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Abstract: This study uses a neural network to propose a methodology for creating digital bathymetric
models for shallow water areas that are partially covered by a mix of hydroacoustic and photogrammetric
data. A key challenge of this approach is the preparation of the training dataset from such data. Focusing
on cases in which the training dataset covers only part of the measured depths, the approach employs
generalized linear regression for data optimization followed by multilayer perceptron neural networks
for bathymetric model creation. The research assessed the impact of data reduction, outlier elimination,
and regression surface-based filtering on neural network learning. The average values of the root
mean square (RMS) error were successively obtained for the studied nearshore, middle, and deep
water areas, which were 0.12 m, 0.03 m, and 0.06 m, respectively; moreover, the values of the mean
absolute error (MAE) were 0.11 m, 0.02 m, and 0.04 m, respectively. Following detailed quantitative and
qualitative error analyses, the results indicate variable accuracy across different study areas. Nonetheless,
the methodology demonstrated effectiveness in depth calculations for water bodies, although it faces
challenges with respect to accuracy, especially in preserving nearshore values in shallow areas.

Keywords: digital bathymetric model; big data processing; MLP neural network; data reduction;
USV; UAV; data fusion; regression; shallow water area

1. Introduction

Knowledge of the bathymetric topography in a coastal zone is important in many
sectors of the maritime and inland water economy, such as in mapping marine coastal zones,
sedimentary processes, near-offshore activities, and environmental protection; therefore,
precise mapping of the coastal zone and shallow water areas continues to arouse great
interest among researchers, and numerous articles on this subject continue to emerge.

Both hydroacoustic and optical techniques are used for bathymetric mapping. The
hydroacoustic method, using multibeam echosounders, is particularly efficient for water
bodies that are deeper than double the Secchi depth (SD), and the productivity of this
technology increases with increasing water depth because the beam width expands with
depth [1]. Although the most reliable information usually comes from hydroacoustic
measurements [2], these methods are expensive and do not allow for the mapping of
ultra-shallow waters.

Photogrammetry, using structure-from-motion (5fM) and multi-view stereo (MVS), is
primarily used due to its low cost and speed in data acquisition. The SEIM-MVS method,
which uses digital images to acquire bathymetry, can be classified as a passive remote
sensing method. There are two approaches in the literature that allow for the acquisition
of accurate depth information; the first is based on correction for refraction at the water
surface, as presented in publications [3-5], and the second assumes the use of an underwater
photogrammetric framework [6,7]. Some limitations of this method in mapping the sea
bottom include dynamic movement of the water surface and disruptions of the water
surface (e.g., white water, ripples, or sun glint), false matching and noisy data [8], and
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water turbidity, which can occlude the bottom surface and prevent the automatic feature
extraction and correspondence steps necessary in SfM for 3D reconstruction. Smooth
surfaces with limited texture are difficult for pixel-by-pixel image matching and can result
in a less-dense point cloud [8], and water refraction poses significant challenges for depth
determination [9]. This method, which can be a source of bathymetric data acquisition, has
a known margin of error up to a depth of 1 m [10]. An interesting approach in low-altitude
photogrammetry is the use of multispectral sensors [11], which, along with the application
of an appropriate algorithm [12,13], allow for the acquisition of bathymetry in shallow
water areas with an accuracy of up to 20 cm. Hyperspectral sensors [14] mounted on UAV
platforms are also used, and the average errors are less than 13 cm when the water depth
ranges from 0.09 m to 1.01 m.

Digital photogrammetry methods are also used to acquire bathymetric data from
high-resolution satellite images. Such an approach was presented in [15], in which images
from the WorldView-2 satellite were used. The authors of [16] used data from the Landsat
8 satellite to determine the bathymetry of shallow water areas, where depths of up to 7 m
were obtained based on the combination of blue-green-red channels. Bathymetry can also
be acquired based on active satellite methods; an example of the use of such radar data is
shown in [17], which are characterized by moderate resolution and coverage, as well as
low reliability in coastal areas.

Another technique that enables data acquisition for mapping shallow waters is LIDAR
technology, which is considered an active remote sensing method; it allows for the simul-
taneous acquisition of data for the morphology of the bottom of water reservoirs while
surrounding coastal zone surveillance is carried out from the air [18]. One of the advantages
of green LiDAR over hydroacoustic methods is the ability to acquire data in areas that are
non-navigable for boats. Much of the attention from research teams is focused on creating
inexpensive and effective systems. Such an approach is presented in [19]. The airborne
laser bathymetry (ALB) method can also be used for auto-classification and mapping of
the seafloor based on machine learning classifiers [20]. The use of LiDAR for acquiring
bathymetry is also presented in [21-24].

Many current studies are related to the fusion of two or more datasets to achieve the
best and most uniform representation of the bottoms of water bodies. The authors of the
publications combined datasets of the same type, such as in [25], and the method features
the integration of separately acquired topographic LIDAR and bathymetric LIDAR data in
Port Phillip Bay. Data fusion is most often performed on datasets obtained from different
methods, like combining bathymetric datasets and SfM photogrammetry, as presented
in [26,27], or bathymetric and satellite data [28]. Also, in the case of satellite techniques,
different datasets have been used, as presented in [29], in which a multistep approach lever-
aging a spectral ratio method of deriving bathymetry from Landsat 8 imagery combined
with data from NASA’s airborne ICESat2 ATLAS simulator was used; or in [30], in which
the Sentinel-2 and Landsat 8 datasets were combined. Interesting research concerning data
fusion is also presented in [31], in which different types of data were combined, including
those without geolocation. Additional examples of fusing different datasets can be found
in [32-41].

One of the interesting approaches to data acquisition is the use of neural networks in
bathymetric studies. Neural networks can be used to improve the resolution of bathymetric
data, and such an approach was proposed in [42]; neural networks were used on images
to obtain true depths that are free of the influence of refraction [9,43]; alternately, they
were used to create new models that enabled the combination of different datasets [28].
In [44], a neural network was presented that allowed for the acquisition of bathymetric
data from optical satellite data, and in [45], networks based on a limited amount of ‘truth’
depths and multispectral data from the Sentinel-2 satellite were presented, allowing for the
development of bathymetric maps. Another example of the use of deep neural networks
and satellite data can be found in [46].
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The application of neural networks requires the preparation of a training sequence
on the basis of which the network can be trained, and in the final phase, a model can be
created. The authors of this study investigated the possibility of using partial optimization
of the training set to reconstruct the bathymetric surface created from hydroacoustic and
photogrammetric data; this constitutes a new contribution to the field of research related
to the creation of hybrid surfaces in shallow water areas. Partial optimization is the result
of the combined overlap of hydrographic and photogrammetric measurements. Another
aspect of the research is the method of fusing data from unmanned surface vehicles (USVs)
and unmanned aerial vehicles (UAVs). From the conducted research and proposed data
processing methodology, a new approach to point cloud filtration using generalized linear
regression [47] was proposed after conducting a series of different experiments, with the
elimination of outliers or a reduction in the measurement points in the dataset.

The main aim of the research was to develop a methodology for creating digital
bathymetric models (DBMs) that use multilayer perceptron (MLP) neural networks. The
research concerns the specific case in which it is assumed that the training dataset covers
only a part of the depth data. The order of research is related to the optimization of the data
used to create the datasets for learning neural networks. This part of the research brings to
realization the following sub-goals:

The impact of eliminating outlier data on the learning of the neural network;

The impact of dataset reduction on the learning of the network;

The impact of regression surface-based filtering on the learning of the neural network;
Using neural networks to create bathymetric surfaces from fusing hydroacoustic and
bathymetric data.

Due to the complexity of the research, one architecture of neural networks was focused
on to allow for in-depth research analysis. The obtained results will certainly be a useful
reference for further research with other types of neural networks.

The remainder of the article includes the following sections: In Section 2, the study
area and the datasets used are presented. In Section 3. The methodology and the entire
research process are presented. In Section 4, the obtained results are presented, and the
quantitative and qualitative analyses are described. In Section 5, the discussion compares
the obtained neural digital bathymetric model (NDBM) results to those of other methods,
and the final conclusions are stated.

2. Study Area and Dataset Preprocessing

The research area was located within the village of Czarna Laka (Poland), situated
in the West Pomeranian Voivodeship in Goleniow County. The research area is presented
in Figure 1; its surface area amounts to 2.71 hectares. The conditions for data acquisition
can be considered favourable; the water turbidity, colour, riparian vegetation, and weather
conditions had an insignificant impact on the measurements performed [7].

(a) (b)

Okm  50km  10km 150km

Figure 1. Cont.
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Figure 1. The black circle (a,b) marks the study area that includes a section of Lake Dabie located in
Czarna Laka. The study area (c) and the studied hydroacoustic and photogrammetric datasets and
depths are presented on a hypsometric scale [7]. The study area is divided into deep, middle, and
nearshore areas, and the extents of these areas are marked by black, red, and blue lines.

2.1. UAV Dataset—Photogrammetric Point Cloud

The data were acquired using the unmanned aerial system DJI Phantom 4 Pro. The
flight was carried out at an altitude of 120 m using a UV filter, during which 439 photos
were taken in 12 rows. A signalized photogrammetric network consisting of ten ground
control points (GCPs), six terrestrial and four underwater, was used to align the images.
The GCPs were measured using a Sokkia GRX-1 receiver operating in real-time kinematic
positioning (RTK) mode. The processing was performed with PIX4D Mapper software
(v. 4.4.12). Based on the photos, a dense point cloud was generated. A classification of the
point cloud was also carried out, separating points representing the ground according to
the algorithm presented in [48]. To georeference the photos, a terrestrial and underwater
framework was used without corrections for refraction. The values of the obtained RMS
errors were X = 0.005 m, Y = 0.013 m, and Z = 0.057 m. For further processing, only part
of the point cloud representing ground points was used. The photogrammetric input set
consisted of 2,491,923 points, the maximum value in the set was 0.86 m, the minimum
value in the set was —3.6 m, the mean value was —0.7 m, and the standard deviation was
0.19 m. The obtained photogrammetric point cloud is a high-roughness representation of
the bottom of the studied water area [7].

2.2. USV Dataset—Single-Beam Echosounder Data

The data were acquired using a remotely controlled floating platform, which is most
often used for measurements on extremely shallow waters. The measuring system consisted
of a single-beam echosounder, Echologger EU400, equipped with an inertial measurement
unit (IMU) for correcting platform movement. The echosounder is characterized by a
high acoustic frequency and the small size of the acoustic beam. In the process of data
acquisition, 6816 points representing the bed were acquired in nine measurement profiles.
The minimum depth in the set was 0.48 m, and the maximum depth was 3.95 m. Subsequent
survey profiles, shown in Figure 1, were about 10 m apart, and their lengths ranged from
250 to 300 m. The acquired dataset was processed in the SBMAX64 module of Hypack
software (version 2021), and analysis of the echograms was carried out manually. The
hydroacoustic data were vertically referenced to a water-level gauge located at the Most
Dlugi in Szczecin. Based on the set of hydroacoustic data, the bathymetric reference
surface (BRS) was created using the triangulated irregular network (TIN) method. Detailed
information regarding data acquisition is presented in article [7].
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3. Methodology

The diagram presented in Figure 2 shows the process of combining hydroacoustic
and photogrammetric data in order to build a digital bathymetric model. Later in the
article, the following acronyms are used for the study area, which is divided into three
parts: nearshore area—SH (only photogrammetric point cloud data), middle area—OV
(single-beam echosounder and photogrammetric point cloud data), and deep area—DE
(single-beam echosounder data). The research methodology consists of 4 stages. The first
stage is the pre-processing of the acquired source data. The second stage is the creation
of regression surfaces. Stage 3 includes the merging of datasets. The final stage, stage 4,
presents the process of training the MLP network and the obtained results. The diagram
presented in Figure 2 illustrates the main stages of processing individual datasets in order
to obtain a uniform digital bathymetric model throughout the entire area being developed.
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Figure 2. Diagram of merging photogrammetric and hydroacoustic data to create a digital
bathymetric model.

3.1. Data Pre-Processing (Stage 1)
3.1.1. Pre-Processing Non-Overlap Photogrammetric Point Cloud Data

The nearshore dataset consists of a point cloud acquired after processing UAV images,
located outside the USV data coverage area. A component of the experiment in this
stage was point reduction, which enabled the subsequent investigation of its effect on
surface reconstruction. This set was reduced using the reduce point density tool [49] with
four reduction ratios of the following sizes: 10 cm, 25 cm, 50 cm, and 100 cm. The result
was a lower-density dataset consisting of evenly distributed points in the UAV data domain.
The reduction was based on the elevation attribute. Table 1 presents the statistics of the
original coastal dataset and the reduced datasets. As the ratio of reduction increases, the
number of points decreases significantly. In quantitative terms, a significant decrease in
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the number of points can be observed with a larger reduction ratio, which are for ratios of
10 cm—58%; 25 cm—90%; 50 cm—97%; and 100 cn—99%. It should be noted that despite
the significant quantitative reduction, the measurement set still consists of a large number
of points, from 3221 to 183,204.

Table 1. Statistics of reduced dense point cloud sets.

Reduction Ratio

Input Dataset
10 cm 25 cm 50 cm 100 cm
Number of points 438,843 183,204 45,556 12,868 3221
Maximum value (m) -1.7 -1.7 -1.1 -1.0 —-0.7
Mean value (m) —04 —-04 —-04 —04 —-03
Standard deviation (m) 0.16 0.16 0.16 0.17 0.17

3.1.2. Pre-Processing Overlap Single-Beam Echosounder and Photogrammetric Point
Cloud Data

This section presents a methodology for reducing the photogrammetric dataset based on
a bathymetric reference surface, the creation of which is described in detail in publication [7].
This area was covered by both hydroacoustic and photogrammetric data. In the first pro-
cessing step, the Dprg deviation between the BRS surface and each point belonging to the
photogrammetric collection was calculated. If Pyay means the set of points in the UAV point
cloud, where 7 is the number of points in the following:

PUAV = {P1/ P2, pn} (1)

then for each point p;, the deviation of Dpgrs(p;) can be expressed by the following formula:

Dgrs(pi) = | Zprs(pi) — Zuav(pi) | ()

where Zpgs is the depth represented by the BRS surface and Zyay is the depth represented
by the photogrammetric measurement points. The set of Dprs deviation values for all
photogrammetric measurement points relative to the BRS surface can be written as follows:

Dgrs = {Dgrs(p1), Ders(p2),---» DBrs(Pn)} 3)

The set of overlapping hydroacoustic and photogrammetric data in the subsequent
processing steps was filtered using Dprg deviation via statistical, data reduction, and linear
regression methods to select the optimal processing parameters. The full processing of
the original photogrammetric set from the overlap area was performed according to the
following steps, 1-4, as shown below:

1.  Reducing outlier observations;

2. Reducing statistical sets;

3.  Filtering the reduced sets;

4.  Creating the DBM based on the MLP neural network.

These stages are described below.

3.1.3. Reduction in Outliers

The statistical sets were separated based on the Dprg parameter, for which the mean

(m) and standard deviation (¢) were calculated. On the basis of these parameters, four new

sets were created, where the threshold value for reduction was the parameter . The value

of this parameter is the sum of the value of m and the corresponding multiplicity of the
standard deviation:

t; =m+0.50 4)
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th=m+1lo 5)

t3=m + 20 (6)

ty =m+ 30 (7)

The resulting sets, S, Sy, S3, and S4, can be written as follows:

S1 =1{pi € Puav | Dgrs(pi) < t1} (8)

Sy = {pi € Puav | Dgrs(pi) < t2} )

S3 = {pi € Pyav | Dgrs(pi) < t3} (10)

Sy ={pi € Pyav | Dgrs(pi) < ta} (1)

The statistics of the sets are presented in Table 2. The statistical sets were expected to
remove outliers. In this case, the sizes of the statistical sets did not change significantly from
the original dataset and represent 82%, 89%, 96%, and 98% of the input sets, respectively.

Table 2. Summary of statistical sets.

Dataset S1 Sz S3 S4
Number of points 1,679,496 1,836,494 1,972,763 2,021,762
Max value (m) 0.12 0.16 0.25 0.335
Mean value (m) 0.04 0.05 0.06 0.07
Standard deviation (m) 0.03 0.04 0.05 0.06

3.1.4. Analysis of Options for the Reduction in Statistical Sets

The next stage of data processing consisted of reducing the statistical sets using the
reduce point density tool [9] available in ArcGIS Pro software (v. 2.9.0). The parameters
necessary for the tool to work are the size of the reduction ratio and the direction, from
which the points are reduced. The following reduction ratios (1) were used in the study:
10 cm, 25 cm, 50 cm, and 100 cm, as well as reductions from the shallowest (T1) and deepest
(T2) points. The result of this tool on previously prepared statistical datasets is 16 new
datasets for each type of reduction, for a total of 32 new datasets. The results obtained
representing the datasets in the form of point density maps are presented as Figure Al
(Appendix A). Based on the qualitative evaluation for the T1 reduction, the 16 datasets
obtained presented in the form of a density map do not show large differences between
the datasets obtained; the most noticeable changes in the density of points are visible on
the right where the deepest points appear. Based on the qualitative analysis for the T2
reduction, there is a rapid decrease in point density in the nearshore area with an increasing
reduction ratio. For the 32 datasets, a quantitative analysis was performed on the bases of
the mean value Dpgs, the standard deviation, and the number of points. The results are
summarized in graphs (Figure 3).

On the basis of the graphs shown in Figure 3a,b, the following can be concluded:

1.  The mean values of the Dgrg assume higher values for the T2 reduction type;

2. The mean values of the Dggg for T1 reduction take a maximum value of 0.06 m for set
S4 with a reduction radius of 10 cm;

3. For sets with a T1 reduction type, the values of the mean and standard deviation
decrease in each statistical set; for T2 reductions, as the reduction ratio increases, the
values of the mean significantly increase in the statistical sets, and the value of the
standard deviation decreases in the statistical sets;

4. T2 reduction type provides smaller datasets.
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Figure 3. Summary of photogrammetric point cloud reduction results: (a) mean values and standard
deviations, (b) number of points in datasets.

Based on the analysis of the results obtained, the sets from the T1 reduction were used
for further studies. The increasing mean error for the T2 reduction type, up to a maximum
value of 0.23 m in the case of a 100 cm reduction, is almost four times higher than the
maximum error (0.06 m) for the T1 reduction type; on this basis, it was decided not to
continue processing on the T2 reduction type set.

3.2. Creating GLR Surfaces (Stage 2)

The next data processing step was to create filter surfaces based on the generalized
linear regression tool and perform further data reduction. The tool is available in ArcGIS
Pro software (v. 2.9.0) and performs generalized linear regression [50]. A regression surface
was created for each dataset. The purpose of the regression surface was to filter out the
points from the photogrammetric point cloud (Figure 4). If we label the depths in the same
coordinates (xj,y;) of the Pyay points on the GLRS regression surface Zeg as follows:

Zseg = {P1, P2,--» Pn}, where 1 is the number of points. (12)

and the set of point reduction parameters (/) expressed in centimeters as L = {10, 25, 50,
100}, then the filtered sets can be described as follows:

Gy = {pl € Sy | DBRS(pi) — Zreg(pi) <0}, wherek=1,234and 1€ L. (13)
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GLRS S X X X

BRS ==

Figure 4. Point cloud filtering process based on regression surfaces. Points from the photogrammetric
point cloud dataset that are above the regression surface (GLR) are removed (hatched area with
red lines).

From the 16 sets of filtered photogrammetric point clouds, 16 surfaces were created
to represent the middle part (Figure 1) of the study area (Figure 5). Performing a visual
assessment of these surfaces on the basis of surface roughness allows the filtering effect
to be assessed. The smoothest surface obtained is the Gy; collection for 1 = 100, and the
roughest surfaces for the parameter 1 = 10 cm. For the parameter 1 = 50, the surfaces Gy;
and Gy are characterized by significantly less roughness, which may indicate a stronger
filtering influence for these surfaces. A weaker filtering effect will be observed for 1= 10
and 1 = 25 as well as for the Gg; and Gy, surfaces.

Dataset

Figure 5. Overview of the surfaces representing the middle area created from the filtered point cloud.

3.3. Creation of Training Datasets (Stage 3)

The process of creating the training datasets involved several steps. First, the middle
and nearshore sets were combined (Figure 6a). The merging was performed on the basis
of the compatibility of sets with the same reduction ratio. Then, from each combined set,
a collection of 2000 points was sampled (create random points tool, ArcGIS Pro, v.2.9.0)
(Figure 6b). This reduction in the number of points in the set was intended to create an
optimal training dataset for neural network learning. An important condition for creating
the training dataset was a uniform distribution of the points, so the condition of minimum
distance between neighboring points was applied. In order to allow the full reference
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surface to be generated, points from bathymetric surveys were added to the sampled sets
(Figure 6¢). The training sets prepared in this way were used in Statistica (v. 13.3) to train
the neural networks. The whole process of merging points is illustrated in Figure 6.

(©

Figure 6. Merging process of datasets: (a) merging of the middle (green) and nearshore (blue) datasets;

(b) reduction in points from the middle and nearshore parts using the create random points tool;
(c) merging of the reduced dataset with the hydroacoustic data.

3.4. Creation of Neural Digital Bathymetric Models (Stage 4)

The same settings for neural network generation were used for each set. Regression
multilayer perceptron neural networks were used. The network architecture consisted
of an input layer, an output layer, and one hidden layer. The logistic function was used
as the function for the input neurons and the linear function as the output. For each set,
1000 networks were created, of which the best 50 were saved for analysis. The training
set was divided into the following subsets: 75% training set; 25% test and validation set.
Table 3 summarizes the results obtained for the training sets. As quality parameter (Table 3),
the Pearson correlation coefficient was marked in Statistica (v. 13.3) with a division into
training and test and validation sets; this parameter informs about the predictive strength
of the created network [51]. The network name includes the number of hidden neurons
used to create the network; the maximum number of hidden neurons was set to a value of
30. The quasi-Newton BFGS algorithm [52-55] was used to teach the MLP network. This
algorithm takes advantage of the fact that a direction to the minimum can be found on the
quadratic error function using a second-order partial derivative matrix [56]. The sum of
squares (SOS) was used as the error of the function, which is a measure of error equal to
the sum of the squares of the differences between the predicted (by the model) and actual
(observed) values [56].

The next step was to create a bathymetric surface using the created neural models.
The models were generated in a GRID structure with a resolution of 1 m, resulting in the
calculation of 27,208 depth values in the raster cells. The neural digital bathymetric models
created in this way were evaluated further.
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Table 3. List of the neural networks used to create the digital bathymetric models.
Reduction Neural Network Quality Quality Quality Learning Error
Ratio (1) [em] Name (Learning) (Testing) (Validation) Algorithm Function

10 MLP 2-30-1 0.997579 0.997687 0.997110 BFGS 1286 S50S

Gu 25 MLP 2-28-1 0.998315 0.998366 0.998245 BFGS 1115 SOS
50 MLP 2-29-1 0.998106 0.997959 0.997642 BFGS 1516 S0S

100 MLP 2-28-1 0.998130 0.997679 0.998229 BFGS 1075 S50S

10 MLP 2-30-1 0.997940 0.998245 0.998116 BFGS 844 SOS

Gy 25 MLP 2-28-1 0.998107 0.998055 0.998017 BFGS 1074 S0S
50 MLP 2-30-1 0.998215 0.998124 0.998015 BFGS 1132 S0OS

100 MLP 2-29-1 0.998046 0.998050 0.998328 BFGS 944 SOS

10 MLP 2-30-1 0.997976 0.998204 0.997950 BFGS 1370 SOS

Gar 25 MLP 2-29-1 0.998249 0.998507 0.997931 BFGS 1227 S0S
50 MLP 2-28-1 0.998282 0.997973 0.997875 BFGS 1307 SOS

100 MLP 2-30-1 0.998332 0.998146 0.998344 BFGS 1126 SOS

10 MLP 2-27-1 0.997582 0.997774 0.997705 BFGS 1113 S50S

Ga 25 MLP 2-30-1 0.998351 0.998232 0.998221 BFGS 1399 SOS
50 MLP 2-28-1 0.998390 0.998508 0.998470 BFGS 1323 S0OS

100 MLP 2-30-1 0.998217 0.998513 0.998259 BFGS 1428 50S

4. Results

4.1. Test Dataset

The test dataset consisted of 61 points (n) that were measured using the hydroacoustic
(56 points) or GNSS-RTK technique (5 points) and did not participate in previous processing;
these points were a separate independent dataset. The test dataset, like the data processing
area, was divided into three parts: nearshore, middle, and deep. The nearshore part
contained five test points; the middle part, twenty-eight points; and the deep part, also
twenty-eight points. The distribution of the test points and the processing area is shown in
Figure 7. The statistics for the set were as follows: maximum value of —0.47 m, minimum
value of —3.92 m, mean value of —1.29 m, and a standard deviation of 0.87.

Figure 7. Distribution of test points.
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4.2. Qualitative Assessment

Figure 8 summarizes the surface representations of the neural digital bathymetric
models (NDBMs) generated by the MLP neural networks. All of the surfaces created,
regardless of the statistical set or level of reduction used, were quite similar, especially in
the nearshore and middle parts, which are areas that are relatively flat and characterized by
a slight gradual decrease in depth. The greatest changes occur in the deepest part within
the local depression, where it is easiest to see the differences in the created NDBMs. A
characteristic feature of the created NDBMs is the lack of surface roughness; this is a result
of the processing methodology and the pixel size used (1 m). The consequence of this
approach is the inability to recognize bottom changes smaller than the size of the pixel.
Figure 8 also summarizes the minimum and maximum depths for the created surfaces. The
minimum values obtained on all models are in a similar range and extend from —4.22 m
to —4.06 m. The maximum values on the models are characterized by a much larger
distribution; the highest maximum value was obtained for the set Gy, | = 25 with the value
of 0.20 m, and the lowest maximum value was obtained for the set Gy 1 =10 with the value
of —0.12 m.

Datasets

10

MIN =-4.11 [m], MAX = 0.03 [m]

MIN =-4.09 [m], MAX = -0.12 [m] MIN =-4.12 [m], MAX = 0.01 [m] = 4.22 [m], MAX = -0.03 [m]

25

_i-i-t—

=—4.12 [m], MAX = 0.02 [m]

=-4.10 [m], MAX =0.12 [m] =-4.12 [m], MAX =-0.12 [m] MIN = -4.14 [m], MAX =0.20 [m]

MIN = —4.06 [m], MAX = 0.04 [m]

MIN = -4.06 [m], MAX =-0.04 [m] =-4.13 [m], MAX = 0.05 [m] =-4.07 [m], MAX =0.16 [m]

100

MIN = 4,07 [m], MAX = 0.01 [m]

_l—_i—

MIN =-4.12 [m], MAX = -0.07 [m] MIN =-4.11 [m], MAX = 0.07 [m] MIN =-4.15 [m], MAX =0.09 [m]

~40m Om

R
I w aam om  som  10m  150m

Figure 8. Summary of NDBMs obtained for the studied cases: statistical and reduced. MIN and MAX
represent the minimum and maximum depth values on the NDBMs, respectively.

4.3. Datasets for Results Analysis

The final 16 NDBMs (Figure 8) were obtained through data cleaning, reduction, and
filtering. In addition, five new reference neural digital bathymetric models (rNDBMs)
were created for the quantitative analysis process. These sets were created without steps 1
(outlier removal), 2 (data reduction), and 3 (filtering).

The original dataset was used to create the first reference dataset, without any pro-
cessing (UAV PC). To generate the subsequent four INDBM reference sets, a combination
of nearshore and middle sets was utilized. These sets were exclusively based on data
reduction using the depth parameter (depth). The same reduction ratio values as those
applied in the previous data filtering process were used, with data sizes of 10 cm, 25 cm,
50 cm, and 100 cm. The rNDBM sets prepared in this way were analyzed quantitatively on
the test dataset in order to compare the differences between the models.
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4.4. Results

For each test point, the discrepancy between the surveyed (Z;) and mapped depths
(zi) was determined for each of the 16 DBMs created. Subsequently, the mean absolute
error (MAE) was calculated as per Equation (14). Additionally, the root mean square
error (RMSE) was computed, representing the error in terrain plasticity, which serves as a
measure of fit, as outlined in Equation (15). Finally, the maximum absolute error (MaxAE)
was determined in accordance with Equation (16).

n PRp— .
MAE = 721:15’ il (14)
n . .)2
RMSE = —21:1(27; z) (15)
MaxAE = max |Z(i) — z(i)] (16)
ie{1,2,..n}

The graph shown in Figure 9 summarizes the MAE, RMSE, and MaxAE values ob-
tained for the five reference surfaces (first two sections of the graph: UAV PC and rNDBM)
and for the 16 filtered NDBMs. The MAE and RMSE are displayed using a grouped column
graph and a green and blue color gradient, with the color intensity varying according to
the section. The MaxAE are presented as dot plots.

0.250
0.200
0.150
0.100

0.050

0.000 |I || || “ || Il II II Il II “ |I || || |I II Il || II || |I
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Figure 9. Summary of (a) RMSE and MEA; (b) MaxAE—for the cases studied: reduced and statistical,
divided into nearshore (SH), middle (OV), and deep (DE) areas.

Analyzing the MAE, it can be observed that the largest values of this error occur for
the middle part (MAE OV) on the INDBMs, while in the remaining 16 NDBMs for this
part, the values of the MAE error are considerably lower than the values of this error for
the nearshore part (MAE SH) and the deep part (MAE DE). The MAE assumes the largest
values for the nearshore part (SH) in the filtered sets, regardless of the reduction ratio and
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the statistical set. For the deep part (DE) and filtered sets, the MAE always has values larger
than those on the middle part (OV); a similar trend of this error can be observed for the
errors obtained for the original set (UAV PC).

In the middle part (OV) for the 16 NDMBs, the value of the RMS error is always
smaller than its value in the nearshore part (SH) and in the deep part (DE). In the case of
the four INDBMs, the value of the RMSE for the middle part (OV) visibly increases with an
increasing reduction ratio, from a value of 0.08 m for a reduction ratio of 10 cm to a value of
0.23 m for a reduction ratio of 100 cm. In the middle part (OV) for the 16 filtered datasets,
the value of the RMS error is always smaller than its value in the nearshore part (SH) and in
the deep part (DE). The value of the RMS error for the original set is 0.04 m; for the filtered
sets, larger error values occur on two sets for the parameter 1 =100 (Gy; and Gy).

Analysis of the MaxAE for the middle part (OV) shows for the filtered sets that the
MaxAEs occurring on the central part are lower for each set than for the MaxAEs on the
nearshore (SH) and deep (single-beam echosounder) parts. This indicates the positive
effects of the filtering performed with the use of BRS surfaces.

On the rNDBM set for the middle area (OV), an increase in the values of the MAE,
RMSE, and MAX errors is visible as the reduction ratio increases. For the nearshore (SH)
and deep (DE) areas, such systematic error increases are not noticeable.

The RMSE and MEA did not show large variations in Gy, Gy, G3), and Gy, For further
quantitative analyses, these errors were averaged according to Formulas (17) and (18),
where m denotes the number of reduction levels tested; the results are summarized in
Figure 10.

MEAy = ——, (17)

RMSEy; = — (18)

UaV PC
G4l
G3l
G2l
G1l

UaV PC
G4l
G3l
G2l
G1l

UAV PC
G4l
G3l
G2l
G1l

nearshore area
(SH)

(ov)

middle area

deep area
(DE)

0.

o
S
o
o
N

0.04 0.06 0.08 0.10 0.12 0.14

B MAEy " RMSEy Error value [m]

Figure 10. Summary of MAE)y; and RMSE); for the nearshore, middle, and deep areas.

The chart is divided into three sections, with MAEy; and RMSy errors summarized
for each processing area. The RMSE); has a high similarity within each section showing
the deep, middle, and coastal areas. The smallest errors occur in the middle section and do
not exceed 0.03 m. The largest error is on the nearshore part, where the value is 0.12 m. On
the deep part, the largest value of the RMSy, error is 0.06 m.

The MAE) errors also assume the smallest value for the middle part of 0.02 m. The
largest value for the nearshore part is 0.11 m, with a value of 0.04 m for the deep part.
Comparing the average of the RMSE and MAE for the statistical sets and the original set
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of the UAV PC, it can be seen that for the middle set, these errors take values larger for
the original cloud than for the subsequent filtered datasets. Regardless of the assumed
statistical set, it can be observed that the filtered middle part has the smallest error values.

The values of the MAE) from the deep part, relative to those from the middle area,
are multiples from 1.6 to 1.9, while the relative values of the RMSE), are from multiples of
1.5 to 2. Comparing the errors between the coastal and middle areas, the MAE); are from
multiples of 4.2 to 4.9, while the RMSE); are from multiples of 3.7 to 4.4.

5. Discussion

The conducted research aimed to determine whether preparing a training set for
neural network learning, based only on a part of the generated surface, would allow for
the correct reconstruction of the full range of data acquisition for USV and UAV in shallow
and ultra-shallow inland water areas. It was examined whether and how the accuracy of
modelling is affected by filtering the point cloud using statistical parameters (mean value
and standard deviation) and data reduction. During the research, 16 cases were examined
for which the bottom surfaces were calculated, and qualitative and quantitative analyses
were performed.

Based on the obtained results and the comparative analysis performed, it can be stated
that the optimization performed using the Dprg parameter and GLR allowed NDBMs to be
obtained whose accuracy varies depending on the surface part (middle, deep, or nearshore).
The RMS error is four times greater for the nearshore part than for the middle part and
over twice as large for the deep part. The least accurate results occur in the nearshore
part, where the only depth information is obtained from the photogrammetric point cloud.
The middle part, which had dual information—hydroacoustic and photogrammetric—was
created most accurately, and the optimization of the set is reflected in the small error values
in this area (RMSE = 0.03 m, MEA = 0.02 m). The tested multi-variant cases, based on
statistical sets and their data reduction, allow us to conclude that increasing the reduction
ratio, and thus reducing the dataset, can lead to incorrect data modelling (increasing the
MAE). The analysis of the MaxAE in subsequent sets allowed us to observe that the largest
values are the MaxAEs for the nearshore part. It can also be stated that the size of the
MaxAE for the nearshore part increases with the reduction ratio.

Comparing the error sizes of the MaxAE, RMSE, and MEA as percentages in relation
to the original dataset, it can be stated that for the middle part (OV), 88% of the RMSEs
and MEAs and 75% of the MaxAEs are smaller for the optimized sets. For the deep
part (DE), 38% of the RMSEs, 25% of the MEAs, and 75% of the MaxAEs are smaller
than the corresponding errors on the original set. For the nearshore part (SH), there is
an improvement of 31% for the RMSE, 44% for the MEA, and 38% for the MaxAE. The
analysis of the results allows us to state that in the case of each area, an improvement was
achieved that reduced the errors, but it was not uniform in the aspect of the analysed parts
of the NDBM:s.

Comparing the presented results with the accuracy obtained using the research
methodology presented in [7], using selected interpolation methods for the same dataset,
the following error was obtained: RMS = 0.03 m. It can be stated that the error sizes in the
proposed research methodology were achieved only for the middle part. In relation to other,
similar studies for very shallow and turbid tidal environments, such as in publication [42],
the errors obtained were MEA = 0.05 m and RMSE = 0.18 m. For comparison, one can
also mention the accuracies obtained using LiDAR technology for mapping shallow water
areas [25], where MEA = 0.0035 m and RMSE = 0.04 m were achieved.

An interesting observation was the ability to preserve the real values of depths and
the possibility of eliminating outliers, which may appear in nearshore areas. Research in
this area was conducted in [57] using surface filters. Smoothing the surface with filters
caused a slight artificial shallowing of the water body and the elimination of outliers in the
coastal strip. In the case of the neural network, on the other hand, slightly greater depths
were obtained. In relation to the greatest depth from the measurement set, in the NDBMs,
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the depths were always greater by values ranging from 11 to 27 cm. Moreover, the neural
network did not eliminate outliers in the area where water and land met. This is certainly
an important fact from an application perspective, because for navigational purposes, the
calculated depths cannot be greater than the real ones due to the possibility of a ship
running aground. In this case, there is a possibility of not meeting certain hydrographic
accuracy requirements, e.g., for special areas [58]. In terms of the applicability of the model,
this seems to be a significant limitation of the method.

6. Conclusions
Based on the study, the following conclusions were drawn:

e  The final accuracy of the calculated depths varies for each of the examined areas and
depends on the input dataset;

e  The filtering performed using the linear regression allowed the removal of outlier
observations for the middle area;

e  The reduction in the multi-million photogrammetric dataset is a most important step
in creating a learning set;

e  MLP neural networks allow depth calculation but may not preserve the true boundary
values; the usefulness of such obtained models for navigation purposes may be limited,
especially in shallow water areas.

The obtained results also confirm the correctness of the hypothesis posed; however,
they indicate the increased efficiency of the used neural network models in parts lying
outside the BRS surface: for example, by applying networks of a different architecture
or type.

An advantage of neural networks containing up to 30 hidden neurons is the ability
to process data quickly without the need for powerful workstations, as well as the ease of
their implementation into a chosen spatial grid. This makes it possible to efficiently create
and implement neural networks. In the conducted studies, 1-meter grids were used for
the deployment of the networks. The weakness of the proposed method is its inability to
reproduce details of the seabed that are smaller than the spatial resolution of the created
rasters and the lack of the preservation of extreme depth values.

The study also demonstrated that reducing a multi-million, densely populated dataset
was necessary to obtain an efficient dataset for training the neural network. Considering
the implementation of the research process, it is important to note that data reduction is
one of the more significant factors in deploying neural networks. Based on the conducted
studies, the authors have identified potential areas for further research in creating digital
bathymetric models from hybrid data.
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Appendix A

T1 reduction type- from the shallowest points
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Figure A1l. Point clouds shown as density maps obtained in stage 1 (from reducing the statistical set).
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