c2 = 0.01 c2 = 0.01

δ = 100 b = 0.14 b = 0.72

4.1.1. Straight Line

These algorithms have distinct initial pitch angles because the concept of each algo-
rithm varies. The initial pitch angle of the improved carrot-chasing algorithm is −1◦, which
is large enough for the UAV to chase the target point, whereas the initial pitch angle of the
LFPF algorithm is only −0.19◦. Figure 8 shows the probability density function (PDF) of
the x-axis error of the UAV during a straight-line flight. For the improved carrot-chasing
algorithm, the maximum x-axis error was 60 cm, and the mean x-axis error was 18.59 cm. In
contrast, for the LFPF algorithm, the maximum x-axis error was 30 cm, and the mean x-axis
error was 6.17 cm. The values of the LFPF algorithm are more concentrated than those
of the improved carrot-chasing algorithm. In the straight-line test, the LFPF algorithm
exhibited better accuracy.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 16

Figure 7. Explanation of steps for a UAV to avoid known obstacles.

4. Results
The experiment consisted of two sections. First, we conducted an experiment to eval-

uate the speed and accuracy of the improved carrot-chasing and LFPF algorithms in a
simulation environment. Second, to verify our obstacle-avoiding strategy, actual flights
with tracking and obstacle-avoiding tasks were performed.

4.1. Tracking Task in the Simulation Environment
To evaluate the speed and accuracy of the algorithm, the pitch angle and x-axis error

of the UAV were recorded. The parameters used in this experiment are listed in Table 3.

Table 3. Parameter List for Different Tracking Algorithms.

Simulation Environment Actual Flight
Improved CC LFPF SIM LFPF 𝑐ଵ = 0.0013 𝑐ଵ = 1.2 𝑐ଵ = 1.2 𝑐ଶ = 0.016 𝑐ଶ = 0.01 𝑐ଶ = 0.01

δ = 100 b = 0.14 b = 0.72

4.1.1. Straight Line
These algorithms have distinct initial pitch angles because the concept of each

algorithm varies. The initial pitch angle of the improved carrot-chasing algorithm is −1°,
which is large enough for the UAV to chase the target point, whereas the initial pitch angle
of the LFPF algorithm is only −0.19°. Figure 8 shows the probability density function (PDF)
of the x-axis error of the UAV during a straight-line flight. For the improved carrot-chasing
algorithm, the maximum x-axis error was 60 cm, and the mean x-axis error was 18.59 cm.
In contrast, for the LFPF algorithm, the maximum x-axis error was 30 cm, and the mean
x-axis error was 6.17 cm. The values of the LFPF algorithm are more concentrated than
those of the improved carrot-chasing algorithm. In the straight-line test, the LFPF
algorithm exhibited better accuracy.

(a) (b)

Figure 8. (a) PDF of the x-axis error in the improved carrot-chasing algorithm; (b) PDF of the x-axis
error in the LFPF.

Sensors 2024, 24, 190 10 of 15

4.1.2. Bend

Since the flight trajectories of the improved carrot-chasing algorithm vary with δ

in the bend, we optimized the value of δ with the best sensitivity to the displacement
at δ = 100 (Figure 9a). Thus, the improved carrot-chasing algorithm was compared using
δ = 100. We also tried to optimize the carrot-chasing algorithm by adjusting δ. However,
the carrot-chasing algorithm did not perform well irrespective of the value of δ.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 16

Figure 8. (a) PDF of the x-axis error in the improved carrot-chasing algorithm; (b) PDF of the x-axis
error in the LFPF.

4.1.2. Bend
Since the flight trajectories of the improved carrot-chasing algorithm vary with δ in

the bend, we optimized the value of δ with the best sensitivity to the displacement at δ =
100 (Figure 9a). Thus, the improved carrot-chasing algorithm was compared using δ = 100.
We also tried to optimize the carrot-chasing algorithm by adjusting δ. However, the carrot-
chasing algorithm did not perform well irrespective of the value of δ.

A comparison of the bend-tracking task results of the carrot-chasing algorithm, im-
proved carrot-chasing algorithm, and LFPF algorithm are shown in Figure 9b. Both the
improved carrot-chasing algorithm and the LFPF algorithm smoothly performed the turn.

(a) (b)

Figure 9. (a) Flight trajectories of carrot-chasing using different deltas; (b) Flight trajectories of dif-
ferent algorithms.

4.2. Actual Flight
In the actual flight experiment, we verified the tracking task with the LFPF algorithm

as well as the obstacle-avoiding task with various obstacles.

4.2.1. Tracking Task
With the parameter list shown in Table 2, the UAV can perform the tracking task

using the LFPF algorithm during an actual flight. The PDF of the x-axis error over 10
flights of the 10 m straight line is shown in Figure 10. The UAV could maintain its dis-
placement within ±40 cm, with a mean displacement of 13.30 cm.

Figure 9. (a) Flight trajectories of carrot-chasing using different deltas; (b) Flight trajectories of
different algorithms.

A comparison of the bend-tracking task results of the carrot-chasing algorithm, im-
proved carrot-chasing algorithm, and LFPF algorithm are shown in Figure 9b. Both the
improved carrot-chasing algorithm and the LFPF algorithm smoothly performed the turn.

4.2. Actual Flight

In the actual flight experiment, we verified the tracking task with the LFPF algorithm
as well as the obstacle-avoiding task with various obstacles.

4.2.1. Tracking Task

With the parameter list shown in Table 2, the UAV can perform the tracking task using
the LFPF algorithm during an actual flight. The PDF of the x-axis error over 10 flights of
the 10 m straight line is shown in Figure 10. The UAV could maintain its displacement
within ±40 cm, with a mean displacement of 13.30 cm.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 16

Figure 10. PDF of the x-error of the actual flight.

4.2.2. Obstacle Avoidance Task
Three obstacle types—”boxes”, “chairs”, and “people”—were evaluated in the

obstacle avoidance task, with “chairs” symbolizing the unidentified obstacle. To confirm
the UAV’s predicted response, we documented both its frontward and downward views,
as well as its evasion status. Figure 11 shows both the flight trajectory of the UAV while it
was avoiding the “boxes” and our video record. The YouTube video link to the results of
this experiment is https://youtu.be/Efy-fQ2ab28(accessed on 14 December 2023).

The trajectory is the same as that shown in Figure 8. Figure 12 shows the UAV flight
trajectory while avoiding people. The UAV hovered until it left the tracking line. As shown
in Figure 13, the UAV detects an unidentified obstacle and lands.

Figure 11. Flying state of the UAV while avoiding “boxes”. Front-looking and down-looking scenes
are also shown for each state.

Figure 10. PDF of the x-axis error of the actual flight.

Sensors 2024, 24, 190 11 of 15

4.2.2. Obstacle Avoidance Task

Three obstacle types—”boxes”, “chairs”, and “people”—were evaluated in the obstacle
avoidance task, with “chairs” symbolizing the unidentified obstacle. To confirm the UAV’s
predicted response, we documented both its frontward and downward views, as well as its
evasion status. Figure 11 shows both the flight trajectory of the UAV while it was avoiding
the “boxes” and our video record. The YouTube video link to the results of this experiment
is https://youtu.be/Efy-fQ2ab28 (accessed on 14 December 2023).

Sensors 2024, 24, x FOR PEER REVIEW 12 of 16

Figure 10. PDF of the x-error of the actual flight.

4.2.2. Obstacle Avoidance Task
Three obstacle types—”boxes”, “chairs”, and “people”—were evaluated in the

obstacle avoidance task, with “chairs” symbolizing the unidentified obstacle. To confirm
the UAV’s predicted response, we documented both its frontward and downward views,
as well as its evasion status. Figure 11 shows both the flight trajectory of the UAV while it
was avoiding the “boxes” and our video record. The YouTube video link to the results of
this experiment is https://youtu.be/Efy-fQ2ab28(accessed on 14 December 2023).

The trajectory is the same as that shown in Figure 8. Figure 12 shows the UAV flight
trajectory while avoiding people. The UAV hovered until it left the tracking line. As shown
in Figure 13, the UAV detects an unidentified obstacle and lands.

Figure 11. Flying state of the UAV while avoiding “boxes”. Front-looking and down-looking scenes
are also shown for each state.
Figure 11. Flying state of the UAV while avoiding “boxes”. Front-looking and down-looking scenes
are also shown for each state.

The trajectory is the same as that shown in Figure 8. Figure 12 shows the UAV flight
trajectory while avoiding people. The UAV hovered until it left the tracking line. As shown
in Figure 13, the UAV detects an unidentified obstacle and lands.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 16

(a) (b)

Figure 12. (a) The UAV detected people and hovered; (b) The UAV detected people who left and
kept flying.

Figure 13. The UAV detected the unidentified obstacle and landed.

4.2.3. Computation
The system was implemented on an NVIDIA Jetson Nano, which was the primary

embedded computer.
With the YOLOv4-Tiny compressed, the computational speed of the entire system

could reach 23 FPS. Table 4 compares the FPS, GPU utility, CPU utility, and RAM usage
during execution before and after the YOLOv4-tiny is compressed.

Table 4. Comparison of the Darknet and TensorRT formats.

Format FPS GPU Utility (%) CPU Utility (%) RAM Usage
Darknet 16–17 77–99 58–100 2.7 GB

TensorRT 24–25 75–99 30–70 3.3 GB

4.3. Comparison of Our Paper with Existing Solutions
The existing papers on obstacle avoidance strategies are not the same; we select im-

portant items for comparison. Table 5 shows the comparison between our proposed
method and other solutions.

Table 5. Comparison with existing solutions.

Items Our Study [31] [32]

Real-world
Experiment

Yes Yes
No, combining the

simulation environment
with the real-world

Method
depth threshold +

YOLOv4 LiDAR + SLAM
depth threshold +

YOLOv3
Dynamic
obstacle? Yes No Yes

Computational
Platform

Jetson Nano
(Cheaper) Jetson TX2 GPU:NVIDIA GTX1080;

Indoor/Outdoor
Specific for Indoor

Factory
Indoor + unknown

environment
Outdoor Specific for

farm

Advantage Human
unknown environment,

building map, LTE
Communication

Better navigating speed:
5 m/s

Figure 12. (a) The UAV detected people and hovered; (b) The UAV detected people who left and
kept flying.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 16

(a) (b)

Figure 12. (a) The UAV detected people and hovered; (b) The UAV detected people who left and
kept flying.

Figure 13. The UAV detected the unidentified obstacle and landed.

4.2.3. Computation
The system was implemented on an NVIDIA Jetson Nano, which was the primary

embedded computer.
With the YOLOv4-Tiny compressed, the computational speed of the entire system

could reach 23 FPS. Table 4 compares the FPS, GPU utility, CPU utility, and RAM usage
during execution before and after the YOLOv4-tiny is compressed.

Table 4. Comparison of the Darknet and TensorRT formats.

Format FPS GPU Utility (%) CPU Utility (%) RAM Usage
Darknet 16–17 77–99 58–100 2.7 GB

TensorRT 24–25 75–99 30–70 3.3 GB

4.3. Comparison of Our Paper with Existing Solutions
The existing papers on obstacle avoidance strategies are not the same; we select im-

portant items for comparison. Table 5 shows the comparison between our proposed
method and other solutions.

Table 5. Comparison with existing solutions.

Items Our Study [31] [32]

Real-world
Experiment

Yes Yes
No, combining the

simulation environment
with the real-world

Method
depth threshold +

YOLOv4 LiDAR + SLAM
depth threshold +

YOLOv3
Dynamic
obstacle? Yes No Yes

Computational
Platform

Jetson Nano
(Cheaper) Jetson TX2 GPU:NVIDIA GTX1080;

Indoor/Outdoor
Specific for Indoor

Factory
Indoor + unknown

environment
Outdoor Specific for

farm

Advantage Human
unknown environment,

building map, LTE
Communication

Better navigating speed:
5 m/s

Figure 13. The UAV detected the unidentified obstacle and landed.

https://youtu.be/Efy-fQ2ab28

Sensors 2024, 24, 190 12 of 15

4.2.3. Computation

The system was implemented on an NVIDIA Jetson Nano, which was the primary
embedded computer.

With the YOLOv4-Tiny compressed, the computational speed of the entire system
could reach 23 FPS. Table 4 compares the FPS, GPU utility, CPU utility, and RAM usage
during execution before and after the YOLOv4-tiny is compressed.

Table 4. Comparison of the Darknet and TensorRT formats.

Format FPS GPU Utility (%) CPU Utility (%) RAM Usage

Darknet 16–17 77–99 58–100 2.7 GB
TensorRT 24–25 75–99 30–70 3.3 GB

4.3. Comparison of Our Paper with Existing Solutions

The existing papers on obstacle avoidance strategies are not the same; we select
important items for comparison. Table 5 shows the comparison between our proposed
method and other solutions.

Table 5. Comparison with existing solutions.

Items Our Study [31] [32]

Real-world Experiment Yes Yes
No, combining the

simulation environment
with the real-world

Method depth threshold +
YOLOv4 LiDAR + SLAM depth threshold +

YOLOv3

Dynamic obstacle? Yes No Yes

Computational Platform Jetson Nano (Cheaper) Jetson TX2 GPU:NVIDIA GTX1080;

Indoor/Outdoor Specific for Indoor
Factory

Indoor + unknown
environment

Outdoor Specific for
farm

Advantage Human
unknown environment,

building map, LTE
Communication

Better navigating
speed:5 m/s

5. Discussion and Future Work

This study proposes a UAV tracking and obstacle avoidance system designed specifi-
cally for indoor flights. Bypassing the need for optical flow or beacons, this system enables
efficient indoor UAV navigation with a reduced computational load.

For tracking, we evaluated both the improved carrot-chasing and LFPF algorithms
on straight and curved paths. The test results yielded accurate and speedy data. Based on
the pitch angle, the UAV’s speed when using the LFPF is approximately 20% of that when
using the improved carrot-chasing algorithm. Consequently, the LFPF algorithm results in
a slower, more stable speed, enhancing the safety of indoor flights.

Experiments in both simulated and real-world settings revealed that transitioning
the tracking task using the LFPF algorithm from a simulation to an actual environment
necessitates only adjustments to coefficients c1 and b: c1 shifted from 1.2 to 3.2, and b from
0.14 to 0.72.

For obstacle avoidance, we employed a depth camera to capture depth and RGB
images, facilitating the identification of obstacle depths and types. The obstacle recognition
process in this paper employs YOLOv4-Tiny, a network known for its advantages of being
lightweight and executing quickly. After undergoing TensorRT conversion, the execution
speed of the Jetson Nano platform improved. Additionally, this paper is designed for
applications in a factory setting where the types of objects to be recognized are relatively
fixed. The ability to rapidly detect the presence of obstacles is a crucial consideration in
this context, as YOLOv4-Tiny is a suitable choice for this paper’s application. Although

Sensors 2024, 24, 190 13 of 15

YOLOv4-Tiny sometimes detects obstacles where none exist, this system mitigates such
errors by assessing the obstacle’s depth and utilizing type information to refine the cho-
sen avoidance strategy. The reliability of YOLOv4-Tiny increases when the UAV is near
an obstacle.

The trajectory lines assessed in this study represent fundamental patterns, gauging
the algorithms’ adaptability to straight and curved paths. However, to ensure the practical
utility of UAVs in indoor settings, in the future, the processing of downward view images
and tracking algorithms should be improved by considering more complicated tracking
line patterns and tracking line intersections.

Additionally, the current avoiding method, a default upward motion, requires the
application scenario to either have a high ceiling or not heap the obstacles high. There-
fore, refining the avoidance strategy by accounting for the prevailing safety space that
could guide the UAV toward a more discerning avoidance strategy is another issue for
future work.

6. Conclusions

This study focused on tracking and obstacle avoidance tasks for indoor UAVs. The
proposed LFPF indoor line-tracking algorithm was juxtaposed with an enhanced carrot-
chasing algorithm in a simulated environment. The displacement of the LFPF on the x-axis
was consistently closer to zero than that on its counterpart. The LFPF algorithm had an
average x-error of 6.17, which is 12.42 cm less than that of the improved carrot-chasing
algorithm. In curved scenarios, both algorithms execute smooth turns, with the LFPF
displaying minimal oscillation post-turn.

During obstacle avoidance trials, the UAV maintained an x-axis error within ±40
cm, adapting its avoidance strategy based on the detected obstacle type and distance.
The system was processed at 23 FPS on an Nvidia Jetson Nano. Nevertheless, real-world
applications might present more intricate tracking line configurations, and space constraints
can differ. A single avoidance strategy might not suffice universally, highlighting areas for
future research focus.

Author Contributions: Conceptualization, C.-T.C.; Funding, C.-T.C.; Supervision, C.-T.C.; Methodol-
ogy, Z.-S.J., T.-L.H., N.-J.Y. and C.-Y.C.; Software, Z.-S.J., T.-L.H., N.-J.Y. and C.-Y.C.; Validation, Z.-S.J.,
T.-L.H., N.-J.Y. and C.-Y.C.; Writing—original draft, T.-L.H., Z.-S.J., N.-J.Y. and C.-Y.C.; Writing—
review & editing, T.-L.H. and C.-T.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the MOST Foundation with a grant. No. MOST 110-2221-E-027-118-.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Qayyum, T.; Trabelsi, Z.; Malik, A.; Hayawi, K. Trajectory design for UAV-based data collection using clustering model in smart

farming. Sensors 2021, 22, 37. [CrossRef] [PubMed]
2. Maddikunta, P.K.R.; Hakak, S.; Alazab, M.; Bhattacharya, S.; Gadekallu, T.R.; Khan, W.Z.; Pham, Q.V. Unmanned Aerial Vehicles

in Smart Agriculture: Applications, Requirements, and Challenges. IEEE Sens. J. 2021, 21, 17608–17619. [CrossRef]
3. Wu, Q.; Luo, W.; Lin, C. Development of Bridge Detection UAV Based on FPGA and Pixhawk. In Proceedings of the 2020 Chinese

Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 2703–2708. [CrossRef]
4. Zhang, H.; Wu, S.; Feng, O.; Tian, T.; Huang, Y.; Zhong, G. Research on Demand-Based Scheduling Scheme of Urban Low-Altitude

Logistics UAVs. Appl. Sci. 2023, 13, 5370. [CrossRef]
5. Ribeiro, C.C.G.; Santos, L.H.M.C.D.; Macharet, D.G. Collaborative UGV/UAV Path Planning for Inventory Management in

Warehouses. In Proceedings of the 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on Robotics
(SBR), and 2022 Workshop on Robotics in Education (WRE), São Bernardo do Campo, Brazil, 8–21 October 2022; pp. 121–126.
[CrossRef]

https://doi.org/10.3390/s22010037
https://www.ncbi.nlm.nih.gov/pubmed/35009579
https://doi.org/10.1109/JSEN.2021.3049471
https://doi.org/10.1109/CCDC49329.2020.9164461
https://doi.org/10.3390/app13095370
https://doi.org/10.1109/LARS/SBR/WRE56824.2022.9995748

Sensors 2024, 24, 190 14 of 15

6. Gao, C.; Wang, X.; Wang, R.; Zhao, Z.; Zhai, Y.; Chen, X.; Chen, B.M. A UAV-based explore-then-exploit system for autonomous
indoor facility inspection and scene reconstruction. Autom. Constr. 2023, 148, 104753. [CrossRef]

7. Lee, K.S.; Ovinis, M.; Nagarajan, T.; Seulin, R.; Morel, O. Autonomous patrol and surveillance system using unmanned aerial
vehicles. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC),
Rome, Italy, 10–13 June 2015; pp. 1291–1297. [CrossRef]

8. Moura, A.; Antunes, J.; Dias, A.; Martins, A.; Almeida, J. Graph-SLAM Approach for Indoor UAV Localization in Warehouse Lo-
gistics Applications. In Proceedings of the 2021 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), Santa Maria da Feira, Portugal, 28–29 April 2021; pp. 4–11. [CrossRef]

9. Balamurugan, G.; Valarmathi, J.; Naidu, V.P.S. Survey on UAV navigation in GPS denied environments. In Proceedings of the
2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi,
India, 3–5 October 2016; pp. 198–204. [CrossRef]

10. Li, R.; Liu, J.; Zhang, L.; Hang, Y. LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor
environments. In Proceedings of the 2014 DGON Inertial Sensors and Systems (ISS), Karlsruhe, Germany, 16–17 September 2014;
pp. 1–15. [CrossRef]

11. Habib, Y.; Papadakis, P.; Le Barz, C.; Fagette, A.; Gonçalves, T.; Buche, C. Densifying SLAM for UAV Navigation by Fusion of
Monocular Depth Prediction. In Proceedings of the 2023 9th International Conference on Automation, Robotics and Applications
(ICARA), Abu Dhabi, United Arab Emirates, 10–12 February 2023; pp. 225–229. [CrossRef]

12. Weiss, S.; Scaramuzza, D.; Siegwart, R. Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied
environments. J. Field Robot. 2011, 28, 854–874. [CrossRef]

13. Niu, G.; Zhang, J.; Guo, S.; Pun, M.-O.; Chen, C.S. UAV-Enabled 3D Indoor Positioning and Navigation Based on VLC. In
Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021;
pp. 1–6. [CrossRef]

14. Karaked, P.; Saengphet, W.; Tantrairatn, S. Multi-Sensor Fusion with Extended Kalman Filter for Indoor Localization system of
Multirotor UAV. In Proceedings of the 2022 19th International Joint Conference on Computer Science and Software Engineering
(JCSSE), Bangkok, Thailand, 22–25 June 2022; pp. 1–5. [CrossRef]

15. Deng, H.; Arif, U.; Yang, K.; Xi, Z.; Quan, Q.; Cai, K.-Y. Global optical flow-based estimation of velocity for multicopters using
monocular vision in GPS-denied environments. Optik 2020, 219, 164923. [CrossRef]

16. You, W.; Li, F.; Liao, L.; Huang, M. Data Fusion of UWB and IMU Based on Unscented Kalman Filter for Indoor Localization of
Quadrotor UAV. IEEE Access 2020, 8, 64971–64981. [CrossRef]

17. Yusefi, A.; Durdu, A.; Aslan, M.F.; Sungur, C. LSTM and Filter Based Comparison Analysis for Indoor Global Localization in
UAVs. IEEE Access 2021, 9, 10054–10069. [CrossRef]

18. Jiang, Z.; Zhao, L.; Li, S.; Jia, Y. Real-time object detection method for embedded devices. arXiv 2020, arXiv.2011.04244.
19. Wang, D.; Li, W.; Liu, X.; Li, N.; Zhang, C. UAV environmental perception and autonomous obstacle avoidance: A deep learning

and depth camera combined solution. Comput. Electron. Agric. 2020, 175, 105523. [CrossRef]
20. Brandao, A.; Martins, F.; Soneguetti, H. A Vision-based Line Following Strategy for an Autonomous UAV. In Proceedings

of the 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Colmar, France,
21–23 July 2015.

21. Tkachev, S.; Liu, W. Design of path following method for unmanned aerial vehicles using normal forms. IFAC-PapersOnLine 2015,
48, 10–15. [CrossRef]

22. da Silva, Y.M.R.; Andrade, F.A.A.; Sousa, L.; de Castro, G.G.R.; Dias, J.T.; Berger, G.; Lima, J.; Pinto, M.F. Computer vision based
path following for autonomous unmanned aerial systems in unburied pipeline onshore inspection. Drones 2022, 6, 410. [CrossRef]

23. Sujit, P.B.; Saripalli, S.; Sousa, J.B. An evaluation of UAV path following algorithms. In Proceedings of the 2013 European Control
Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 3332–3337. [CrossRef]

24. Jhan, Z.-S.; Yeh, N.-J.; Hsieh, T.-L.; Chen, C.-Y.; Chuang, C.-T. Development of low-cost camera-based UAV control strategy. In
Proceedings of the 2022 International Automatic Control Conference (CACS), Kaohsiung, Taiwan, 3–6 November 2022; pp. 1–6.
[CrossRef]

25. Loquercio, A.; Maqueda, A.I.; Del-Blanco, C.R.; Scaramuzza, D. DroNet: Learning to Fly by Driving. IEEE Robot. Autom. Lett. 2018,
3, 1088–1095. [CrossRef]

26. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2023, arXiv:1804.02767.
27. Liu, H.; Fan, K.; Ouyang, Q.; Li, N. Real-Time Small Drones Detection Based on Pruned YOLOv4. Sensors 2021, 21, 3374.

[CrossRef] [PubMed]
28. Alexey. Yolo v4, v3 and v2 for Windows and Linux. 22 July 2023. Available online: https://github.com/AlexeyAB/darknet

(accessed on 23 July 2023).
29. TensorRT Open Source Software. NVIDIA Corporation. 22 July 2023. Available online: https://github.com/NVIDIA/TensorRT

(accessed on 23 July 2023).
30. Jung, J.K. Tensorrt_Demos. 19 July 2023. Available online: https://github.com/jkjung-avt/tensorrt_demos (accessed on

23 July 2023).

https://doi.org/10.1016/j.autcon.2023.104753
https://doi.org/10.1109/EEEIC.2015.7165356
https://doi.org/10.1109/ICARSC52212.2021.9429791
https://doi.org/10.1109/SCOPES.2016.7955787
https://doi.org/10.1109/InertialSensors.2014.7049479
https://doi.org/10.1109/ICARA56516.2023.10125712
https://doi.org/10.1002/rob.20412
https://doi.org/10.1109/ICC42927.2021.9500633
https://doi.org/10.1109/JCSSE54890.2022.9836275
https://doi.org/10.1016/j.ijleo.2020.164923
https://doi.org/10.1109/ACCESS.2020.2985053
https://doi.org/10.1109/ACCESS.2021.3049896
https://doi.org/10.1016/j.compag.2020.105523
https://doi.org/10.1016/j.ifacol.2015.09.152
https://doi.org/10.3390/drones6120410
https://doi.org/10.23919/ECC.2013.6669680
https://doi.org/10.1109/CACS55319.2022.9969831
https://doi.org/10.1109/LRA.2018.2795643
https://doi.org/10.3390/s21103374
https://www.ncbi.nlm.nih.gov/pubmed/34066267
https://github.com/AlexeyAB/darknet
https://github.com/NVIDIA/TensorRT
https://github.com/jkjung-avt/tensorrt_demos

Sensors 2024, 24, 190 15 of 15

31. Choi, Y.J.; Ramatryana, I.N.; Shin, S.Y. Cellular Communication-Based Autonomous UAV Navigation with Obstacle Avoidance
for Unknown Indoor Environments. Int. J. Intell. Eng. Syst. 2021, 14, 344–352. [CrossRef]

32. Youn, W.; Ko, H.; Choi, H.; Choi, I.; Baek, J.H.; Myung, H. Collision-free autonomous navigation of a small UAV using low-cost
sensors in GPS-denied environments. Int. J. Control Autom. Syst. 2021, 19, 953–968. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.22266/ijies2021.0430.31
https://doi.org/10.1007/s12555-019-0797-7

	Introduction
	Related Work
	Path-Following Algorithm
	Obstacle Detection Method Based on Vision

	Method
	Hardware
	Implementing Workflow
	Path Following
	Simulation Environment
	Improved Carrot-Chasing Algorithm
	LFPF Algorithm
	Evaluation

	Obstacle Avoidance
	Depth Detection
	Obstacle Detection
	Mapping Obstacle Type to Depth
	Avoiding Strategy

	Results
	Tracking Task in the Simulation Environment
	Straight Line
	Bend

	Actual Flight
	Tracking Task
	Obstacle Avoidance Task
	Computation

	Comparison of Our Paper with Existing Solutions

	Discussion and Future Work
	Conclusions
	References

