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Abstract: Recently, the estimation of remaining useful life (RUL) for two-phase nonlinear degrading
devices has shown rising momentum for ensuring their safe and reliable operation. The degradation
processes of such systems are influenced by the temporal variability, unit-to-unit variability, and
measurement variability jointly. However, current studies only consider these three sources of
variability partially. To this end, this paper presents a two-phase nonlinear degradation model with
three-source variability based on the nonlinear Wiener process. Then, the approximate analytical
solution of the RUL with three-source variability is derived under the concept of the first passage
time (FPT). For better implementation, the offline model parameter estimation is conducted by
the maximum likelihood estimation (MLE), and the Bayesian rule in conjunction with the Kalman
filtering (KF) algorithm are utilized for the online model updating. Finally, the effectiveness of
the proposed approach is validated through a numerical example and a practical case study of
the capacitor degradation data. The results show that it is necessary to incorporate three-source
variability simultaneously into the RUL prediction of the two-phase nonlinear degrading systems.

Keywords: degradation modeling; nonlinear Wiener process; variability; uncertainty; remaining
useful life; prognostics

1. Introduction

With the rapid development of technology, the equipment in the fields of aerospace,
high-speed rail, and ship manufacturing tend to be large-scale, complex, sophisticated, and
long-life, which puts forward higher requirements for system reliability [1,2]. Recently,
owing to the important role in realizing predictive maintenance, improving system reli-
ability, reducing maintenance costs, and avoiding catastrophic eventualities, prognostics
and health management (PHM) has obtained extensive attention both in academia and
industry [3–5]. As an essential part of PHM, the remaining useful life (RUL) is defined as
the length from the current time to failure [6]. RUL prediction results provide sufficient
information support for decision-making and maintenance scheduling. The performance
of RUL prediction primarily relies on the degradation modeling approaches. Generally,
the RUL prediction approaches can be systematically classified into model-based methods,
data-driven methods, and hybrid methods [7]. More detailed discussions about those three
types of methods can be found in [8–10]. As one category of data-driven methods, the
stochastic model-based methods have been widely used attributable to their great potential
in characterizing the stochastic dynamic degradation process and providing the probability
distribution of RUL [11,12]. Stochastic process models mainly include the Wiener process,
the Gamma process, and the Inverse Gaussian process [13]. Among them, the Wiener
process model has attached increasing interest due to its explicit statistical interpretation
and illustrious mathematical properties in describing the non-monotonic degradation
process [14–16].

In practice, the degradation process of many engineering systems occurs in a stochastic
way. Thus, the RUL is a random variable, which is difficult to estimate with certainty [6].
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Therefore, in the Wiener process-based RUL prediction, the commonly used approach is to
estimate the probability density function (PDF) of the system RUL by modeling the sensed
degradation data. Due to some unobservable internal and external factors, the degradation
process of a system is often influenced by multiple sources of variability, which leads to
uncertainty in RUL prediction. Typically, the degradation process is affected by three
main sources of variability: temporal variability, unit-to-unit variability, and measurement
variability [17]. To be specific, temporal variability depicts the inherent stochasticity of
the degradation process over time, unit-to-unit variability indicates the heterogeneity of
degradation trajectories among different units, and measurement variability describes the
inevitable measurement error caused by noise in condition monitoring (CM) data [18].
Hence, to improve the accuracy of RUL prediction, the multi-source variability should
be incorporated into the degradation modeling process simultaneously [19]. Over the
past decade, various published works have described such variability in degradation
modeling [20–24]. However, most studies only focused on the RUL estimation with one or
two sources of variability, which limits their adaptivity.

Recently, for RUL prediction with three-source variability, Si et al. [19] presented a
linear Wiener process-based degradation model considering the three-source variability
simultaneously and derived the analytical expressions of RUL distribution. In this work,
the random drift coefficient and the underlying degradation state were updated jointly via a
state-space model and the Kalman filtering (KF) technique. To deal with nonlinear patterns,
Zheng et al. [25] extended the work in [19] and constructed a degradation model based on
the nonlinear Wiener process, integrating both nonlinearity and three-source variability
into the RUL prediction. For newly developed small sample systems, to address the lack
of historical data and prior information, Wang et al. [26] proposed an adaptive RUL esti-
mation method with three-source variability based on the expectation maximization (EM)
algorithm. Aiming at the unbalanced historical degradation measurements, Yu et al. [27]
established a nonlinear-drift-driven prognostic model considering three-source variability
and formulated the approximate analytical expressions of the RUL for both online and
offline estimation scenarios. On this basis, the MLE method in conjunction with a down-
sampling strategy was utilized for parameter estimation and the underflow issue averting
in this study. It is noteworthy that the aforementioned linear or nonlinear Wiener process-
based prognostic methods with three-source variability only focused on the single-phase
degradation cases. However, in practical engineering, owing to changes in the external
dynamic environment and internal degradation mechanisms, the degradation trajecto-
ries of products such as batteries [28], liquid coupling devices [29], and light emitting
diodes [30] exhibit obvious two-phase characteristics with evident inflection points. Under
these circumstances, the traditional single-phase model is insufficient to track the dynamics
of such degradation processes. Therefore, formulating two-phase degradation models to
guarantee the accuracy of RUL prediction is practical and necessary.

In recent years, researchers have reported various RUL prediction approaches consid-
ering multiple sources of variability for two-phase degradation processes. Zhang et al. [31]
proposed a two-phase linear degradation model based on the Wiener process and derived
the analytical forms of the RUL estimation. Chen et al. [32] extended the work in [31] and
presented an extreme learning machine (ELM) algorithm to adaptively detect the random
changing time of the two-phase degradation trajectory. For two-phase nonlinear degra-
dation patterns, Lin et al. [33] formulated a nonlinear Wiener process-based degradation
model and obtained an approximate analytical solution of the lifetime estimation. Hu
et al. [34] constructed two RUL prediction models based on the nonlinear time-scale trans-
formation model and the stochastic process model with purely time-dependent parameters.
The commonality of the aforementioned works is that the unit-to-unit variability is con-
sidered. However, a common deficiency shared by these models is that the measurement
variability is omitted. Taking into account the variability of measurement, Wang et al. [35]
proposed a change-point Wiener process model with measurement errors to fit the two-
phase deteriorated OLEDs and adopt the hierarchical Bayesian method to implement
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parameters estimation, but the number of change-points was assumed to be known a priori.
Guan et al. [36] established a two-phase degradation model with measurement errors and
random drift terms for RUL estimation, however, the changing time of the model was
fixed, and the nonlinearity was not considered in this work. To achieve RUL prediction
in the case of imperfect prior degradation information, Chai et al. [37] proposed a linear-
nonlinear two-phase Wiener process-based degradation model considering measurement
errors and the unknown degradation state at the change point simultaneously, which is
a pioneering work. Nevertheless, the authors only described the unit-to-unit variability
in parameter estimation, while ignoring the random effects of drift coefficients in the PDF
expressions of RUL. In addition, the first phase of the proposed model is linear, which
limits the method’s adaptability.

The above-mentioned research achieved promising results in the two-phase linear or
nonlinear degradation modeling with multiple sources of variability. However, most of the
existing works about two-phase patterns only considered one or two sources of variability.
In contrast, the research on RUL prediction using two-phase degradation models taking into
account three-source variability simultaneously is very limited. Furthermore, degrading
systems exhibiting two-phase nonlinear degradation patterns are extensively encountered
in practice [38,39]. Therefore, determining how to achieve two-phase nonlinear degradation
modeling and RUL estimation considering three-source variability simultaneously is a
compelling practical issue, which motivates our research in this paper.

To achieve this goal, several issues still need to be further investigated. First, the
degradation state at the changing point of the two-phase degradation path is an unknown
random variable until the changing point appears, and it is related to the changing time
as well as the degradation rate of the first phase [31]. Thus, it is natural to incorporate the
uncertainty of the degradation state at the changing point into RUL prediction. Currently,
the state transition probability function is often applied to solve this problem in most
studies [33,34]. However, these works did not consider the random degradation state at
the changing point and the three-source variability simultaneously in the PDF of RUL.
Second, it is noted that the changing points and the degradation rates exist difference
for devices of the same batch owing to the unit-to-unit variability, and the degradation
states are underlying due to the measurement noise. Therefore, determining how to
realize parameter identification and real-time degradation state updating in the context of
three-source variability poses an interesting challenge.

Motivated by these practical issues, the major contributions of this paper lie in the
following aspects:

(1) A two-phase nonlinear Wiener process-based degradation model is formulated, where
the drift coefficient and the measurement error of each phase are assumed to be
random variables to describe the three-source variability.

(2) Taking into account the nonlinearity, the uncertainty of the degradation state at the
changing point as well as the three-source variability simultaneously, the approximate
analytical expressions of RUL estimation are derived under the concept of the first
passage time (FPT).

(3) Based on the historical degradation observations of multiple units from the same batch,
the offline parameter estimation is conducted by the MLE method. Subsequently, with
the newly obtained degradation data of the certain operating device, the random drift
coefficients and the underlying degradation states are real-time updated by combining
the Bayesian rule, state-space model, and KF technique.

(4) Finally, a numerical simulation and a practical case study about the degradation data
of the high-voltage pulse capacitors are implemented to verify the effectiveness and
applicability of the proposed approach.

The remainder of this paper is organized as follows. In Section 2, the two-phase non-
linear Wiener process-based degradation model with three-source variability is formulated.
Section 3 presents the approximate analytical solutions of the RUL estimation consider-
ing three-source variability. The model parameter estimation is conducted in Section 4.
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Section 5 shows the implementation details and results analysis of the experiments. The
conclusions are summarized in Section 6.

2. Degradation Modeling Description

To describe the degradation process with two-phase nonlinearity and three-source vari-
ability, the nonlinear Wiener process is employed in our work. Inspired by the single-phase
nonlinear degradation model considering three-source variability discussed in Ref. [25]
and the two-phase nonlinear degradation model with unit-to-unit variability presented
by Refs. [33,34], a general nonlinear Wiener process-based degradation model can be
described as,

X(t) =

{
x0 + λ1

∫ t
0 µ1(ρ; ϑ1)dρ + σ1B(t), 0 < t ≤ τ

xτ + λ2
∫ t

τ µ2(ρ− τ; ϑ2)dρ + σ2B(t− τ), t > τ
(1)

where X(t) denotes the actual degradation state at time t, x0 is the initial value. For
simplifying later calculation, we assume x0 = 0. τ represents the changing time, thus,
xτ is the degradation state at the changing time. λ1, λ2 and σ1, σ2 represent the drift and
diffusion coefficients of each phase, respectively. Meanwhile, µ1(ρ; ϑ1) and µ2(ρ− τ; ϑ2)
are nonlinear functions with time t and unknown parameters ϑ1, ϑ2, which are used to
describe the nonlinear characteristics of X(t). B(t) denotes the standard Brown motion.
For simplicity, we assume that the abovementioned parameters are independent of phase,
meanwhile, the two phases are independent of each other [33].

Owing to the dynamics of {B(t), t ≥ 0}, the temporal variability of Equation (1)
could be described. Such a modeling approach has been widely applied to character-
ize the stochastic degradation process of dynamic systems [27]. Further, we assume that
λ1 ∼ N(µ1p, σ2

1p) and λ2 ∼ N(µ2p, σ2
2p) to describe the unit-to-unit variability, and they

are statistically independent of {B(t), t ≥ 0}. Moreover, ϑ1, ϑ2, σ1, σ2 are fixed parameters
used to characterize the common degradation features of all systems from the same batch.
In addition, due to the influence of the dynamic environment and the non-ideal instru-
ments, the obtained observations inevitably contain noise. Therefore, to characterize the
measurement variability between observed values and the true degradation states, the
degradation measurement process {Y(t), t ≥ 0} is formulated as follows [25,37],

Y(t) =

{
X(t) + ε1, 0 < t ≤ τ

X(t) + ε2, t > τ
(2)

where ε1, ε2 are the measurement errors of each phase, and assumed to be independent
and identically distributed (i.i.d.) with ε1 ∼ N(0, σ2

1ε) and ε2 ∼ N(0, σ2
2ε), respectively. It

is further assumed that the measurement errors are independent of X(t).
Generally, the lifetime is usually defined as the FPT when the degradation process

exceeds the preset failure threshold w [40]. Based on the concept of FPT, the lifetime T of a
degrading system can be defined as [19],

T = inf{t : X(t) ≥ w|X(0) < w} (3)

Then, the expression of RUL at the current time tk can be defined as [25]:

Lk = inf{lk > 0 : X(tk + lk) ≥ w} (4)

where lk represents the time from tk to the failure time, Lk is the RUL with conditional PDF
fLk |Y1:k

(lk
∣∣∣Y1:k) , and Y1:k is the observations up to tk, i.e.,Y1:k = {y1, y2, · · · , yk}.
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3. RUL Estimation with Three-Source Variability
3.1. RUL Estimation with Temporal Variability and Unit-to-Unit Variability

Initially, we only consider the temporal variability in lifetime estimation. In this case,
the degradation process {X(t), t ≥ 0} described by Equation (1) could be directly observed.
If the changing time and all parameters in Equation (1) are known fixed values, the PDF
of the lifetime T, which only considers the temporal variability could be summarized as
follows [33,34],

(1) if 0 < t ≤ τ,

fT(t|λ1)

∼=
w−x0−λ1

(∫ t
0 µ1(ρ;ϑ1)dρ−tµ1(t;ϑ1)

)
√

2πσ2
1 t3

exp

[
−
(

w−x0−λ1
∫ t

0 µ1(ρ;ϑ1)dρ
)2

2σ2
1 t

]
(5)

(2) if τ < t,

fT(t|λ2, xτ) ∼=
w−xτ−λ2

(∫ t
τ µ2(ρ−τ;ϑ2)dρ−(t−τ)µ2(t−τ;ϑ2)

)
√

2πσ2
2 (t−τ)3

× exp

[
−
(

w−xτ−λ2
∫ t

τ µ2(ρ−τ;ϑ2)dρ
)2

2σ2
2 (t−τ)

] (6)

It is noticeable that the randomness of all parameters is neglected in Equations (5) and
(6). For the two-phase degradation process with a random changing time, the degradation
state at the changing point is usually unknown and could be obtained through a transition
probability density from x0 to xτ under an absorbable boundary w [31]. Thus, taking into
account the unit-to-unit variability and the randomness of the degradation state at the
changing point jointly, the PDF of the lifetime T could be obtained via the law of total
probability as follows,

fT(t) =

{∫ +∞
−∞ fT(t|λ1)p(λ1)dλ1 , 0 < t ≤ τ∫ w
−∞

∫ +∞
−∞ fT(t|λ2, xτ) p(λ2)hτ(xτ |λ1p, σ1p)dλ2dxτ , t > τ

(7)

where hτ(xτ

∣∣λ1p, σ1p) is the transition probability density function considering the ran-
domness of the first phase model, i.e., λ1 ∼ N(λ1p, σ2

1p).
Then, according to the relationship between the lifetime and RUL [19,25], the PDF of

RUL that considers both temporal variability and unit-to-unit variability could be derived
as follows,

Theorem 1. For the two-phase nonlinear degradation process in Equation (1) and the definition
of RUL proposed in Equation (4), given the actual degradation state xk at the current time tk
and λ1 ∼ N(λ1p, σ2

1p), λ2 ∼ N(λ2p, σ2
2p), the PDF of RUL with a certain changing time τ

considering the temporal variability, unit-to-unit variability and the random degradation state at
the changing point jointly can be formulated as,

Case 1: The current time tk is smaller than the changing time τ (i.e., tk < τ)

fL(lk) ∼=



1√
2πlk

2

((∫ tk+lk
tk

µ1(ρ;ϑ1)dρ
)2

σ2
1p+σ2

1 lk

) × [w− xk −
(∫ tk+lk

tk
µ1(ρ; ϑ1)dρ− lkµ1(tk + lk; ϑ1)

)

×
(w−xk)σ

2
1p

∫ tk+lk
tk

µ1(ρ;ϑ1)dρ+λ1pσ2
1 lk(∫ tk+lk

tk
µ1(ρ;ϑ1)dρ

)2
σ2

1p+σ2
1 lk

]
× exp

− (
w−xk−λ1p

∫ tk+lk
tk

µ1(ρ;ϑ1)dρ
)2

2
((∫ tk+lk

tk
µ1(ρ;ϑ1)dρ

)2
σ2

1p+σ2
1 lk

)
,

0 < lk + tk ≤ τ

S− T, τ < lk + tk

(8)

where S = S1 − S2, T = T1 − T2, and
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S1 =

√
r2

a2
2π(tk+lk−τ)2(σ2

α2+σ2
β2)

exp
[
− (λα2−λβ2)

2

2(σ2
α2+σ2

β2)

]
×
{

λβ2σ2
α2+λα2σ2

β2

σ2
α2+σ2

β2
×Φ

(
λβ2σ2

α2+λα2σ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

)
+

√
σ2

α2σ2
β2

σ2
α2+σ2

β2
× φ

(
λβ2σ2

α2+λα2σ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

)}

S2 =

√
r2

b2
2π(tk+lk−τ)2(σ2

α2+σ2
β2)

exp
[
− (λα2−λβ2)

2

2(σ2
α2+σ2

β2)

]
×
{

1−Φ

(
−

λβ2σ2
α2+λα2σ2

β2√
σ2

α2σ2
β2(σ

2
α2+σ2

β2)

)}
T1 = I2 ×

√
r2

a2
2π(tk+lk−τ)2(σ2

α2+σ2
β2)

exp
[
− (λα2−λγ2)

2

2(σ2
α2+σ2

β2)

]
×
{

λγ2σ2
α2+λα2σ2

β2

σ2
α2+σ2

β2
×Φ

(
λγ2σ2

α2+λα2σ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

)
+

√
σ2

α2σ2
β2

σ2
α2+σ2

β2
× φ

(
λγ2σ2

α2+λα2σ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

)}

T2 = I2 ×
√

r2
b2

2π(tk+lk−τ)2(σ2
α2+σ2

β2)
exp

[
− (λα2−λγ2)

2

2(σ2
α2+σ2

β2)

]
×
{

1−Φ

(
−

λγ2σ2
α2+λα2σ2

β2√
σ2

α2σ2
β2(σ

2
α2+σ2

β2)

)}
λα2 = λ2p

∫ tk+lk
τ µ2(ρ− τ; ϑ2)dρ, λβ2 = w− xk − λ1p

∫ τ
tk

µ1(ρ; ϑ1)dρ,

λγ2 = −w + xk − λ1p
∫ τ

tk
µ1(ρ; ϑ1)dρ−

2(w−xk)σ
2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

,

σ2
α2 = σ2

2p

(∫ tk+lk
τ µ2(ρ− τ; ϑ2)dρ

)2
+ σ2

2 (tk + lk − τ), σ2
β2 = σ2

1p

(∫ τ
tk

µ1(ρ; ϑ1)dρ
)2

+ σ2
1 (τ − tk),

ra2 =
(tk+lk−τ)

(
σ2

2+σ2
2pµ2(tk+lk−τ;ϑ2)

∫ tk+lk
τ µ2(ρ−τ;ϑ2)dρ

)
σ2

α2
,

rb2 =
(tk+lk−τ)σ2

2 (λa2−λ2p(tk+lk−τ)µ2(tk+lk−τ;ϑ2))
σ2

α2
,

I2 = exp

[
2λ1p(w−xk)

σ2
1

+
2
(
(w−xk)

2σ4
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ+(w−xk)

2σ2
1pσ2

1

)
(

σ2
1+σ2

1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

)
σ4

1

]

Case 2: The current time tk is larger than the changing time τ (i.e., tk ≥ τ).

fL(lk) ∼= 1√
2πlk2

((∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ
)2

σ2
2p+σ2

2 lk

) × [w− xk −
(∫ tk+lk

tk
µ2(ρ− τ; ϑ2)dρ− lkµ2(tk + lk − τ; ϑ2)

)

×
σ2

2p(w−xk)
∫ tk+lk

tk
µ2(ρ−τ;ϑ2)dρ+λ2pσ2

2 lk

σ2
2p

(∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ
)2

+σ2
2 lk

× exp

− (
w−xk−λ2p

∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ
)2

2
((∫ tk+lk

tk
µ2(ρ−τ;ϑ2)dρ

)2
σ2

2p+σ2
2 lk

)
 (9)

Proof. See Appendix A. �

It is worth noting that the aforementioned results assume that the degradation state xk
could be directly and accurately observed. However, measurement errors are inevitable
in practice. Therefore, to consider the impact of measurement errors, the measurement
variability should be incorporated into the RUL estimation results of Theorem 1.

3.2. RUL Estimation Considering Three-Source Variability

Owing to the influence of measurement errors, the true degradation state xk at the
current time tk is unknown. Therefore, we assume that xk ∼ N(x̂k|k, Pk|k) and xk could be
updated based on the degradation observations Y1:k = {y1, y2, · · · , yk} via the updating
procedure proposed in Section 4.3. Then, the PDF of RUL with three-source variability
could be derived based on xk ∼ N(x̂k|k, Pk|k) and Theorem 1.
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Theorem 2. For the two-phase nonlinear degradation process in Equation (1) and the definition of
RUL proposed in Equation (4), given the degradation observations Y1:k up to the current time tk,
the PDF of RUL with a certain changing time τ considering the random degradation state at the
changing point and the three-source variability simultaneously can be formulated as follows,

Case 1: tk ≤ τ,
(1) if tk ≤ τ and 0 < lk + tk ≤ τ,

fLk |Y1:k
(lk|Y1:k) ∼=

M1−N1×

(
w−λ1p

∫ tk+lk
tk

µ1(ρ;ϑ1)dρ

)
Pk|k+υ1(lk)x̂k|k

Pk|k+υ1(lk)√
2πlk2υ2

1(lk)(Pk|k+υ1(lk))

× exp

− (w−x̂k|k−λ1p
∫ tk+lk

tk
µ1(ρ;ϑ1)dρ

)2

2(Pk|k+υ1(lk))

 (10)

where

υ1(lk) =
(∫ tk+lk

tk
µ1(ρ; ϑ1)dρ

)2
σ2

1p + σ2
1 lk,

M1 = wυ1(lk)−
(

wσ2
1p
∫ tk+lk

tk
µ1(ρ; ϑ1)dρ + λ1pσ2

1 lk
)(∫ tk+lk

tk
µ1(ρ; ϑ1)dρ− lkµ1(tk + lk; ϑ1)

)
,

N1 = υ1(lk)− σ2
1p
∫ tk+lk

tk
µ1(ρ; ϑ1)dρ

(∫ tk+lk
tk

µ1(ρ; ϑ1)dρ− lkµ1(tk + lk; ϑ1)
)

(2) if τ < lk + tk,
fLk |Y1:k

(lk
∣∣∣Y1:k) ∼= Snew + Tnew (11)

where

Snew = 1√
2π(tk+lk−τ)2(σ2

α2+σ2
β2)

×


dS exp

[
−

a2
S

2bS

]
√

1+
Pk|k
bS

exp

 2aS x̂k|k+
a2
S Pk|k

b3
−x̂2

k|k
2(bS+Pk|k)

Φ

 eS−σ2
α2 x̂k|k−

aSσ2
α2Pk|k
bS

+
eS Pk|k

bS√
f 2
S

(
1+

Pk|k
bS

)2
+σ4

α2Pk|k

(
1+

Pk|k
bS

)


+ 1√
2πPk|k

∫ +∞
−∞

(
exp

[
− (aS−xk)

2

2bS

]
× (cSxk)× exp

[
− (xk−x̂k|k)

2

2Pk|k

]
×Φ

(
eS−σ2

α2xk
fS

))
dxk

+ra2

√
σ2

α2σ2
β2

σ2
α2+σ2

β2
×
(

1√
2π

exp
(
− 1

2 L3S

)
×
√

1
L2

1SPk|k+1
exp

[
− (L2S−L1S x̂k|k)

2

2(L2
1SPk|k+1)

])}
σ2

α2 = σ2
2p

(∫ tk+lk
τ µ2(ρ− τ; ϑ2)dρ

)2
+ σ2

2 (tk + lk − τ), σ2
β2 = σ2

1p

(∫ τ
tk

µ1(ρ; ϑ1)dρ
)2

+ σ2
1 (τ − tk),

ra2 =
(tk+lk−τ)

(
σ2

2+σ2
2pµ2(tk+lk−τ;ϑ2)

∫ tk+lk
τ µ2(ρ−τ;ϑ2)dρ

)
σ2

α2
,

rb2 =
(tk+lk−τ)σ2

2

(
λ2p
∫ tk+lk

τ µ2(ρ−τ;ϑ2)dρ−λ2p(tk+lk−τ)µ2(tk+lk−τ;ϑ2)
)

σ2
α2

,

aS = w− λ1p
∫ τ

tk
µ1(ρ; ϑ1)dρ− λ2p

∫ tk+lk
τ µ2(ρ− τ; ϑ2)dρ, bS = σ2

α2 + σ2
β2, cS = −ra2 ×

σ2
α2

σ2
α2+σ2

β2
,

dS = ra2 ×
(

w−λ1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

)
σ2

α2+
(

λ2p
∫ tk+lk

τ µ2(ρ−τ;ϑ2)dρ
)

σ2
β2

σ2
α2+σ2

β2
− rb2,

eS =
(

w− λ1p
∫ τ

tk
µ1(ρ; ϑ1)dρ

)
σ2

α2 +
(

λ2p
∫ tk+lk

τ µ2(ρ− τ; ϑ2)dρ
)

σ2
β2, fS =

√
σ2

α2σ2
β2(σ

2
α2 + σ2

β2),

L1S =

√
f 2
S+bSσ4

α2
bS f 2

S
, L2S =

aS f 2
S+bSeSσ4

α2√
bS f 2

S( f 2
S+bSσ4

α2)
, L3S =

a2
S f 2

S+bSe2
S

bS f 2
S
− (aS f 2

S+bSeSσ2
α2)

2√
bS f 2

S( f 2
S+bSσ4

α2)

and
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Tnew =

exp

 4wbS

(
λ1pσ2

1+σ2
1pw

)
−c2

T σ4
1

2bSσ4
1


√

2π(tk+lk−τ)2(σ2
α2+σ2

β2)

×

 fT√
1+

D1T Pk|k
bS

exp

 2D2T x̂k|k+
D2

2T Pk|k
bS

−D1T x̂2
k|k

2(bS+D1T Pk|k)

Φ

 gT+hT x̂k|k+
D2T hT Pk|k

bS
+

D1T gT Pk|k
bS√

f 2
S

(
1+

D1T Pk|k
bS

)2
+h2

T Pk|k

(
1+

D1T Pk|k
bS

)


+ 1√
2πPk|k

∫ +∞
−∞

{
exp

[
−D1T

2bS
x2

k +
D2T
bS

xk

]
× (eTxk)× exp

[
− (xk−x̂k|k)

2

2Pk|k

]
×Φ

(
gT+hT xk

fS

)}
dxk

+ra2

√
σ2

α2σ2
β2

σ2
α2+σ2

β2
×
(

1√
2π

exp
[
− 1

2 R3T

]
×
√

1
R2

1T Pk|k+1
exp

[
− (R2T−R1T x̂k|k)

2

2(R2
1T Pk|k+1)

])}

aT =
2σ2

1p

σ4
1

, bT =
2λ1pσ2

1+4wσ2
1p

σ4
1

, cT = w + λ1p
∫ τ

tk
µ1(ρ; ϑ1)dρ + λ2p

∫ tk+lk
τ µ2(ρ− τ; ϑ2)dρ +

2wσ2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

dT =
σ2

1+2σ2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

, D1T = d2
T − 2aTbS, D2T = cTdT − bSbT , eT =

ra2σ2
α2

(
σ2

1+2σ2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

)
σ2

1

(
σ2

α2+σ2
β2

) ,

fT = ra2 ×

(
−w−λ1p

∫ τ
tk

µ1(ρ;ϑ1)dρ−
2wσ2

1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

)
σ2

α2+λ2pσ2
β2
∫ tk+lk

τ µ2(ρ−τ;ϑ2)dρ

σ2
α2+σ2

β2
− rb2,

gT =

(
−w− λ1p

∫ τ
tk

µ1(ρ; ϑ1)dρ−
2wσ2

1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

)
σ2

α2 + λ2pσ2
β2

∫ tk+lk
τ µ2(ρ− τ; ϑ2)dρ,

hT =
σ2

α2

(
σ2

1+2σ2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

)
σ2

1
, R1T =

√
D1T f 2

S+bSh2
T

bS f 2
S

, R2T =
D2T f 2

S−bSgT hT√
bS f 2

S(D1T f 2
S+bSh2

T)
, R3T =

g2
T

f 2
S
− (D2T f 2

S−bSgT hT)
2

bS f 2
S(D1T f 2

S+bSh2
T)

Case 2: if τ < tk,

fLk |Yτ̃:k
(lk|Yτ̃:k)

=
M2−N2×

(
w−λ2p

∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ

)
Pk|k+υ2(lk )x̂k|k

Pk|k+υ2(lk )√
2πlk

2υ2
2(lk)(Pk|k+υ2(lk))

× exp

[
−
(

w−x̂k|k−λ2p
∫ tk+lk

tk
µ2(ρ−τ;ϑ2)dρ

)2

2(Pk|k+υ2(lk))

] (12)

where

υ2(lk) =
(∫ tk+lk

tk
µ2(ρ− τ; ϑ2)dρ

)2
σ2

2p + σ2
2 lk,

M2 = wυ2(lk)−
(

wσ2
2p
∫ tk+lk

tk
µ2(ρ− τ; ϑ2)dρ + λ2pσ2

2 lk
)(∫ tk+lk

tk
µ2(ρ− τ; ϑ2)dρ− lkµ2(tk + lk − τ; ϑ2)

)
N2 = υ2(lk)− σ2

2p
∫ tk+lk

tk
µ2(ρ− τ; ϑ2)dρ

(∫ tk+lk
tk

µ2(ρ− τ; ϑ2)dρ− lkµ2(tk + lk − τ; ϑ2)
) .

Proof. See Appendix B. �

In addition, it is worth mentioning that the changing time of the above results is a fixed
value. In the case of three-source variability, considering the randomness of the changing
point τ, the PDF of RUL could be derived as follows [31],

fL(lk) =
∫ +∞

tk

fL(lk|τ) p(τ)dτ (13)

where p(τ) represents the PDF of the changing time τ. Equation (13) could be solved by
some numerical methods.
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4. Model Parameter and Degradation State Estimation

Before conducting RUL prediction, the unknown model parameters should be iden-
tified first. Considering the common characteristics of devices from the same batch and
the individual features of the specific operating device, the offline and online methods are
adopted jointly to identify the model parameters. Firstly, based on the historical obser-
vations of devices within the same batch, the MLE method is used for offline parameter
estimation. Then, the changing point detection method is constructed on this basis. Fi-
nally, according to the real-time monitoring data of one specific operating device, the
online updating procedures of the model parameters are realized via the Bayesian rule and
KF algorithm.

4.1. Offline Parameter Estimation

In this subsection, we mainly focus on the estimation of the unknown model param-
eters, which are denoted as Θ =

{
λ1p, σ1p, ϑ1, σ1, σ1ε, λ2p, σ2p, ϑ2, σ2, σ2ε

}
. Among them,

λ1 ∼ N(λ1p, σ2
1p), λ2 ∼ N(λ2p, σ2

2p) are random variables that describe the unit-to-unit
variability, and ϑ1, σ1, σ1ε, ϑ2, σ2, σ2ε are deterministic parameters that depict the common
degradation features of devices from the same batch. It is noted that τ will be estimated via
the changing point detection method in Section 4.2.

It is assumed that the historical observations of N devices within the same batch are
known, i.e., Y1:N = {Y1, Y2, · · · , YN}, and the corresponding actual degradation state data
is denoted as X1:N = {X1, X2, · · · , XN}. The observations Yn = {yn,0, yn,1, · · · , yn,mn} of
the n−th device are measured at time {tn,0, tn,1, · · · , tn,mn} and mn denotes the available
number of the observations. We define that the measured increment of the n-th device is
∆yn,j = yn,j − yn,j−1, where j = 1, 2, · · · , mn. Thus, ∆Yn = {∆yn,1, ∆yn,2, · · · , ∆yn,mn}. For
simplicity, the time interval is assumed to be a constant, i.e., ∆t = tn,j − tn,j−1. Suppose
τn denotes the changing time of the n-th device, and it is assumed that τ̃n = τn/∆t ∈
{0, 1, . . . , mn} denotes the changing point location for simplifying the later calculation.
Scilicet, the changing time τn only appears at the measurement time {tn,0, tn,1, · · · , tn,mn}.
As a result, ∆Y1n =

{
∆yn,1, ∆yn,2, · · · , ∆yn,τ̃n

}
represents the measured increments in

the first phase, and ∆Y2n =
{

∆yn,τ̃n+1, ∆yn,τ̃n+2, · · · , ∆yn,mn

}
represents the measured

increments in the second phase.
According to the definition in Equation (1) and the properties of the Wiener process,

the measured increments ∆Yn = {∆yn,1, ∆yn,2, · · · , ∆yn,mn} follow the multivariate normal
distribution with expectation and covariance matrix as follows,

if 0 < tn,j ≤ τn,

E[∆Y1n] = λ1p∆T1n, Σ1n = σ2
1p∆T1n∆T′1n + Ω1n (14)

if tn,j > τn,
E[∆Y2n] = λ2p∆T2n, Σ2n = σ2

2p∆T2n∆T′2n + Ω2n (15)

where Ω1n = σ2
1 D1n + σ2

1εP1n, Ω2n = σ2
2 D2n + σ2

2εP2n,

P1n =



1 −1 0 · · · 0

−1 2 −1 · · ·
...

0 −1 2
. . . 0

...
...

. . .
. . . −1

0 0 · · · −1 2


τ̃n×τ̃n

, P2n =



1 −1 0 · · · 0

−1 2 −1 · · ·
...

0 −1 2
. . . 0

...
...

. . .
. . . −1

0 0 · · · −1 2


(mn−τ̃n)×(mn−τ̃n)

∆T1n =
[∫ tn,1

0 µ1(ρ; ϑ1)dρ,
∫ tn,2

tn,1
µ1(ρ; ϑ1)dρ, . . . ,

∫ tn,τ̃n
tn,τ̃n−1

µ1(ρ; ϑ1)dρ
]′

∆T2n =
[∫ tn,τ̃n+1

tn,τ̃n
µ2(ρ− τ; ϑ2)dρ,

∫ tn,τ̃n+2
tn,τ̃n+1

µ2(ρ− τ; ϑ2)dρ, . . . ,
∫ tn,mn

tn,mn−1
µ2(ρ− τ; ϑ2)dρ

]′
D1n = diag(∆tn,1, ∆tn,2, . . . , ∆tn,τn ), D2n = diag(∆tn,τ̃n+1

, ∆tn,τ̃n+2
, . . . , ∆tn,mn )
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Thus, the log-likelihood function of Θ could be expressed as follows,

ln(Θ|Y1:N)

= − ln(2π)
2

N
∑

n=1
τ̃n− 1

2

N
∑

n=1
ln|Σ1n| − 1

2

N
∑

n=1
(∆Y1n − λ1p∆T1n)

′Σ−1
1n (∆Y1n − λ1p∆T1n)

− ln(2π)
2

N
∑

n=1
(mn − τ̃n)− 1

2

N
∑

n=1
ln|Σ2n| − 1

2

N
∑

n=1
(∆Y2n − λ2p∆T2n)

′Σ−1
2n (∆Y2n − λ2p∆T2n)

(16)

To facilitate calculation, let σ̃2
1 = σ2

1 /σ2
1p, σ̃2

1ε = σ2
1ε/σ2

1p, Σ̃1n = Σ1n/σ2
1p, and

σ̃2
2 = σ2

2 /σ2
2p, σ̃2

2ε = σ2
2ε/σ2

2p, Σ̃2n = Σ2n/σ2
2p. Then, the log-likelihood function in

Equation (16) could be written as,

ln(Θ|Y1:N) = − ln(2π)
2

N
∑

n=1
τ̃n −

ln σ2
1p

2

N
∑

n=1
τ̃n − 1

2

N
∑

n=1
ln
∣∣∣Σ̃1n

∣∣∣− 1
2σ2

1p

N
∑

n=1
(∆Y1n − λ1p∆T1n)

′Σ̃
−1
1n (∆Y1n − λ1p∆T1n)

− ln(2π)
2

N
∑

n=1
(mn − τ̃n)−

ln σ2
2p

2

N
∑

n=1
(mn − τ̃n)− 1

2

N
∑

n=1
ln
∣∣∣Σ̃2n

∣∣∣− 1
2σ2

2p

N
∑

n=1
(∆Y2n − λ2p∆T2n)

′Σ̃
−1
2n (∆Y2n − λ2p∆T2n)

(17)

Under the framework of the MLE algorithm, taking the first partial derivatives of
ln(Θ|Y1:N) with respect to λ1p and σ2

1p, respectively. Then, the MLE of λ1p, σ2
1p could be

obtained by setting these two derivatives to zero.

λ̂1p =

N
∑

n=1
∆T′1nΣ̃

−1
1n ∆Y1n

N
∑

n=1
∆T′1nΣ̃

−1
1n ∆T1n

, σ̂2
1p =

N
∑

n=1
(∆Y1n − λ̂1p∆T1n)

′Σ̃
−1
1n (∆Y1n − λ̂1p∆T1n)

N
∑

n=1
τ̃n

(18)

Similarly, the MLE of λ2p, σ2
2p could be obtained as,

λ̂2p =

N
∑

n=1
∆T′2nΣ̃

−1
2n ∆Y2n

N
∑

n=1
∆T′2nΣ̃

−1
2n ∆T2n

, σ̂2
2p =

N
∑

n=1
(∆Y2n − λ̂2p∆T2n)

′Σ̃
−1
2n (∆Y2n − λ̂2p∆T2n)

N
∑

n=1
(mn − τ̃n)

(19)

However, the results of λ̂1p, σ̂2
1p and λ̂2p, σ̂2

2p still contain the unknown parameters,
i.e., ϑ1, σ̃2

1 , σ̃2
1ε and ϑ2, σ̃2

2 , σ̃2
2ε. Fortunately, the MLE of these parameters could be calculated

based on λ̂1p, σ̂2
1p and λ̂2p, σ̂2

2p.
Since the two phases are independent of each other, thus, substituting Equation (18)

into Equation (17), the profile likelihood function of ϑ1, σ̃2
1 , σ̃2

1ε according to λ̂1p, σ̂2
1p could

be expressed as follows,

ln L(ϑ1, σ̃2
1 , σ̃2

1ε|∆Y1n) = −
ln(2π)

2

N

∑
n=1

τ̃n −
ln σ̂2

1p

2

N

∑
n=1

τ̃n −
1
2

N

∑
n=1

τ̃n −
1
2

N

∑
n=1

ln
∣∣∣Σ̃1n

∣∣∣ (20)

Similarly, by substituting Equation (19) into Equation (17), the profile likelihood
function of ϑ2, σ̃2

2 , σ̃2
2ε according to λ̂2p, σ̂2

2p could be e formulated as follows.

ln L(ϑ2, σ̃2
2 , σ̃2

2ε

∣∣∆Y2n)

= − ln(2π)
2

N
∑

n=1
(mn − τ̃n)−

ln σ̂2
2p

2

N
∑

n=1
(mn − τ̃n)− 1

2

N
∑

n=1
(mn − τ̃n)− 1

2

N
∑

n=1
ln
∣∣∣Σ̃2n

∣∣∣ (21)

The MLE of ϑ1, σ̃2
1 , σ̃2

1ε and ϑ2, σ̃2
2 , σ̃2

2ε could be obtained through a multi-dimensional
search, which is implemented by the “fminsearch” function in MATLAB.

Then, substituting the MLE of ϑ1, σ̃2
1 , σ̃2

1ε and ϑ2, σ̃2
2 , σ̃2

2ε into Equations (18) and (19),
respectively, the final estimates of λ1p, σ2

1p and λ2p, σ2
2p could be obtained. Then, the MLE
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of ϑ1, σ1, σ1ε and ϑ2, σ2, σ2ε could be calculated via inverting the relations σ̃2
1 = σ2

1 /σ2
1p,

σ̃2
1ε = σ2

1ε/σ2
1p, Σ̃1n = Σ1n/σ2

1p and σ̃2
2 = σ2

2 /σ2
2p, σ̃2

2ε = σ2
2ε/σ2

2p, Σ̃2n = Σ2n/σ2
2p, accordingly.

4.2. Changing Point Detection
For the two-phase nonlinear degradation process, changing point detection is crucial

for parameter estimation and RUL prediction. It is assumed that the changing time is
a random variable and follows the normal distribution, i.e., τ ∼ N(µτ , σ2

τ). Then, for a
specific operating device, the log-likelihood function of τ can be formulated as follows,

ln L(Θ
∣∣∣∆Yn) = − τ̃n

2 ln(2π)− 1
2 ln
∣∣∣Σ1n

∣∣∣− 1
2 (∆Y1n − λ1p∆T1n)

′Σ−1
1n (∆Y1n − λ1p∆T1n)

−mn−τ̃n
2 ln(2π)− 1

2 ln
∣∣∣Σ2n

∣∣∣− 1
2 (∆Y2n − λ2p∆T2n)

′Σ−1
2n (∆Y2n − λ2p∆T2n)

(22)

where ∆Yn = (∆yn,1, ∆yn,2, · · · , ∆yn,k)
′.

Similar to the offline parameter estimation process, the MLE of the deterministic
parameters and the expressions of λ̂1p, σ̂2

1p, λ̂2p, σ̂2
2p could be derived. Then, by substituting

these MLE values and expressions into Equation (22), a log-likelihood function that is only
related to the changing point location τ̃n can be formulated. Thus, the optimal changing
time τ̂n of the n-th device could be expressed as follows,

τ̂n = ∆t× argmax
τ̃n

ln L(τ̃n|∆Yn) (23)

On this basis, maximizing ln L(τ̃n|Xn) by enumerating all possible values of τ̃n, the
optimal changing time τ̂n could be obtained.

In addition, for a specific operating device, if tk > τ̂n at the current time tk, the
changing time has appeared and is a certain value. However, if tk < τ̂n, which means that
the changing point has not appeared and is an unknown random variable. Consequently,
we need to update its distribution. In this case, the above-estimated value τ̂n can be treated
as the observations of the changing time. Then, the mean and variance of τ could be
formulated as [33],

µτ =
1
N

N

∑
n=1

τ̂n, στ =

√√√√ 1
N

N

∑
n=1

(τ̂n − µτ)
2 (24)

4.3. Online Implicit State Updating

For the RUL estimation with three-source variability, the random drift coefficients
λ1, λ2 and the underlying degradation state xk need to be updated jointly based on the
observations. In practice, the posterior estimates of the drift coefficients have little effect
with xk [24]. Without loss of generality, it is assumed that they are independent of each
other. On this basis, the update mechanism of implicit states could be conducted through
two steps: firstly, the random drift coefficients are updated by the Bayesian method, and
then the KF algorithm is adopted to update xk.

As to a specific operating device, if the current time is tk, the degradation obser-
vation is denoted as Y1:k = {y1, y2, · · · , yk}, and the corresponding actual degradation
state is denoted as X1:k = {x1, x2, · · · , xk}. It is defined that the observation increment is
∆yj = yj − yj−1, and the time interval is ∆tj = tj − tj−1, j = 1, · · · , k. If tk ≤ τ, all the obser-
vations Y1:k = {y1, y2, · · · , yk} can be used for model updating, thus,
∆Yk = {∆y1, ∆y2, · · · , ∆yk}. Meanwhile, let ∆Tk =

∫ tk
tk−1

µ1(ρ; ϑ1)dρ, and we have
∆Tk = {∆T1, ∆T2, · · · , ∆Tk}. Whereas if tk > τ, only the observations in the second phase
could be applied, i.e., Yτ̃:k = {yτ̃ , yτ̃+1, · · · , yk}, thus, ∆Yk = {∆yτ̃+1, ∆yτ̃+2, · · · , ∆yk}. Let
∆Tk =

∫ tk
tk−1

µ2(ρ− τ; ϑ2)dρ, and consequently, ∆Tk = {∆Tτ̃+1, ∆Tτ̃+2, · · · , ∆Tk}.
To update the drift coefficients, let λ1p,0, σ1p,0 and λ2p,0, σ2p,0 attained in Section 4.1

represent the prior values of λ1 and λ2, respectively. Then, according to the Bayesian
rule [24], the following results could be obtained,
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if tk ≤ τ,
λ1|Y1:k ∼ N(λ1p,k, σ2

1p,k) (25)

where

λ1p,k =
∆T′kΩ−1

k ∆Ykσ2
1p,0 + λ1p,0

∆T′kΩ−1
k ∆Tk · σ2

1p,0 + 1
, σ2

1p,k =
σ2

1p,0

∆T′kΩ−1
k ∆Tk · σ2

1p,0 + 1

if tk > τ,
λ2|Yτ̃:k ∼ N(λ2p,k, σ2

2p,k) (26)

where

λ2p,k =
∆T′kΩ−1

k ∆Yk · σ2
2p,0 + λ2p,0

∆T′kΩ−1
k ∆Tk · σ2

2p,0 + 1
, σ2

2p,k =
σ2

2p,0

∆T′kΩ−1
k ∆Tk · σ2

2p,0 + 1

To update the underlying degradation state, i.e., xk ∼ N(x̂k|k, Pk|k), the state and
measurement formulas in Equations (1) and (2) should be converted into discrete time
equations. In this case, a general state space model is constructed as follows,{

xk = xk−1 + λk−1∆Tk + vk
yk = xk + εsk

(27)

where s = 1, 2 denotes the phase. If tk ≤ τ, thus, s = 1, vk = σ1(B(tk)− B(tk−1)),
vk ∼ N(0, σ2

1 ∆tk), and εk ∼ N(0, σ2
1ε). Whereas if tk > τ, we have s = 2, vk =

σ2(B(tk − τ)− B(tk−1 − τ)), vk ∼ N(0, σ2
2 ∆tk), and εk ∼ N(0, σ2

2ε). In addition, it is
assumed that {vk}k≥1 and {εsk}k≥1 are independent of each other.

The KF algorithm is adopted to solve Equation (27). For xk ∼ N(x̂k|k, Pk|k), if
tk ≤ τ, we define x̂k|k = E[xk|Y1:k, Θ] and Pk|k = var[xk|Y1:k, Θ], if tk > τ, we define
x̂k|k = E[xk|Yτ̃+1:k, Θ], Pk|k = var[xk|Yτ̃+1:k, Θ]. Then, the KF process could be summarized
as follows,

State estimation:
x̂k|k−1 = x̂k−1|k−1 + λsp,k−1∆Tk
x̂k|k = x̂k|k−1 + K(k)(yk − x̂k|k−1)

K(k) = Pk|k−1(Pk|k−1 + σ2
sε)
−1

Pk|k−1 = Pk−1|k−1 + σ2
s (tk − tk−1)

Variance update:
Pk|k = (1− K(k))Pk|k−1 (28)

where s = 1, 2 denotes the phase, when s = 1, λ1p,k−1 could be obtained based on Equa-
tion (25), when s = 2, λ2p,k−1 could be obtained based on Equation (26). In addition, the
initial values of x̂k|k, Pk|k are set as x̂0|0 = 0, P0|0 = 0 based on x0 = 0 in Equation (1).

Iterating the above KF process step by step, the posterior distribution of xk could be
solved analytically. Based on the implicit state updating results, the RUL estimation could
be conducted.

5. Case Study

To verify the feasibility of the proposed method, a numerical simulation and a practical
example of the high-voltage pulse capacitor are provided. For performance evaluation,
the prediction results of the proposed method are compared with the two-phase nonlinear
degradation model considering unit-to-unit variability (Lin’s method) [33], the two-phase
linear-nonlinear degradation model with measurement errors (Chai’s method) [37], and
the traditional single-phase nonlinear degradation model with three-source variability
(Zheng’s method) [25]. The implementation details of the experiment are as follows.

5.1. Numerical Example

In this subsection, we focus on validating the effectiveness of our method for parameter
identification and RUL estimation. For illustration purposes, the following power model



Sensors 2024, 24, 165 13 of 35

is applied to define the nonlinear integral term in Equation (1), i.e.,
∫ t

0 µ1(ρ; ϑ1)dρ = tb1 ,∫ t
τ µ2(ρ− τ; ϑ2)dρ =(t− τ)b2 . This kind of power function has been widely used in existing

literature [22]. Similar to the work of Feng et al. [20] we adopt the state space model to
generate the simulation data and the parameters are given as: λ1p = 1.2, σ1p = 0.2,
b1 = 1.5, σ1 = 0.05, σ1ε = 0.3, λ2p = 1.5, σ2p = 0.25, b2 = 1.4, σ2 = 0.08, σ2ε = 0.4 and
the distribution parameters of the random changing time, i.e., µτ = 50, στ = 2. On this
basis, we generate 100 sets of degradation trajectories with random changing time, drift
parameters, and measurement errors. Figure 1 shows several typical degradation paths
of the sample, and it is observable that the degradation paths exhibit obvious two-phase
nonlinear deteriorating patterns.

1 

 

 
  Figure 1. The simulated degradation paths.

Next, the unknown model parameters are identified based on the changing time detec-
tion and parameter estimation methods proposed in Section 4. The parameter estimation
results with different sample sizes are detailed in Table 1. It can be found from Table 1 that
the obtained results could gradually approach the true values as the size of the degradation
paths is increased. In addition, the histogram of the detected changing time based on
100 sample paths is presented in Figure 2 and it manifests that the estimated changing
points are concentrated around t = 50, which are very close to the true value of µτ . Thus,
the effectiveness of the offline parameter identification method is demonstrated.

Table 1. Parameter estimation values with different sample sizes.

Size λ1p σ1p σ1 σ1ε b1 λ2p σ2p σ2 σ2ε b2 µτ στ

n = 10 1.3279 0.3370 0.0450 0.2963 1.4994 1.6560 0.2851 0.0972 0.3967 1.4027 50.5800 1.6302
n = 50 1.2559 0.2500 0.0518 0.2983 1.5002 1.4794 0.2557 0.0973 0.4000 1.4016 49.6180 2.1199
n = 100 1.2243 0.2311 0.0505 0.2995 1.5001 1.4865 0.2482 0.1041 0.4024 1.4017 49.7400 1.9923

True value 1.2 0.2 0.05 0.3 1.5 1.5 0.25 0.08 0.4 1.4 50 2

For the online parameter and the underlying degradation state updating, we chose
one specific degradation path from the above-presented 100 degradation trajectories and
the true drift parameters are λ1 = 1.1133, λ2 = 1.4690, and τ = 51.4 as shown in Figure 3.

Then the changing point detection procedure is applied for the online path, and the
estimated changing time is 51.3, which is very close to the true value. Meanwhile, the
parameter estimation results of n = 10 size in Table 1 are used as the prior information,
when newly observed data are coming, the hyper-parameters of the drift coefficients and
the underlying degradation state could be updated via the methods proposed in Section 4.3.
Figure 4a shows the parameter updating process, it could be observed that the parameter
updating curves could gradually approach the true values. Furthermore, it is clear from
Figure 4a that as the observations accumulate, the values of σ1p and σ2p are gradually



Sensors 2024, 24, 165 14 of 35

decreasing, which means the uncertainty of estimation is reduced. In addition, Figure 4b
presents the comparison of the predicted underlying degradation path and the observed
degradation path. It is clear from Figure 4b that our degradation state updating method
could track the actual observed degradation state well. 

2 

 

 
  
Figure 2. The estimated changing time of 100 degradation paths.
 

3 

 

 
  

Figure 3. The online degradation path. 

4 

 

 
  

Figure 4. The online updating process. (a) The parameter updating. (b) The underlying degradation
state updating.

Based on the results of the parameter identification process, the PDFs of RUL esti-
mation at different observed time points could be obtained, as shown in Figure 5a. It is
worth noting that the preset failure threshold w = 570, thus the actual lifetime is T = 80.
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It can be observed from Figure 5a that the PDFs of RUL estimated by our model are
closely distributed around the actual RUL values, verifying that our proposed method
could effectively estimate the RUL of the two-phase nonlinear degradation process. For
comparative purposes, we further obtained the mean RUL prediction results of our method,
Lin’s method [33], Chai’s method [37], and Zheng’s method [25], as shown in Figure 5b. It
is observable from Figure 5b that the mean predicted RUL of our method is more accurate
compared to the other three methods. Additionally, the mean RUL prediction curve of Lin’s
method [33] is relatively stable due to the degradation model they constructed considering
two-phase nonlinearity. However, since they ignored the measurement variability, the
deviations of their mean RUL prediction curve from the actual values are bigger than
our method. Furthermore, the mean RUL curve of Chai’s method [37] in the first phase
has large bias, but it gradually becomes accurate in the second phase. Because Chai’s
method [37] only consider the nonlinearity of the second phase. In addition, the deviations
between the mean RUL prediction curve of Zheng’s method [25] and the actual RUL are
the largest among the four methods in the first phase, especially near the changing point
where the deviation is more pronounced. It is mainly because the degradation model
they constructed is single-phase, which is insufficient to describe the two-phase nonlinear
degradation process effectively. It is interesting to note that after the changing point has
appeared, the deviations of Zheng’s method [25] gradually decrease as the observations
accumulate. The reason for this phenomenon is that the degradation trajectory is equiv-
alent to a single-phase nonlinear degradation process after the changing point appears,
thus, Zheng’s method [25] that considers three-source variability simultaneously could
effectively fit the degradation process.

 

5 

 

 
  

Figure 5. The RUL prediction results. (a) PDFs of the RUL. (b) The mean RUL of the four methods.

For performance evaluation, two metrics are employed to evaluate the performance of
RUL prediction among different methods, including the mean square error (MSE) [22] and
the absolute error (AE) [37]. The MSE at each observation point could be defined as follows,

MSEk =
∫ +∞

0
(l̃k − lk)

2
fLk |Y1:k

(lk
∣∣∣Y1:k)dlk (29)

where l̃k denotes the actual RUL at tk, and fLk |Y1:k
(lk
∣∣∣Y1:k) is the corresponding conditional

PDF of the RUL estimated by Theorem 2 in Section 3.2.
The second metric is the AE of actual RUL and the estimated RUL at each observation

point, which could be represented by

AEk =
∣∣∣l̃k − l̂k

∣∣∣ (30)

where l̂k denotes the estimated RUL at tk.
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It is noted that in both criteria, the smallest value of MSE and AE corresponds to the
best RUL prediction result.

The following Figure 6 presents the comparison results of the four methods. It can
be seen from Figure 6a that our method provides smaller MSE values than the other three
methods. Additionally, the AE values of our method in Figure 6b are also the smallest
of the four models. The comparison results of these two criteria indicate that our RUL
prediction method could effectively improve the prediction accuracy of RUL. Moreover, it
can be observed that the MSE and AE values of Zheng’s method [25] are the largest of the
four methods near the changing point. Because the single-phase nonlinear degradation
model constructed by Zheng’s method [25] did not consider the impact of the random
degradation state at the changing point on RUL estimation, and cannot estimate the RUL
of the two-phase nonlinear degradation process well. In addition, Figure 6c compares the
PDFs of the RUL distributions derived from our model with the other three methods at
time 40. It is clear from Figure 6c that our method can cover the actual RUL well, which
reflects the superiority of our method. Moreover, it can also be observed from Figure 6c that
the PDF curve of Zheng’s method [25] cannot cover the true value of RUL well, revealing
that the bias of RUL predicted by Zheng’s method [25] is very large in the first phase, which
is consistent with the previous results of MSE and AE. It is noteworthy that the units are
omitted in Figures 1–6 since the degradation data are generated via simulation.

 

6 

 

 
  

Figure 6. Performance evaluation of the RUL prediction. (a) MSE of the estimated RUL. (b) AE of the
estimated RUL. (c) PDFs of the estimated RUL at time 40.

To quantitatively compare the RUL prediction performance of our method with the
other methods, we further employ three evaluation metrics. The first metric is the total
MSE (TMSE) [19], which is defined as the sum of the MSE at each observation point over
the whole life cycle. Videlicet, if there are m observations, the TMSE could be formulated as,

TMSE =
m

∑
k=1

MSEk (31)

The second metric is the mean absolute error (MAE) [41], which measures the average
absolute deviation between the predicted value and the actual value. The MAE could be
represented as,

MAE =
1
m

m

∑
k=1

AEk (32)

where AEk is defined in Equation (30).
The third metric is the cumulative relative accuracy (CRA) [27]., which evaluates the

relative prediction accuracy of the RUL over time, and could be defined as,

CRA =
1
m

m

∑
k=1

(
1− AEk

l̃k

)
(33)
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For these three quantitative metrics, the smallest value of TMSE and MAE corresponds
to the best RUL prediction result, in contrast, a higher CRA value that approaches to
1 indicates higher RUL prediction accuracy. Then, the subsequent Table 2 shows the
comparison results of the estimated RUL based on the three metrics mentioned above. It
can be found from Table 2 that compared with the other three methods, our method has
smaller TMSE and MAE values, whereas a bigger CRA value, which indicates that our
method has higher accuracy in RUL prediction.

Table 2. Comparison results of RUL prediction based on TMSE, MAE, and CRA.

Metric TMSE MAE CRA

Our method 1.2030 × 104 0.8634 0.9653
Lin’s method [33] 2.3221 × 104 3.7415 0.8795
Chai’s method [37] 3.1273 × 104 3.9529 0.8976
Zheng’s method [25] 6.9231 × 104 8.3726 0.8037

Overall, the numerical simulation results demonstrate that the proposed prediction
RUL method considering three-source variability and two-phase nonlinearity is effective,
and could improve the estimation accuracy.

5.2. Practical Application

In this subsection, the data of high-voltage pulse capacitors are utilized to illustrate our
approach [39]. High-voltage-pulse capacitors can be utilized for electrical energy storing
and releasing, which are often encountered in pulse lasers, radar, and particle accelera-
tors [34]. It is well known that capacitors and batteries can form hybrid energy storage
systems, which are commonly used as energy sources for hybrid electric vehicles [42–44].
However, the unit-to-unit variability mentioned in this work is defined as the heterogeneity
between different units in the same batch of identical devices [33,34]. Therefore, if degrada-
tion modeling with three-source variability is based on the degradation data of different
types of devices, such as capacitors and batteries, the basic premise for the unit-to-unit
variability is not satisfied. In addition, if the research object is a system composed of batter-
ies and capacitors, it is another topic of RUL prediction, namely, the RUL estimation for
multi-component systems. Currently, our work mainly focuses on the RUL prediction with
three-source variability of different devices from the same batch, thus, only the capacitor
degradation data is considered in this research.

According to the usage scenario, the high-voltage pulse capacitors have a short service
time and a long storage time. Hence, the storage performance is a primary factor that
influences the reliability of such capacitors. Capacitance can be used as a health indicator
(HI) to evaluate the RUL of the capacitors; Figure 7 shows the degradation test data of five
high-voltage pulse capacitors under the storage condition. The capacitance was observed
every month and the relative capacitance variability was selected as the HI. Reference [34]
revealed that the degradation paths of such capacitors could be modeled based on the
two-phase nonlinear method. In addition, Reference [39] mentioned that the capacitance
degradation path is affected by temperature and humidity, thus, measurement errors are
inevitable. Therefore, it is appropriate to use the degradation data of these capacitors to
verify our proposed two-phase nonlinear degradation model.
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7 

 

 
  Figure 7. Relative capacitance variability of the capacitors with time.

Based on the degradation data of Capacitors 2–5, the offline parameter estimation
results are obtained through the parameter identification method proposed in Section 4,
and are listed in Table 3. Through the estimated values of b1, b2 and σ1ε, σ2ε in Table 3, it
can be found that nonlinearity and measurement errors exist in the degradation process of
capacitors. It is noticeable that the results of Table 3 are treated as the prior information.

Table 3. The parameter estimation results of the capacitance degradation data.

Variable λ1p σ1p σ1 σ1ε b1 λ2p σ2p σ2 σ2ε b2 µτ στ

value 0.0381 0.0087 0.1614 0.0497 2.0800 0.2232 0.0407 0.2274 0.0344 1.5217 6.2500 0.8292

For online implementation processes, the degradation data of Capacitors 1 is selected
to illustrate the parameter updating and RUL prediction processes. Figure 8 presents
the parameter updating results, and it can be found that the updated values of λ1p, λ2p
are bigger than the offline values in Table 3. The reason is that the degradation path of
Capacitors 1 is steeper than the mean paths of Capacitors 2–5, which can be seen in Figure 7.
 

8 

 

 
  
Figure 8. Online parameter updating processes of Capacitor 1.
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According to the literature [34,39], the failure threshold of capacitor is set as w = 5%.
Then, based on the results of model updates, the PDFs of RUL could be obtained as shown
in Figure 9a. It is observable from Figure 9a that the estimated values of RUL are almost
consistent with the actual values, indicating that our method can effectively estimate the
RUL of capacitor degradation data. For comparative purposes, we further presented the
estimated RUL of Lin’s method [33], Chai’s method [37], and Zheng’s method [25] as shown
graphically in Figure 9b–d, respectively. It can be observed from Figure 9 that in both
phases, the PDF curves of the proposed method are sharper compared to Lin’s method [33]
and Zheng’s method [25]. Additionally, although our PDF curves are similar in steepness
to Chai’s method [37], the PDF curves of our method are more compact around the actual
RUL and the estimated RUL values are closer to the actual values compared to the other
three methods. Thus, from the overall RUL prediction results, our method that considers
three-source variability and two-phase nonlinearity has higher RUL prediction accuracy
compared to the other three methods.

 

9 

 

 
  Figure 9. PDFs of RUL prediction for Capacitor 1. (a) Our method. (b) Lin’s method. (c) Chai’

method. (d) Zheng’s method.
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To evaluate the performance of RUL prediction, three metrics, including MSE, AE,
and relative error (RE) [19], are adopted for performance evaluation. Among them, the RE
of the estimated RUL at tk can be defined as,

REk =

∣∣∣l̃k − l̂k
∣∣∣

l̃
(34)

where l̃k and l̂k denotes the estimated and the actual RUL at tk, respectively.
Then, we calculated the MSE, AE, and RE of the predicted RUL, as shown in Figure 10.

It can be found from Figure 10a that the MES values of our method maintain a relatively
low level compared to the other three methods. Additionally, it can be observed from
Figure 10b,c that the AE as well as the RE results of the proposed method are smaller
than the other three methods, indicating the higher accuracy of our proposed method.
Furthermore, it can be seen from Figure 10c that the RE curves of each method gradually
increase in the later stage of the degradation process. The main reason is that as time
accumulates, the actual value of RUL becomes smaller and smaller. Although the AE value
is gradually decreasing over time, its proportion in the actual RUL value is larger than
that in the early stage of the degradation process, thus, resulting in an increase trend in
the later stage. In addition, it can be seen from Figure 10a that the MSE value of Chai’s
method [37] is slightly better than the MES value of our method. To investigate the reasons
for this phenomenon, we further obtained the PDFs of the RUL estimate in the fifth, sixth,
and seventh adjacent months, as shown in Figure 11.
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  Figure 10. Performance evaluation based on capacitance degradation data of Capacitor 1. (a) MSE of

the predicted RUL. (b) AE of the predicted RUL. (c) RE of the predicted RUL.
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  Figure 11. Comparison of the estimated RUL at different months. (a) PDFs of the estimated RUL at

the fifth month. (b) PDFs of the estimated RUL at the sixth month. (c) PDFs of the estimated RUL at
the seventh month.
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It can be found from Figure 11 that the PDF curves of our method at the three time
points can cover the actual values of RUL well, and are more compact around the actual
RUL, respectively. Moreover, the estimated RUL values of our method at different time
points are closer to the actual values than the other three methods.

The key issue lies in the PDF curve of the estimated RUL at the sixth month in
Figure 11b. As can be seen from Figure 11b, the deviation between our estimated RUL and
the actual value is only slightly smaller than that of Chai’s method [37]. However, the PDF
curve of Chai’s method [37] is sharper than ours. According to the definition of MSE in
Equation (29), the MSE value is jointly affected by the deviation between the estimated
value of RUL and the actual value, as well as the corresponding PDF function. The MSE
value will be smaller when the PDF of RUL is closely distributed around the actual RUL
value [34]. Therefore, the MSE value of Chai’s method [37] is slightly smaller than ours
in the sixth month. In fact, this is acceptable. Generally, as can be seen in Figure 10a, the
MSE curve of our proposed method maintains a relatively low level compared to Chai’s
method [37]. Therefore, the MSE result in the sixth month does not affect the conclusion
that our RUL prediction accuracy is higher than Chai’s method [37].

To quantitatively compare the predicted results based on the capacitor degradation
data, we further calculated the TMSE, MAE, and CRA values of RUL estimation, as detailed
in Table 4. It is observable from Table 4 that the TMSE of our method is the smallest. Thus,
although the MSE value of Chai’s method [37] in Figure 10a is smaller than ours in the sixth
month, however, in general, the TMSE of our method is still better than Chai’s method [37].
In addition, among the four methods, our method has the smallest MAE value and the
largest CRA value, because we simultaneously consider the two-phase nonlinearity and the
three-source variability of the degradation process. The results of the above quantitative
metrics indicate that our RUL prediction method has higher accuracy compared to the
other three methods, which verifies the effectiveness and superiority of our method.

Table 4. Comparison results of RUL prediction based on TMSE, MAE, and CRA for Capacitor 1
degradation data.

Metric TMSE MAE CRA

Our method 4.9349 0.1091 0.9685
Lin’s method [33] 7.0592 0.3637 0.8862
Chai’s method [37] 7.5904 0.6182 0.8647
Zheng’s method [25] 16.2556 1.0455 0.7873

In summary, the experimental results show that compared to the other three methods,
the MSE, AE, and RE curves of our method maintain a relatively low level, and the RUL
prediction results of our method have smaller TMSE, MAE values, whereas larger CRA
values. Based on the above results, it can be found that our work can obtain competitive
results, which indicates that the accuracy of RUL prediction is better than the other three
methods, thus, verifying the feasibility and effectiveness of the proposed method in practi-
cal application. Furthermore, for two-phase nonlinear degradation devices, it is necessary
to consider the nonlinearity and the three-source variability simultaneously to boost the
performance of RUL prediction.

6. Conclusions

In this study, a two-phase nonlinear Wiener process-based degradation model subject
to the three-source variability is formulated for RUL prediction. Based on the FPT concept,
the approximate analytical form of the RUL is obtained considering the three-source
variability and the random degradation state at the changing point simultaneously. To
incorporate the historical observations of the devices within the same batch, the MLE
method is adopted to estimate the unknown model parameters. By combining the Bayesian
rule and KF algorithm, the drift coefficients and the underlying degradation state are
adaptively updated in real-time with newly observed data. Finally, the effectiveness of



Sensors 2024, 24, 165 22 of 35

the proposed method is verified via numerical and practical examples. The quantitative
comparison results of MSE, AE, RE, TMSE, MAE, and CRA reveal that the two-phase
nonlinear degradation model with three-source variability is more accurate than the existing
methods that only partially consider the two-phase nonlinearity and three-source variability.
Therefore, in RUL prediction for the two-phase nonlinear degradation devices, the impact
of these uncertainties on degradation modeling should be considered simultaneously to
improve the accuracy of RUL prediction. However, there are several directions that are
worth further study. First, the measurement error is assumed as Gaussian, which may
be inadequate when there are outliers in the degradation observations. In this case, the
non-Gaussian measurement errors need to be considered, such as t-distribution. Second,
the proposed model is formulated under the assumption of the progressive degradation
process. However, shocks are often encountered in practice. Therefore, determining
how to construct the two-phase nonlinear degradation model considering the interaction
between the internal degradation mechanism and external shocks needs to be explored.
Third, at present, our research only focuses on the RUL prediction for single-component
systems, without considering the impact of correlation between different components
on RUL prediction. Therefore, the degradation modeling and RUL prediction of multi-
component systems (such as hybrid energy systems consisting of capacitors and batteries)
with three-source variability is also a valuable research direction in the future.
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Nomenclature

The following abbreviations and notations are used in this manuscript:

Abbreviations
PHM Prognostics and health management
RUL Remaining useful life
PDF Probability density function
CDF Cumulative distribution function
CM Condition monitoring
KF Kalman filtering
EM Expectation maximization
ELM Extreme learning machine
FPT First passage time
MSE Mean square error
AE Absolute error
HI health indicator
Notation
X(t) Actual degradation state at time t
x0 Initial value
τ Time of the changing point
xτ Degradation state at the changing time
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λ1 Drift coefficient of the first phase
λ2 Drift coefficient of the second phase
σ1 Diffusion coefficients of the first phase
σ2 Diffusion coefficients of the second phase
µ1(ρ; ϑ1) Nonlinear function of the first phase
µ2(ρ− τ; ϑ2) Nonlinear function of the second phase
ϑ1 Nonlinear parameter in µ1(ρ; ϑ1)
ϑ2 Nonlinear parameter in µ2(ρ− τ; ϑ2)
B(t) Standard Brown motion
λ1p, σ1p Mean and standard deviation of λ1
λ2p, σ2p Mean and standard deviation of λ2
Y(t) Measurement process
ε1, ε2 Measurement errors of each phase
σ1ε, σ2ε Standard deviation of ε1 and ε2
w Failure threshold
T Lifetime
Lk RUL at the current time tk
Y1:k Observations up to tk
fT(·) PDF of the lifetime
fL(·) PDF of the RUL
Φ CDF of the standard normal distribution
φ PDF of the standard normal distribution
hτ(xτ) Transition probability density function
xk Actual degradation state at the current time tk
x̂k|k, Pk|k Mean and variance of xk
Θ Unknown model parameter vector
N Number of the tested devices from the same batch
Y1:N Historical data of N devices from the same batch
X1:N Actual degradation state data of N devices from the same batch
Yn Observations of the n-th device
∆yn,j Measured increment at time tjof the n-th device
∆Yn Measured increment vector
mn Available number of the observations for the n-th device
τn Changing time of the n-th device
τ̃n Changing point location of the n-th device
µτ , στ Mean and standard deviation of τ
Y1:k Degradation observations at the current time tk
X1:k actual degradation states at the current time tk

Appendix A. Proof of Theorem 1

Proof. To obtain the RUL estimation result considering the unit-to-unit variability and the
random degradation state at the changing point, the PDF of the lifetime should be derived
first, which is given by Ref. [33].

For the two-phase nonlinear degradation model proposed in Equation (1), if the
drift coefficient in each phase is a random variable and follows a normal distribution, i.e.,
λ1 ∼ N(λ1p, σ2

1p), λ2 ∼ N(λ2p, σ2
2p), the PDF of the lifetime T considering the unit-to-unit

variability and the random degradation state at the changing point could be expressed as
follows,
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fT(t) ∼=



w−
(∫ t

0 µ1(ρ;ϑ1)dρ−tµ1(t;ϑ1)
)
×

σ2
1pw

∫ t
0 µ1(ρ;ϑ1)dρ+λ1pσ2

1 t

(
∫ t

0 µ1(ρ;ϑ1)dρ)
2

σ2
1p+σ2

1 t


√

2πt2
((∫ t

0 µ1(ρ;ϑ1)dρ
)2

σ2
1p+σ2

1 t
) exp

− (
w−λ1p

∫ t
0 µ1(ρ;ϑ1)dρ

)2

2
((∫ t

0 µ1(ρ;ϑ1)dρ
)2

σ2
1p+σ2

1 t
)
, 0 < t ≤ τ

Q− R, t > τ

(A1)

where Q = Q1 −Q2, R = R1 − R2, and

Q1 =

√
r2

a1√
2π(t−τ)2(σ2

α1+σ2
β1)

exp
[
− (λα1−λβ1)

2

2(σ2
α1+σ2

β1)

]

×
{

λβ1σ2
α1+λα1σ2

β1

σ2
α1+σ2

β1
×Φ

(
λβ1σ2

α1+λα1σ2
β1√

σ2
α1σ2

β1(σ
2
α1+σ2

β1)

)
+

√
σ2

α1σ2
β1

σ2
α1+σ2

β1
× φ

(
λβ1σ2
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β1√

σ2
α1σ2

β1(σ
2
α1+σ2

β1)

)}

Q2 =

√
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2π(t−τ)2(σ2

α1+σ2
β1)
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2

2(σ2
α1+σ2

β1)

]
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1−Φ
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−
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α1+λα1σ2

β1√
σ2

α1σ2
β1(σ

2
α1+σ2

β1)

)}
R1 = I1 ×

√
r2

a1
2π(t−τ)2(σ2

α1+σ2
β1)

exp
[
− (λα1−λγ1)

2

2(σ2
α1+σ2

β1)

]
×
{

λγ1σ2
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β1

σ2
α1+σ2
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(
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β1√

σ2
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β1(σ
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α1+σ2
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+
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α1σ2
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σ2
α1+σ2

β1
× φ

(
λγ1σ2

α1+λα1σ2
β1√

σ2
α1σ2

β1(σ
2
α1+σ2

β1)

)}

R2 = I1 ×
√

r2
b1

2π(t−τ)2(σ2
α1+σ2

β1)
exp

[
− (λα1−λγ1)

2

2(σ2
α1+σ2

β1)

]
×
{

1−Φ

(
−

λγ1σ2
α1+λα1σ2

β1√
σ2

α1σ2
β1(σ

2
α1+σ2

β1)

)}
λα1 = λ2p

∫ t
τ µ2(ρ− τ; ϑ2)dρ, λβ1 = w− λ1p

∫ τ
0 µ1(ρ; ϑ1)dρ, λγ1 = −w− λ1p

∫ τ
0 µ1(ρ; ϑ1)dρ−

2wσ2
1p
∫ τ

0 µ1(ρ;ϑ1)dρ

σ2
1

,

σ2
α1 = σ2

2p
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τ µ2(ρ− τ; ϑ2)dρ

)2
+ σ2

2 (t− τ), σ2
β1 = σ2
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0 µ1(ρ; ϑ1)dρ
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+ σ2
1 τ
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(
σ2

2+σ2
2pµ2(t−τ;ϑ2)

∫ t
τ µ2(ρ−τ;ϑ2)dρ

)
σ2

α1
, rb1 =

(t−τ)σ2
2 (λα1−λ2p(t−τ)µ2(t−τ;ϑ2))

σ2
α1

I1 = exp
(

2λ1pw
σ2

1
+

2(w2σ4
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∫ τ

0 µ1(ρ;ϑ1)dρ+w2σ2
1pσ2

1 )

(σ2
1+σ2

1p
∫ τ

0 µ1(ρ;ϑ1)dρ)σ4
1

)
Based on Equation (A1), according to the relationship between the lifetime T and

RUL, the PDF of RUL that considers temporal variability, unit-to-unit variability, and the
randomness of the degradation state at the changing point could be obtained as follows,

Case 1: The current time tk is smaller than the changing time τ (i.e., tk < τ)

fL(lk) ∼=



1√
2πlk

2

((∫ tk+lk
tk

µ1(ρ;ϑ1)dρ
)2

σ2
1p+σ2

1 lk

) × [w− xk −
(∫ tk+lk

tk
µ1(ρ; ϑ1)dρ− lkµ1(tk + lk; ϑ1)

)

×
(w−xk)σ

2
1p

∫ tk+lk
tk

µ1(ρ;ϑ1)dρ+λ1pσ2
1 lk(∫ tk+lk

tk
µ1(ρ;ϑ1)dρ

)2
σ2

1p+σ2
1 lk

]
× exp

− (
w−xk−λ1p

∫ tk+lk
tk

µ1(ρ;ϑ1)dρ
)2

2
((∫ tk+lk

tk
µ1(ρ;ϑ1)dρ

)2
σ2

1p+σ2
1 lk

)
,

0 < lk + tk ≤ τ

S− T, τ < lk + tk

(A2)

where S = S1 − S2, T = T1 − T2, and



Sensors 2024, 24, 165 25 of 35

S1 =

√
r2

a2
2π(tk+lk−τ)2(σ2
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exp
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β2√
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√
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√
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√
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√
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√
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Case 2: The current time tk is larger than the changing time τ (i.e., tk ≥ τ)

fL(lk) ∼= 1√
2πlk2

((∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ
)2

σ2
2p+σ2

2 lk

) × [w− xk −
(∫ tk+lk

tk
µ2(ρ− τ; ϑ2)dρ− lkµ2(tk + lk − τ; ϑ2)

)

×
σ2

2p(w−xk)
∫ tk+lk
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µ2(ρ−τ;ϑ2)dρ+λ2pσ2

2 lk

σ2
2p
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µ2(ρ−τ;ϑ2)dρ
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× exp

− (
w−xk−λ2p
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2 lk

)
 (A3)

The result of Equation (A3) is transformed from lifetime T to RUL based on the law of
total probability as fT(t) =

∫ +∞
−∞ fT(t|λ2, xτ) p(λ2)dλ2, where the result of fT(t|λ2, xτ) can

be found in Equation (6), and the proof can be found in reference [33].
In this way, the proof has been completed. �

Appendix B. Proof of Theorem 2

Proof.
Case 1: (1) If tk ≤ τ and 0 < lk + tk ≤ τ,
To facilitate calculation, the following Lemma A1 is provided.

Lemma A1 ([19]). If Z ∼ N(µ, σ2) and w1, w2, A, B ∈ R+, then

EZ

{
(w1 − AZ) exp

[
− (w2 − BZ)2

2C

]}
=

√
C

B2σ2 + C

(
w1 − A

Bw2σ2 + µC
B2σ2 + C

)
exp

[
− (w2 − Bµ)2

2(B2σ2 + C)

]
(A4)
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(A) Based on fT(t|λ1) in Equation (5) and λ1 ∼ N(λ1p, σ2
1p), the PDF of the lifetime

considering the unit-to-unit variability could be formulated via Lemma A1 as,

fT(t) =
∫ +∞
−∞ fT(t|λ1)p(λ1)dλ1

∼=
∫ +∞
−∞

w−x0−λ1

(∫ t
0 µ1(ρ;ϑ1)dρ−tµ1(t;ϑ1)

)
√

2πσ2
1 t3

exp

[
−
(

w−x0−λ1
∫ t

0 µ1(ρ;ϑ1)dρ
)2

2σ2
1 t

]
p(λ1)dλ1

∼=

w−
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0 µ1(ρ;ϑ1)dρ−tµ1(t;ϑ1)
)
×

wσ2
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2

σ2
1p+σ2

1 t


√

2πt2

((∫ t
0 µ1(ρ;ϑ1)dρ

)2
σ2

1p+σ2
1 t
) × exp

− (
w−λ1p

∫ t
0 µ1(ρ;ϑ1)dρ

)2

2
((∫ t

0 µ1(ρ;ϑ1)dρ
)2

σ2
1p+σ2

1 t
)


(A5)

(B) Then based on the relationship between lifetime and RUL, we can further obtain
the PDF of RUL considering the unit-to-unit variability as follows,

fL(lk) ∼=

[
w−xk−

(∫ tk+lk
tk

µ1(ρ;ϑ1)dρ−lkµ1(tk+lk ;ϑ1)
)
×

(w−xk)σ
2
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)
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(A6)

(C) When considering the three-source variability simultaneously, it is necessary
to further incorporate the measurement variability into the PDF of RUL that considers
unit-to-unit variability, which could be presented as,

fLk |Y1:k
(lk|Y1:k) ∼= Exk |Y1:k


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)


(A7)

(D) Then, based on xk ∼ N(x̂k|k, Pk|k) and Lemma A1, we can obtain the PDF of RUL
with three-source variability when tk ≤ τ and 0 < lk + tk ≤ τ as follows,

fLk |Y1:k
(lk|Y1:k) ∼=

M1 − N1 ×
(

w−λ1p
∫ tk+lk

tk
µ1(ρ;ϑ1)dρ

)
Pk|k+υ1(lk)x̂k|k
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2πlk2υ2

1(lk)
(

Pk|k + υ1(lk)
) exp

−
(

w− x̂k|k − λ1p
∫ tk+lk

tk
µ1(ρ; ϑ1)dρ

)2

2
(

Pk|k + υ1(lk)
)

 (A8)

where,

υ1(lk) =
(∫ tk+lk

tk
µ1(ρ; ϑ1)dρ

)2
σ2

1p + σ2
1 lk,

M1 = wυ1(lk)−
(

wσ2
1p
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,
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µ1(ρ; ϑ1)dρ

(∫ tk+lk
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µ1(ρ; ϑ1)dρ− lkµ1(tk + lk; ϑ1)
)
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(2) If tk ≤ τ and τ < lk + tk,
(A) To solve the PDF of RUL considering three-source variability simultaneously, the

PDF formulas in S− T of Theorem 1 can be transformed into the following form,

S = S1 − S2

= 1√
2π(tk+lk−τ)2(σ2

α2+σ2
β2)

exp
[
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2
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α2+σ2
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×
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β2√
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β2(σ
2
α2+σ2
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β2)

]
×
{(

ra2 ×
λγ2σ2

α2+λα2σ2
β2

σ2
α2+σ2

β2
− rb2

)
×Φ

(
λγ2σ2

α2+λα2σ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

)
+ ra2

√
σ2

α2σ2
β2

σ2
α2+σ2

β2
× φ

(
λγ2σ2

α2+λα2σ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

)}
(A9)

where

λα2 = λ2p
∫ tk+lk
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,

σ2
α2 = σ2

2p

(∫ tk+lk
τ µ2(ρ− τ; ϑ2)dρ

)2
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σ2

α2
,

I2 = exp

[
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σ2
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+
2
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2
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(
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1

]

(B) Then, based on Equation (A9) and xk ∼ N(x̂k|k, Pk|k), the PDF of RUL with three-
source variability can be formulated as follows,

fLk |Y1:k
(lk
∣∣∣Y1:k) = Exk |Y1:k

[S− T] = Exk |Y1:k
[S]− Exk |Y1:k

[T] (A10)

(C) Equation (A10) can be obtained through solving Exk |Y1:k
[S] and Exk |Y1:k

[T] separately.
To facilitate calculation, the following Lemmas A2 and A3 are provided.

Lemma A2 ([45]). If Z ∼ N(µ, σ2), w, A ∈ R and B ∈ R+,

EZ

{
exp

[
− (w− AZ)2

2B

]}
=

√
B

A2σ2 + B
exp

[
− (w− Aµ)2

2(A2σ2 + B)

]
(A11)

Lemma A3 ([19]). If Z ∼ N(µ, σ2), w, A, B, C, D ∈ R and 1− 2Bσ2 > 0, then,

EZ

[
exp(AZ + BZ2) ·Φ(C + DZ)

]
=

1√
1− 2Bσ2

exp
[

2Aµ + A2σ2 + 2Bµ2

2(1− 2Bσ2)

]
·Φ

 C + Dµ + ADσ2 − 2BCσ2√
(1− 2Bσ2)

2 + D2σ2(1− 2Bσ2)

 (A12)
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(D) Then, to calculate Exk |Y1:k
[S], the S formula in Equation (A9) is expanded to Sa and

Sb as follows,

Sa = exp
[
− (λα2−λβ2)

2

2(σ2
α2+σ2

β2)

]
×
(

ra2 ×
λβ2σ2

α2+λα2σ2
β2

σ2
α2+σ2

β2
− rb2

)
×Φ

(
λβ2σ2

α2+λα2σ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

)

= exp

[
−
(

λ2p
∫ tk+lk

τ µ2(ρ−τ;ϑ2)dρ−
(

w−xk−λ1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

))2

2(σ2
α2+σ2

β2)

]

×
(

ra2 ×
(

w−xk−λ1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

)
σ2

α2+
(

λ2p
∫ tk+lk

τ µ2(ρ−τ;ϑ2)dρ
)

σ2
β2

σ2
α2+σ2

β2
− rb2

)

×Φ

( (
w−xk−λ1p

∫ τ
tk

µ1(ρ;ϑ1)dρ
)

σ2
α2+

(
λ2p
∫ tk+lk

τ µ2(ρ−τ;ϑ2)dρ
)

σ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

)
(A13)

Sb = exp
[
− (λα2−λβ2)

2

2(σ2
α2+σ2

β2)

]
× φ

(
λβ2σ2

α2+λα2σ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

)

= exp

[
−
(

λ2p
∫ tk+lk

τ µ2(ρ−τ;ϑ2)dρ−
(

w−xk−λ1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

))2

2(σ2
α2+σ2

β2)

]

×φ

( (
w−xk−λ1p

∫ τ
tk

µ1(ρ;ϑ1)dρ
)

σ2
α2+

(
λ2p
∫ tk+lk

τ µ2(ρ−τ;ϑ2)dρ
)

σ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

)
where

σ2
α2 = σ2

2p

(∫ tk+lk
τ µ2(ρ− τ; ϑ2)dρ

)2
+ σ2

2 (tk + lk − τ), σ2
β2 = σ2

1p

(∫ τ
tk

µ1(ρ; ϑ1)dρ
)2

+ σ2
1 (τ − tk),

ra2 =
(tk+lk−τ)

(
σ2

2+σ2
2pµ2(tk+lk−τ;ϑ2)

∫ tk+lk
τ

µ2(ρ−τ;ϑ2)dρ
)

σ2
α2

,

rb2 =
(tk+lk−τ)σ2

2

(
λ2p
∫ tk+lk

τ
µ2(ρ−τ;ϑ2)dρ−λ2p(tk+lk−τ)µ2(tk+lk−τ;ϑ2)

)
σ2

α2
,

(E) Based on Equation (A13), Exk |Y1:k
[S] could be expressed as follows,

Exk |Y1:k
[S] =

1√
2π(tk + lk − τ)2(σ2

α2 + σ2
β2)
×

Exk |Y1:k
[Sa] + ra2

√√√√ σ2
α2σ2

β2

σ2
α2 + σ2

β2
Exk |Y1:k

[Sb]

 (A14)

(F) To solve Exk |Y1:k
[Sa], we define the following parameter simplification formulas,

aS = w− λ1p
∫ τ

tk
µ1(ρ; ϑ1)dρ− λ2p

∫ tk+lk
τ µ2(ρ− τ; ϑ2)dρ, bS = σ2

α2 + σ2
β2, cS = −ra2 ×

σ2
α2

σ2
α2+σ2

β2
,

dS = ra2 ×
(

w−λ1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

)
σ2

α2+
(

λ2p
∫ tk+lk

τ µ2(ρ−τ;ϑ2)dρ
)

σ2
β2

σ2
α2+σ2

β2
− rb2,

eS =
(

w− λ1p
∫ τ

tk
µ1(ρ; ϑ1)dρ

)
σ2

α2 +
(

λ2p
∫ tk+lk

τ µ2(ρ− τ; ϑ2)dρ
)

σ2
β2, fS =

√
σ2

α2σ2
β2(σ

2
α2 + σ2

β2)

(A15)

Then, the formula Sa in Equation (A13) could be simplified as,

Sa = exp

[
− (aS − xk)

2

2bS

]
× (dS + cSxk)×Φ

(
eS − σ2

α2xk

fS

)
(A16)
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(G) Thus, based on xk ∼ N(x̂k|k, Pk|k) and Lemma A3, Exk |Y1:k
[Sa] could be obtained

as follows,

Exk |Y1:k
[Sa] = Exk |Y1:k

[
exp

[
− (aS−xk)

2

2bS

]
× dS ×Φ

(
eS−σ2

α2xk
fS

)]
+Exk |Y1:k

[
exp

[
− (aS−xk)

2

2bS

]
× (cSxk)×Φ

(
eS−σ2

α2xk
fS

)]

=
dS exp

[
− a2

S
2bS

]
√

1+
Pk|k
bS

exp

 2aS x̂k|k+
a2
S Pk|k

b3
−x̂2

k|k

2(bS+Pk|k)

Φ

 eS−σ2
α2 x̂k|k−

aSσ2
α2 Pk|k
bS

+
eS Pk|k

bS√
f 2
S

(
1+

Pk|k
bS

)2

+σ4
α2Pk|k

(
1+

Pk|k
bS

)


+ 1√
2πPk|k

∫ +∞
−∞

(
exp

[
− (aS−xk)

2

2bS

]
× (cSxk)× exp

[
− (xk−x̂k|k)

2

2Pk|k

]
×Φ

(
eS−σ2

α2xk
fS

))
dxk

(A17)

(H) To solve Exk |Y1:k
[Sb], based on Equation (15), the Sb in Equation (A13) could be

simplified as,

Sb = exp

[
− (aS − xk)

2

2bS

]
× 1√

2π
exp

[
−
(eS − σ2

α2xk)
2

2 f 2
S

]
(A18)

Thus, Exk |Y1:k
[Sb] could be formulated as follows,

Exk |Y1:k
[Sb] = Exk |Y1:k

{
exp

[
− (aS−xk)

2

2bS

]
× 1√

2π
exp

[
− (eS−σ2

α2xk)
2

2 f 2
S

]}
= 1√

2π
Exk |Y1:k

{
exp

[
− 1

2

(
f 2
S+bSσ4

α2
bS f 2

S
x2

k −
2(aS f 2

S+bSeSσ2
α2)

bS f 2
S

xk +
a2

S f 2
S+bSe2

S
bS f 2

S

)]}
= 1√

2π
Exk |Y1:k

{
exp

[
− 1

2

(
(L1Sxk − L2S)

2 + L3S

)]} (A19)

where

L1S =

√
f 2
S + bSσ4

α2
bS f 2

S
, L2S =

aS f 2
S + bSeSσ4

α2√
bS f 2

S
(

f 2
S + bSσ4

α2
) , L3S =

a2
S f 2

S + bSe2
S

bS f 2
S

−
(
aS f 2

S + bSeSσ2
α2
)2√

bS f 2
S
(

f 2
S + bSσ4

α2
)

Then, according to Lemma A2, Exk |Y1:k
[Sb] could be obtained as,

Exk |Y1:k
[Sb] =

1√
2π

Exk |Y1:k

[
exp

(
− 1

2

(
(L1Sxk − L2S)

2 + L3S

))]
= 1√

2π
exp

(
− 1

2 L3S

)
× Exk |Y1:k

[
exp

(
− 1

2 (L1Sxk − L2S)
2
)]

= 1√
2π

exp
(
− 1

2 L3S

)
×
√

1
L2

1SPk|k+1
exp

[
− (L2S−L1S x̂k|k)

2

2(L2
1SPk|k+1)

] (A20)

(I) Finally, bringing the results of Exk |Y1:k
[Sa] and Exk |Y1:k

[Sb] into Equation (A14), the
final result of Exk |Y1:k

[S], i.e., the formula Snew in Theorem 2, could be obtained. Due to
space limitations, the result of Snew is omitted here.

Similarly, we can solve Exk |Y1:k
[T] in Equation (A10) as follows.

(A) Firstly, I2 in the formula T of Equation (A9) should be simplified as,

I2 = exp

[
2λ1p(w−xk)

σ2
1

+
2
(
(w−xk)

2σ4
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ+(w−xk)

2σ2
1pσ2

1

)
(

σ2
1+σ2

1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

)
σ4

1

]

= exp

[
2w
(

λ1pσ2
1+σ2

1pw
)

σ4
1

]
exp

[
2σ2

1p

σ4
1

x2
k −

2λ1pσ2
1+4wσ2

1p

σ4
1

xk

]
= exp

[
2w
(

λ1pσ2
1+σ2

1pw
)

σ4
1

]
exp

(
aTx2

k − bTxk
)

(A21)
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where aT =
2σ2

1p

σ4
1

, bT =
2λ1pσ2

1+4wσ2
1p

σ4
1

.

(B) Further, as to

exp
[
− (λα2−λγ2)

2

2(σ2
α2+σ2

β2)

]

= exp

−
λ2p

∫ tk+lk
τ µ2(ρ−τ;ϑ2)dρ+w−xk+λ1p

∫ τ
tk

µ1(ρ;ϑ1)dρ+
2(w−xk)σ

2
1p

(∫ τ
tk

µ1(ρ;ϑ1)dρ

)
σ2

1

2

2(σ2
α2+σ2

β2)


(A22)

we define

cT = w + λ1p
∫ τ

tk
µ1(ρ; ϑ1)dρ + λ2p

∫ tk+lk
τ µ2(ρ− τ; ϑ2)dρ +

2wσ2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

dT = 1 +
2σ2

1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

=
σ2

1+2σ2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

(A23)

Thus, the Equation (A22) could be simplified as,

exp

[
− (cT − dTxk)

2

2bS

]
(A24)

Based on Equations (A21) and (A24), we have

I2 exp
[
− (λα2−λγ2)

2

2(σ2
α2+σ2

β2)

]
= exp

[
2w
(

λ1pσ2
1+σ2

1pw
)

σ4
1

]
exp

(
aTx2

k − bTxk
)
× exp

[
− (cT−dT xk)

2

2bS

]
= exp

[
2w
(

λ1pσ2
1+σ2

1pw
)

σ4
1

]
exp

[
− d2

T−2aTbS
2bS

x2
k +

cTdT−bSbT
bS

xk −
c2

T
2bS

]
= exp

[
2w
(

λ1pσ2
1+σ2

1pw
)

σ4
1

]
exp

[
− c2

T
2bS

]
exp

[
−D1T

2bS
x2

k +
D2T
bS

xk

]
(A25)

where D1T = d2
T − 2aTbS, D2T = cTdT − bSbT .

(C) Then, the common item before {·} in the formula T of Equation (A9) could be
simplified as follows,

I2√
2π(tk+lk−τ)2(σ2

α2+σ2
β2)

exp
[
− (λα2−λγ2)

2

2(σ2
α2+σ2

β2)

]

=

exp

 2w
(

λ1pσ2
1+σ2

1pw
)

σ4
1

 exp
[
− c2

T
2bS

]
exp

[
− D1T

2bS
x2

k+
D2T
bS

xk

]
√

2π(tk+lk−τ)2(σ2
α2+σ2

β2)

=

exp

 4wbS

(
λ1pσ2

1+σ2
1pw

)
−c2

T σ4
1

2bSσ4
1


√

2π(tk+lk−τ)2(σ2
α2+σ2

β2)
× exp

[
−D1T

2bS
x2

k +
D2T
bS

xk

]
(A26)
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(D) On this basis, the formula T in Equation (A9) could be split into Ta and Tb as
follows,

Ta = exp
[
−D1T

2bS
x2

k +
D2T
bS

xk

]
×
(

ra2 ×
λγ2σ2

α2+λα2σ2
β2

σ2
α2+σ2

β2
− rb2

)
×Φ

(
λγ2σ2

α2+λα2σ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

)
= exp

[
−D1T

2bS
x2

k +
D2T
bS

xk

]
×

ra2 ×

(
−w+xk−λ1p

∫ τ

tk
µ1(ρ;ϑ1)dρ−

2(w−xk )σ
2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

)
σ2

α2+λ2p
∫ tk+lk

τ
µ2(ρ−τ;ϑ2)dρσ2

β2

σ2
α2+σ2

β2
− rb2


×Φ


(
−w+xk−λ1p

∫ τ

tk
µ1(ρ;ϑ1)dρ−

2(w−xk )σ
2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

)
σ2

α2+λ2p
∫ tk+lk

τ
µ2(ρ−τ;ϑ2)dρσ2

β2√
σ2

α2σ2
β2(σ

2
α2+σ2

β2)



(A27)

Tb = exp
[
−D1T

2bS
x2

k +
D2T
bS

xk

]
×φ


(
−w+xk−λ1p

∫ τ
tk

µ1(ρ;ϑ1)dρ−
2(w−xk)σ

2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

)
σ2

α2+λ2p
∫ tk+lk

τ µ2(ρ−τ;ϑ2)dρσ2
β2√

σ2
α2σ2

β2(σ
2
α2+σ2

β2)

 (A28)

(E) Thus, the simplified form of Exk |Y1:k
[T] could be obtained based on Ta, Tb,

Exk |Y1:k
[T] =

exp

[
4wbS

(
λ1pσ2

1+σ2
1pw

)
−c2

Tσ4
1

2bSσ4
1

]
√

2π(tk + lk − τ)2(σ2
α2 + σ2

β2)
×

Exk |Y1:k
[Ta] + ra2 ×

√√√√ σ2
α2σ2

β2

σ2
α2 + σ2

β2
Exk |Y1:k

[Tb]

 (A29)

(F) To solve Exk |Y1:k
[Ta], we define

eT =
ra2σ2

α2

(
σ2

1+2σ2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

)
σ2

1

(
σ2

α2+σ2
β2

) ,

fT = ra2 ×

(
−w−λ1p

∫ τ
tk

µ1(ρ;ϑ1)dρ−
2wσ2

1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

)
σ2

α2+λ2p
∫ tk+lk

τ µ2(ρ−τ;ϑ2)dρσ2
β2

σ2
α2+σ2

β2
− rb2,

gT =

(
−w− λ1p

∫ τ
tk

µ1(ρ; ϑ1)dρ−
2wσ2

1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

σ2
1

)
σ2

α2 + λ2p
∫ tk+lk

τ µ2(ρ− τ; ϑ2)dρσ2
β2,

hT =
σ2

α2

(
σ2

1+2σ2
1p
∫ τ

tk
µ1(ρ;ϑ1)dρ

)
σ2

1

(A30)

Then, the Exk |Y1:k
[Ta] in Equation (A29) could be formulated as follows,

Exk |Y1:k
[Ta] = Exk |Y1:k

{
exp

[
−D1T

2bS
x2

k +
D2T
bS

xk

]
× ( fT + eTxk)×Φ

(
gT+hT xk

fS

)}
= Exk |Y1:k

[
exp

[
−D1T

2bS
x2

k +
D2T
bS

xk

]
× fT ×Φ

(
gT+hT xk

fS

)]
+Exk |Y1:k

[
exp

[
−D1T

2bS
x2

k +
D2T
bS

xk

]
× (eTxk)×Φ

(
gT+hT xk

fS

)] (A31)

(G) Based on xk ∼ N(x̂k|k, Pk|k) and Lemma A3, Exk |Y1:k
[Ta] could be obtained as,

Exk |Y1:k
[Ta] =

fT√
1+

D1T Pk|k
bS

exp

 2D2T x̂k|k+
D2

2T Pk|k
b3

−D1T x̂2
k|k

2(bS+D1T Pk|k)

Φ

 gT+hT x̂k|k+
D2T hT Pk|k

bS
+

D1T gT Pk|k
bS√

f 2
S

(
1+

D1T Pk|k
bS

)2
+h2

T Pk|k

(
1+

D1T Pk|k
bS

)


+ 1√
2πPk|k

∫ +∞
−∞

{
exp

[
−D1T

2bS
x2

k +
D2T
bS

xk

]
× (eTxk)× exp

[
− (xk−x̂k|k)

2

2Pk|k

]
×Φ

(
gT+hT xk

fS

)}
dxk

(A32)
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(H) Similarly, according to Equation (A30), Exk |Y1:k
[Tb] could be formulated as,

Exk |Y1:k
[Tb] = Exk |Y1:k

[
exp

[
−D1T

2bS
x2

k +
D2T
bS

xk

]
× 1√

2π
exp

[
− (gT+hT xk)

2

2 f 2
S

]]
= 1√

2π
Exk |Y1:k

{
exp

[
− 1

2

(
D1T f 2

S+bSh2
T

bS f 2
T

x2
k −

2(D2T f 2
S−bSgT hT)
bS f 2

S
xk +

g2
T

f 2
T

)]}
= 1√

2π
Exk |Y1:k

{
exp

[
− 1

2

(
(R1Txk − R2T)

2 − R3T

)]}
= 1√

2π
exp

[
− 1

2 R3T

]
Exk |Y1:k

[
exp

(
− 1

2 (R1Txk − R2T)
2
)]

(A33)

where

R1T =

√
D1T f 2

S + bSh2
T

bS f 2
S

, R2T =
D2T f 2

S − bSgThT√
bS f 2

S
(

D1T f 2
S + bSh2

T
) , R3T =

g2
T

f 2
S
−
(

D2T f 2
S − bSgThT

)2

bS f 2
S
(

D1T f 2
S + bSh2

T
)

(I) Based on xk ∼ N(x̂k|k, Pk|k) and Lemma A1, Exk |Y1:k
[Tb] could be obtained as

follows,

Exk |Y1:k
[Tb] =

1√
2π

exp
[
−1

2
R3T

]
×
√

1
R2

1T Pk|k + 1
exp

−
(

R2T − R1T x̂k|k

)2

2
(

R2
1T Pk|k + 1

)
 (A34)

(J) Finally, bringing the final results of Exk |Y1:k
[Ta] and Exk |Y1:k

[Tb] into Equation (A29),
the final results of Exk |Y1:k

[T], i.e., the formula Tnew in Theorem 2, could be obtained. Due to
space limitations, the result of Tnew is omitted here.

Case 2: If τ < tk,
(A) When τ < tk, the degradation process is equivalent to a single-phase nonlinear

process, and the randomness of the degradation state at the changing point can be omitted.
Therefore, based on λ2 ∼ N(λ2p, σ2

2p) and the fT(t|λ2, xτ) in Equation (6), the PDF of the
lifetime T could be obtained through Lemma A1 as follows,

fT(t) =
∫ +∞
−∞ fT(t|λ2, xτ)p(λ2)dλ2

∼=
∫ +∞
−∞

w−xτ−λ2

(∫ t
τ µ2(ρ−τ;ϑ2)dρ−(t−τ)µ2(t−τ;ϑ2)

)
√

2πσ2
2 (t−τ)3

exp

[
−
(

w−xτ−λ2
∫ t

τ µ2(ρ−τ;ϑ2)dρ
)2

2σ2
2 (t−τ)

]
p(λ2)dλ2

∼= 1√
2π(t−τ)2

[(∫ t
τ µ2(ρ−τ;ϑ2)dρ

)2
σ2

2p+σ2
2 (t−τ)

] × [w− xτ −
(∫ t

τ µ2(ρ− τ; ϑ2)dρ− (t− τ)µ2(t− τ; ϑ2)
)

×
(w−xτ)σ2

2p
∫ t

τ µ2(ρ−τ;ϑ2)dρ+λ2pσ2
2 (t−τ)(∫ t

τ µ2(ρ−τ;ϑ2)dρ
)2

σ2
2p+σ2

2 (t−τ)

]
× exp

− (
w−xτ−λ2p

∫ t
τ µ2(ρ−τ;ϑ2)dρ

)2

2
((∫ t

τ µ2(ρ−τ;ϑ2)dρ
)2

σ2
2p+σ2

2 (t−τ)

)


(A35)

(B) Then based on the relationship between lifetime and RUL, we can further obtain
the PDF of RUL considering the unit-to-unit variability as,

fL(lk) ∼=

w−xk−
(∫ tk+lk

tk
µ2(ρ−τ;ϑ2)dρ−lkµ2(tk+lk−τ;ϑ2)

)
×

(w−xk )σ
2
2p
∫ tk+lk

tk
µ2(ρ−τ;ϑ2)dρ+λ2pσ2

2 lk(∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ

)2
σ2

2p+σ2
2 lk


√

2πlk
2

[(∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ
)2

σ2
2p+σ2

2 lk

]

× exp

− (
w−xk−λ2p

∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ
)2

2
((∫ tk+lk

tk
µ2(ρ−τ;ϑ2)dρ

)2
σ2

2p+σ2
2 lk

)


(A36)

(C) When considering the three-source variability simultaneously, it is necessary
to further incorporate the measurement variability into the PDF of RUL that considers
unit-to-unit variability, which is presented as,
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fLk |Yτ̃:k
(lk
∣∣∣Yτ̃:k)

= Exk |Yτ̃:k

 1√
2πlk2

((∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ
)2

σ2
2p+σ2

2 lk

) × [w− xk −
(∫ tk+lk

tk
µ2(ρ− τ; ϑ2)dρ− lkµ2(tk + lk − τ; ϑ2)

)

×
(w−xk)σ

2
2p
∫ tk+lk

tk
µ2(ρ−τ;ϑ2)dρ+λ2pσ2

2 lk(∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ
)2

σ2
2p+σ2

2 lk

× exp

− (
w−xk−λ2p

∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ
)2

2
((∫ tk+lk

tk
µ2(ρ−τ;ϑ2)dρ

)2
σ2

2p+σ2
2 lk

)


(A37)

where τ̃ denote the index of the changing point location.
(D) Then, based on xk ∼ N(x̂k|k, Pk|k) and Lemma A1, we could obtain the PDF of

RUL with three-source variability simultaneously when τ < tk as follows,

fLk |Yτ̃:k
(lk

∣∣∣∣∣∣∣∣Yτ̃:k) =
M2−N2×

(
w−λ2p

∫ tk+lk
tk

µ2(ρ−τ;ϑ2)dρ

)
Pk|k+υ2(lk)x̂k|k

Pk|k+υ2(lk)√
2πlk2υ2

2(lk)(Pk|k+υ2(lk))

× exp

− (w−x̂k|k−λ2p
∫ tk+lk

tk
µ2(ρ−τ;ϑ2)dρ

)2

2(Pk|k+υ2(lk))


(A38)

where

υ2(lk) =
(∫ tk+lk

tk
µ2(ρ− τ; ϑ2)dρ

)2
σ2

2p + σ2
2 lk,

M2 = wυ2(lk)−
(

wσ2
2p
∫ tk+lk

tk
µ2(ρ− τ; ϑ2)dρ + λ2pσ2

2 lk
)(∫ tk+lk

tk
µ2(ρ− τ; ϑ2)dρ− lkµ2(tk + lk − τ; ϑ2)

)
N2 = υ2(lk)− σ2

2p
∫ tk+lk

tk
µ2(ρ− τ; ϑ2)dρ

(∫ tk+lk
tk

µ2(ρ− τ; ϑ2)dρ− lkµ2(tk + lk − τ; ϑ2)
)

In this way, the proof has been completed. �
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