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Abstract: A sedentary lifestyle has caused adults to spend more than 6 h seated, which has led to
inactivity and spinal issues. This context underscores the growing sedentary behavior, exemplified by
extended sitting hours among adults and university students. Such inactivity triggers various health
problems and spinal disorders, notably Upper Crossed Syndrome (UCS) and its association with
thoracic kyphosis, which can cause severe spinal curvature and related complications. Traditional
detection involves clinical assessments and corrective exercises; however, this work proposes a
multi-layered system for a back brace to detect, monitor, and potentially prevent the main signs of
UCS. Building and using a framework that detects and monitors signs of UCS has facilitated patient–
doctor interaction, automated the detection process for improved patient–physician coordination, and
helped improve patients’ spines over time. The smart wearable brace includes inertial measurement
unit (IMU) sensors targeting hunched-back postures. The IMU sensors capture postural readings,
which are then used for classification. Multiple classifiers were used where the long short-term
memory (LSTM) model had the highest accuracy of 99.3%. Using the classifier helped detect and
monitor UCS over time. Integrating the wearable device with a mobile interface enables real-time
data visualization and immediate feedback for users to correct and mitigate UCS-related issues.

Keywords: corrective wearables; back brace; hunchback; machine learning; Upper Crossed Syn-
drome; inertial measurement unit

1. Introduction

The move from an active lifestyle to a sedentary one has become prevalent in urban
environments, where it is reported that 47% of adults sit between 4 and 6 h daily [1].
Moreover, it has been observed that university students spend over 12 h in sedentary
positions [2]. In 2021, there was an average increase of 135 min in inactivity due to jobs
becoming more desk-bound and remote [3]. This shift towards remote work and extended
periods of sitting has raised concerns over its impact on posture. Prolonged hours spent
sitting can lead to the development of poor postures and musculoskeletal disorders. This
trend has been visible in the United Arab Emirates (UAE), where inactivity has decreased
the level of physical activity by 26.8% [4]. An increase in sedentary lifestyles has led to
numerous physical and mental health problems, which increase depression, obesity, and
neck/back pain. As the level of inactivity increases, this causes the degeneration of the
spine, creating various spinal disorders such as hunchback, forward head posture, and
rounded shoulders. These spinal disorders can lead to long term illnesses which affect
the back’s posture. Being in a hunched position can lead to the development of Upper
Crossed Syndrome (UCS), characterized by an imbalance in the head and shoulder muscles
and associated with forward head posture (FHP), hunchback, and rounded shoulders [5].
According to Singla et al. [6], there is a relationship between HP, rounded shoulders, and
hunchback, which is known as thoracic kyphosis. Kyphosis is identified when the angle of
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the spine’s natural curve exceeds 50 degrees [7]. Since there is an association between these
different conditions with respect to thoracic kyphosis, this association shows that UCS is
related to thoracic kyphosis. When an individual experiences UCS for an extended period, it
can lead to hyperkyphosis, which is a severe curvature of the spine, leading to heartburn [8].
Various corrective exercises and wearables can be used to improve posture. The correlation
between forward head and hunchback postures with the development of UCS underscores
the importance of predicting the likelihood of an individual to experience spinal disorders.
Moreover, UCS cannot be detected directly; therefore, clinical features such as rounded
upper back, shoulder protraction, and hunchback can be used to identify signs that the
individual is experiencing UCS [9]. The lack of an effective, automated method to accurately
detect and monitor signs of UCS using wearable technology necessitates the development
of an integrated multi-layered framework. This framework aims to improve the diagnosis,
monitoring, and treatment of UCS-associated spinal deformities, enabling effective patient–
physician interaction and assessing the advantages of corrective wearables. Furthermore,
limited studies have utilized a corrective wearable, such as a back brace, to monitor the
improvement of the back posture over time.

The detection of UCS and other spinal deformities includes regular checkups with a
physician to evaluate the spine. Some preventive measures are taken to reduce UCS’s effect,
including corrective exercises such as stretching and chin tuck exercises. These exercises
can help strengthen chest and shoulder muscles, which can improve posture. Additionally,
a back brace can be worn to correct the curvature of the spine and to reduce the impact
of hunchback posture. The development of embedded systems has allowed the use of
wearables for numerous applications, namely in tracking and monitoring an individual’s
health. Therefore, a wearable device can be used to diagnose and detect various posture
problems and monitor the progression of a disorder over time [10,11]. One such approach
involves the use of inertial measurement units (IMUs), which can identify how forward
the head is and how effective the wearable device is in mitigating the disorder [10,11].
Therefore, it is essential to retrofit a conventional back brace which can observe the vital
signs of UCS and monitor posture problems. This framework can identify spinal disorders
that are correlated to UCS and monitor an individual’s posture overtime. This paper
expands on the current literature on classifying posture problems using wearable devices
with the following contributions:

• This paper proposes a framework that enables the integration of a back brace and
enables the interaction between a patient and a doctor for treatment progression.

• The framework automates the detection and monitoring process by observing vital
signs of UCS and using machine learning techniques to facilitate and coordinate
effective interactions between patients and physicians.

• The framework tracks the correction of the spine over time and the effectiveness of
using the back brace to improve posture deformities.

The rest of this paper is organized as follows: A literature review of postural problems
and their various implementations are presented in Section 2, the methodology and its
details are presented in Section 3, the implementation of the framework and its details are
discussed in Section 4, the results of the different classification models and the framework
are presented in Section 5, and the impact of the project and its future implications are
discussed in Section 6.

2. Related Work

Posture problems have become prominent in society, and various systems have been
developed to detect and monitor these posture problems. This includes using wearables
that can detect and monitor poor sitting and posture habits. The commercialization and
incorporation of wearable devices in everyday life have made it possible to identify posture
problems and correct their effects. A study by Simpson et al. [12] investigated the impor-
tance of real-time postural detection and monitoring systems in improving an individual’s
back posture. Several systems were developed to identify these postural disorders by



Sensors 2024, 24, 135 3 of 28

employing various sensor configurations. Table 1 presents a list of wearables that were
used to assess a person’s posture.

Table 1. Related works on wearable devices.

Wearable
Technology

Sensor
Location Approach Conclusion of the Study Ref.

YEI 3-Space IMU Sensor Back and safety helmet

The algorithm records the
maximum duration for each
real-time angle in every frame,
which is then compared to the
expected duration for
operational postures.

The system was able to detect
if the user was in a risky
posture and send alerts.

[13]

Shimmer IMU Cervical, thoracic, and
lower lumbar spine

A signal filter was applied to
all IMU data for feature
extraction. The Symbolic
Aggregate Approximation
method was used for
posture classification.

Successful classification and
differentiation between
hunchback and slouch back.

[14]

Zishi: 9-axis Adafruit
IMU sensor Spine and shoulder Various statistical methods

used for classification.

The vest can provide postural
analysis and alert the user to
correct their posture.

[15]

SPoMo: six-axis IMU
(accelerometer
and gyroscope)

Upper back and
lower back

Utilized low-pass filtering and
an explicit complementary
filter for attitude estimation.

The system was able to
monitor sitting spinal posture
and if a user was sitting in a
proper manner.

[16]

Smart garment: IMU
sensors, metal composite
embroidery yarn

IMU sensors: left and
right shoulder, left and
right waist

The IMU module data and
camera data underwent
filtering: a moving average
filter was used in the last three
data points, while a low-pass
filter was applied to the
camera data.

Accurate estimation of
postural tilt of the torso. [17]

A microcontroller and
IMU sensor to
capture movements

IMU sensors on
the chest

The IMU data were classified
using convolutional neural
networks (CNNs) and long
short-term memory (LSTM).
These models predicted
various activities such as
walking, jogging, jumping,
and sitting.

Accurate prediction of
various activities. [18]

Textile-based wearable
using an inductive sensor
embedded on a fabric

Inductive sensor sewed
by a copper wire into a
zigzag pattern

The wearable system identifies
specific trunk movements such
as bending, twisting, and
lateral movements.

Lightweight, low power, and
can accurately distinguish and
detect trunk movements.

[19]

Wearable sensor in
monitoring the lower back

Two sensors: the trunk
IMU and pressure
insoles under the feet

Monitored low back loading
based on individuals
performing manual intensive
tasks. Used Gradient Boosted
decision tree and an ensemble
of 100 trees.

Provides an accurate and
automated way to monitor
lumbar movements to examine
low back injury.

[20]

IMU sensors for
gait analysis

The IMU sensor was
placed at the lateral
side of the leg

Used feedforward neural
networks (FNNs) and LSTM to
estimate nine activities.

The LSTM model had higher
accuracy rates than FNN,
showing its ability to enable
gait analysis.

[21]
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Table 1. Cont.

Wearable
Technology

Sensor
Location Approach Conclusion of the Study Ref.

IMU sensors and
pressure insoles

The IMU and pressure
sensors were placed on
the trunk and under
the feet, respectively

Trunk signals were used as
inputs for the machine
learning model to estimate
lumbar moment.

The pressure sensor helped
accurately assess low
back disorder.

[22]

IMU sensors

Three different
locations: cervical
vertebra, forehead, and
occipital protuberance

Individuals performed
exercise-based tasks which
were compared to
the standard.

The IMUs showed good
reliability in the flexion and
right lateral bending angles.

[23]

IMU embedded in
wearable sensors

Upper limb of
the individual

Calibration and measurement
of IMUs to assess the quality in
the upper limb.

Minimal change between the
different input variables makes
it possible to accurately assess
upper limb movements.

[24]

Commercial depth camera
Camera and neckband
used to capture the
upper body

To detect FHP, they measured
the distance between the torso
and head using a depth
camera, alongside assessing
the degree of anteriority.

Accuracy rate of 98% with a
false alarm rate of 2%. [25]

Table 1 shows that most papers in the literature that deal with spinal detection use
an inertial measurement unit (IMU) that contains an accelerometer, gyroscope, and mag-
netometer, yielding all three axis planes. Since IMU sensors can detect spinal disorders,
they can be applied to different wearable devices [13–18,20–24]. Specifically, some papers
dealt with musculoskeletal disorders that are related to UCS such as identifying hunched
and slouched back [14], tracking and monitoring the sitting posture [15], and embedding
IMU sensors in clothing to continuously monitor back posture [17,19,20]. These studies
show that it is possible to form a unified system that can detect, track, and monitor signs
of UCS. Overall, this review indicates how a smart wearable device can be utilized to
help diagnose and treat UCS by examining the postures that are correlated with it and
monitoring brace wear.

Since UCS is an imbalance of the head and shoulder muscles, one of the clinical
features that indicate UCS is FHP. FHP is caused by maintaining an abnormal posture
for an extended period, especially while sitting. During that period, individuals often
assume a posture characterized by the head’s protraction and spine flexion [26]. Therefore,
three approaches have been devised to classify forward head posture: capturing how
forward the head is, measuring the curvature of the spine, and measuring muscle stiffness
levels [10,25,27]. According to Lee et al. [25], a vision-based detection system was formed
using a commercial depth camera. The detection system uses an algorithm that computes
the distance between the head and the torso and then compares it to the threshold distance.
Consequently, this helps determine how forward the head is, and based on the result, the
system then delivers haptic warnings using a neckband. As the head exceeds the threshold,
the neckband sends subtle warnings that indicate that the head is too forward, making the
user correct their posture. The system achieved an accuracy hit rate of 98% with a false
alarm rate of 2%. This accuracy rate shows that implementing a vision-based system can be
used to detect FHP; however, this setup only applies when the user is seated and in front of
a camera, which is not always the case.

Another system, developed by Wu et al. [27], comprises a wearable posture moni-
toring system. This system utilizes a combination of a three-axis gyroscope, a three-axis
accelerometer, and a magnetometer to evaluate poor postures by measuring the angle of
the spine. This occurs by placing two sensors at the back and head occipital bone, which
helps determine the upper body angle. As the head goes forward, the angle increases and
could exceed the threshold, alerting the user. Meanwhile, a third approach to tackling
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FHP was developed by Rohal et al. [9], which profiles muscle stiffness levels via vibration
signals using a back brace. An array of accelerometers was used to capture and characterize
motor vibrations at different distances to profile muscle stiffness. As the head becomes
too forward, the signal travels a longer distance and is later captured. This would indicate
FHP and be a sign that the head is not aligned properly with the spine. The identification
of FHP can be used as a sign of UCS. Furthermore, FHP can lead to an increased curvature
of the upper back and contribute to the development of hunchback.

Aside from wearables, some systems can be utilized to potentially detect UCS. Accord-
ing to Silva et al. [28], a system was developed to determine and differentiate subtypes of
aphasia that occur due to a stroke. This classification method utilizes acoustic frequencies
from pathological speech production and a comprehension analysis to distinguish various
aphasia types. This existing framework could potentially be adapted to identify signs
of UCS. As UCS is linked to postural imbalances, it may exhibit correlations with motor
speech disorders or specific neuromuscular patterns. These neuromuscular imbalances
can be associated with UCS. Stress can be another correlation to UCS with the detection of
stress in patients. Nair et al. [29] studied the effects of different posture positions on stress.
The results showed that participants with an uptight posture had higher pulse pressures
and were less likely to be stressed out. On the other hand, slumped participants were
more likely to be stressed out. Another study by Hackford et al. [30] analyzed stress by
comparing different posture positions. Using pressure sensors, it was found that patients
who are less hunched have lower blood pressure rates and are thus less stressed. A classi-
fication model was formed by Hong [31] to distinguish between different types of stress,
such as emotional and physical stress. Blood oxygen saturation signals can be correlated to
the different types of stress using a deep learning-based model. The unique physiological
response signals for each stress type can then be used to diagnose chronic stress-induced
musculoskeletal imbalances, including UCS. Overall, these observations show how stress
can be an indicative factor for UCS. However, one of the main obstacles of these setups
is finding a correlation between stress and musculoskeletal disorders directly. Therefore,
aside from neuromuscular patterns and stress disorders, hunchback and slouched postures
can be a major sign of UCS. Various systems that classify hunchback posture can serve as
potential indicators correlated with UCS.

Current research aims to detect specific posture deformities, such as hunchback and
slouched postures, in individuals. These postural deformities can serve as vital indicators
that an individual may be experiencing UCS. Moreover, a hunchback posture is identified
as a significant contributor to UCS. Hunchback, also known as kyphosis, is an excessive
curvature of the thoracic spine that appears to be rounded and is caused by poor posture,
which leads to a muscular imbalance. Various systems were developed to detect hunchback
posture using wearables, as viewed in Table 2.

Table 2. Detection of posture problems.

Posture Problem System Approach Result Ref.

Hunchback Self-powered sitting
position monitoring vest.

The signal is processed by a
machine learning algorithm
such as random forest, which
produces accurate responses to
different movements of
the user.

Classify and detect 6 postures
with 96.6% accuracy. [32]

Neck posture
The system integrates a
gyroscope, accelerometer,
and magnetometer.

Noise was filtered using the
moving average. The signals
were processed per second and
the action state was calculated
as the median for each
time interval.

Angle measurement error is
less than 2%. [27]



Sensors 2024, 24, 135 6 of 28

Table 2. Cont.

Posture Problem System Approach Result Ref.

Slouched and
hunchback postures

The system uses e-textile
sensors and inertial sensors
using resistive
stretchable fabric.

A signal filter was applied to
all IMU data for feature
extraction. After extracting
their desired features, they
used the Symbolic Aggregate
Approximation method for
posture classification.

The classification model had
an accuracy of 85% and was
able to distinguish hunchback
and slouched postures.

[14]

Postural deformities
such as hunchback and
slouched postures

Three accelerometers
were placed on the neck,
shoulder, and back
to identify
postural deformities.

Machine learning approaches
were utilized for classification,
which includes Support Vector
Machine (SVM) and isolation
forest classification.

Identify postural problems
with accuracy rates up
to 99.3%.

[33]

Spin postures in
different directions
and deformities

The system consists of a
shirt with built-in magnets
that work with a magnetic
sensor placed above the
body’s sternum.

The sensor recorded data at
25 Hz, with the data passing
through a lowpass Butterworth
filter to eliminate unwanted
noise. The resulting data were
then processed in MATLAB.

The system can detect lower
body postures and changes in
crossed legs.

[34]

Four pose classes:
Correct Pose, Incorrect
Neck Pose, Incorrect
Shoulder Balance, and
Incorrect Arm
Elevation Pose

The system consists of a
belt that has an IMU, three
LEDs, and an HD camera.

The IMUs collect the thoracic
and thoracolumbar angles and
the HD camera recorded the
instances of the user. The
result is transmitted via a
cloud server where a machine
learning algorithm is trained to
view and track seating
posture overtime.

The model was able to detect
correct poses with
96% accuracy.

[35]

Each of these systems utilizes an IMU sensor to classify hunchback postures. Jiang et al. [32]
demonstrated that a vest design can be used to detect hunchback posture. A Self-Powered
Sitting Position Monitoring Vest (SPMV) was developed by attaching IMU sensors at
various locations in the vest. The sensors generate electrical signals, which are processed
using a random forest classifier. The algorithm yielded an accuracy of 96.6% and was
able to recognize precise sitting postures such as hunchback. A study by Fathi et al. [14]
detected and classified hunchback and slouched postures. Detection occurs using e-textile
and inertial sensors, including an accelerometer, gyroscope, and magnetometer, to detect
each axis (x,y,z). The inertial sensors were placed in three different locations in a patient’s
back using resistive stretchable fabric. The data were then collected by having the patient
form incorrect postures, and then a filter was applied to generate graphs from each sensor
and axis. A classification model was used to show the possibility of the posture being
hunchback or slouched, which had an accuracy rate of 85%. Even though the study focuses
on Ankylosing spondylitis, which is a form of spinal arthritis, the inertial sensors can still
be applied to detect hunchback, which is a sign of UCS.

Other configurations include identifying postural deformities, which also encompasses
hunchback and slouched postures [33,34]. A study by Gupta et al. [33] used classical
machine learning algorithms such as isolation forest and support vector machines (SVM)
to classify normal and abnormal postures. The system used three accelerometers situated
at various locations in the spine. Then, by using these classification models, it was able to
attain an accuracy rate of up to 99.3%. Meanwhile, Farnan et al. [34] used a shirt with built-
in magnets that work with a magnetic sensor placed above the body’s sternum. Alongside
classifying hunched and slouched postures, the system was also able to identify postures
in different directions (left, right, forward, and backward). Determining posture directions
can improve prior system configurations. These various observations show how different
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approaches are used to classify specific postures, which can help identify signs of UCS and
monitor its prevalence within the general population over time.

3. Methodology

A system in the form of a wearable device can be utilized to detect and monitor
improper postures. According to the literature, IMU sensors can be attached to the wear-
able device to collect posture data. Afterwards, the posture data are processed using a
classification algorithm, and the classification result will be displayed to the user to track
their posture variation overtime. The relationship between the different components in
detecting and monitoring improper posture is shown in Figure 1. The figure shows how the
different layers are integrated in the framework. The framework includes the physical layer,
communication layer, application layer, and interface layer. The physical layer simulates
the connection between the hardware devices to the communication layer, such as the IMU,
microcontroller, and other sensors. The communication layer is a link from the physical to
the application layer. This layer ensures that the hardware components transmit the neces-
sary readings to the application layer for pre-processing and classification. The transmitted
readings are collected, pre-processed, and classified in the application layer, which detects
the possibility of improper posture. Finally, the classified readings are transmitted to the
interface layer to allow different users to interact and observe the classified posture over
time. This framework shows the system’s interactions and functionalities, allowing the
detection and monitoring of improper posture.
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3.1. Physical Layer

This layer is the foundation for the entire system and contains multiple components
that are then interfaced with the other layers. The physical layer is the lowest layer, which
is associated with the connections between the physical devices. The physical connection
is between the wearable, the microcontroller, and the other sensors, such as the IMU.
These sensors are interfaced with one another to transmit readings to the application
layer by connecting the IMU sensors to a multiplexer, establishing a connection to the
microcontroller, and pre-processing and classifying the readings to detect improper posture.
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However, to establish a link between the physical connections and the posture classification,
there should be a transmission link that interfaces the physical and the application layers.
This link will help transmit and classify the posture readings.

3.2. Communication Layer

Above the physical layer, there is the transmission of data to the server. This transmis-
sion occurs through the communication layer, facilitating communication between physical
components and the application layer. This layer employs diverse network protocols like
HTTP, 5G, IEEE 802.11, and NFC [36]. The communication layer serves as a channel for the
data collected from the physical layer, forwarding them to an internal server within the
application layer. This transmission enables subsequent data processing and classification.
Upon collection, a microcontroller initiates bulk data transfer to the server, triggering a
request. Within the server infrastructure, the received data are stored and processed ac-
cording to classification algorithms, including machine learning and deep learning models.
The resulting classifications show the user’s posture and are stored within the server’s
data. This classification process allows for the continuous observation and analysis of
posture changes over time. Subsequently, the classified data undergo transmission to a
mobile interface. This interface interacts with the server, facilitating user engagement by
requesting and displaying the classified postures. Users can interact with the interface to
view their posture classifications and track changes overtime.

3.3. Application Layer

After establishing a link between the physical layer and the server, the readings are
transmitted to the server, and then they are pre-processed and classified in the application
layer. The role of the application layer is to extract the relevant posture readings and to
classify the improper postures that are related to UCS. The application layer includes three
components, which ultimately lead to the detection of UCS. These components include
data collection, pre-processing, and classification. Data collection occurs after the server
and the physical layer form a link that transmit the readings. These readings are then pre-
processed into readable and useable information, which is then used in classification via the
different classification models. These classification models can either be time-dependent or
time-independent and include various machine learning and deep learning models. The
result of the classification will be interfaced with the user in the form of a mobile interface,
displaying the outcome of the classified readings.

3.3.1. Data Collection and Pre-Processing

To detect hunchback posture from IMU data, an AI-based classification model can be
developed. Classification can be time-independent or dependent, with either approach
yielding the classified posture readings. The data have the noise filtered out and outliers
removed, with the data being transformed into a suitable range. A common way to
transform the data is scaling, where the features are scaled, and there are different ways to
scale data, including normalization, standardization, and discretization. These different
scaling techniques are used when dealing with features of different scales; therefore, scaling
the features will make the values uniform, making classification tasks easier. Different
features from the dataset are analyzed, and the dimensionality of the data is reduced to
remove unnecessary features. Having pre-processed the data, a classification model can be
trained to classify the readings.

In the second approach, a different set of data was employed. A previously conducted
study by Fathi et al. [14] provided accelerometer and gyroscope data that were specifically
collected in relation to hunchback posture. This dataset offered valuable insights into
the intricacies of the posture, as it was generated by analyzing patterns and trends in the
collected data. In contrast to the first approach, where time was not considered, the second
approach emphasized the significance of sequence in the data. The order in which the
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measurements are taken is a crucial factor in understanding the dynamics of a person’s
posture and the development of a classification model.

3.3.2. Data Classification

By collecting and pre-processing data, a classification model can be built to classify
the posture readings and to detect any abnormalities. It is important for the classification
model to recognize patterns in the data rather than relying solely on the exact data values.
This is because there can be slight variations with different user readings. These variations
consider changes in the environment, including body shape, movement patterns, and
proximity. By assuming that time is independent to classification, various machine learning
algorithms can be explored for classification purposes. On the other hand, considering the
element of time requires using more sophisticated deep learning methods such as long
short-term memory (LSTM). LSTM is effective in handling sequential and time-based data.
Capturing long-term temporal dependencies is beneficial in the field of bioinformatics
and the detection of health problems using wearable technology [37]. Evaluating different
models can be beneficial in understanding the performance of each classification model
and the advantages that certain models have over others.

The evaluation of the models occurs by assessing various metrics for each model,
such as classification accuracy, recall, precision, and F1 score. To compute these results, a
confusion matrix is formed to display the classification result. The matrix has two classes:
an actual class and a predicted class. These two classes have four cases, which are true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). In the case of
TP and TN, these refer to the ability of the model to correctly predict and match the outcome
as positive and negative classifications, respectively. Inversely, the FP and FN cases occur
when the model falsely predicts a positive and negative classification, respectively. These
cases help define the various classification metrics which are used to assess the performance
of a model. The classification accuracy shows the ratio of correctly predicted cases out of all
of the different cases. Meanwhile, the recall or true positive rate is the ability of the model
to correctly identify positive instances out of all positive instances, while precision is a
measure of how correctly the model predicted positive results among the different instances
it predicted as positive. To incorporate recall and precision together, the F1 score provides
a balance between recall and precision by taking their harmonic mean. Equations (1)–(4)
quantify each of these four metrics as mathematical formulas [38]. Other metrics such as
the area under curve (AUC) examines the area under the receiver operating characteristic
(ROC) curve and represents the ability of the model to distinguish between the classes.
Mathematically, the AUC is the integral of the ROC as a function of the false negative rate
(FPR), and it can be described using Equation (5). Finally, the test loss is a penalty applied
to an incorrect prediction and indicates how bad a model is in predicting a single example.
Utilizing the built-in libraries in python version 3.11.2 helps compute these metrics to
identify and assess a model’s performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 score =
2 × Precision × Recall

Precision + Recall
(4)

AUC =
∫

ROC d(FPR) (5)
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3.4. Interface Layer

After establishing a link between the physical and application layers, the result of the
classification in the application layer will be displayed to the user in the interface layer. In
this layer, there are two different types of users: an admin and a regular user. An admin
deals with managing accounts and records, dealing with the different posture readings,
adding or removing a wearable, and deleting different accounts from the interface. On
the other hand, a regular user can register an account, log in, log out, start detection,
associate and dissociate the wearable from the user, delete the account, and display their
own postural data on the interface. Having additional user types, such as a physician, can
allow an interaction to occur between the user and the physician. This additional feature
can help track the user’s posture over time and observe the improvement in the posture. As
different users interface with the application, this interface can help build a link between
the user and the physical hardware. This link is established by transmitting, pre-processing,
and classifying the readings, which are sent through a transmission link to the mobile
interface. Creating an interface layer allows different users to view and interpret the results
obtained in the application layer. Therefore, establishing a link between the different layers
is crucial to observe posture over time.

4. Implementation

To implement and validate the framework, a component diagram in Figure 2 shows
how each layer’s different components interconnect to form a smart back brace that detects
and monitors UCS. The Raspberry Pi, IMU, and other hardware components are connected
in the back brace to form the data acquisition component at the physical layer. This unit
acquires posture readings from the user, which are used for classification. A communication
protocol such as HTTP and WIFI are used to transmit the posture readings from the
data acquisition unit to the application layer for pre-processing and classification. As a
classification decision is formed, the result will be communicated to the interface component
using the standard protocols. The interface shows the classified results for the users to view
and track. The interface component also has an admin that can manage users. The users
include the physician and the patient, where the physician can view and track the data
of all of the patients. This component diagram helps build the framework in which the
processes of detection and monitoring occur. The framework functions as an Internet of
Things (IoT) device, emphasizing the crucial need for seamless communication between
the different users. The Raspberry Pi collects data and transmits them to the local server.
Subsequently, AI models classify the gathered information into posture readings. Through
a mobile app, both the user and their doctor can monitor the user’s back posture progress by
accessing the stored data. This functionality enables the doctor to evaluate the effectiveness
of the prescribed back brace treatment. Additionally, individuals without a diagnosis or
medical consultation can utilize the app to identify signs of UCS. The different components
require some sort of communication protocol that can only be delivered using an IoT device.
Therefore, an IoT device helps to form an integrated, efficient, and automated solution that
collects and classifies results in real time.
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4.1. Physical Layer

Implementing the physical layer connects the three IMU sensors to three distinct
locations to collect and transmit posture readings from the gyroscope and accelerometer.
These IMU sensors use a multiplexer, which is then connected to a wedge, leading to the
Raspberry Pi. The Raspberry Pi is powered through a 10,000 mAh power bank for mobility
and power consumption purposes. Forming the connection between the IMU sensors and
the Raspberry Pi, Figure 3a shows a top-level view of the different hardware connections
on the back brace. Figure 3b shows the circuit diagram of the hardware components,
where each IMU sensor is interfaced with a multiplexer. Using the multiplexer gives each
IMU a separate address, allowing them to be used simultaneously during detection. The
IMU sensors are affixed to the back brace alongside the breadboard and the Raspberry Pi;
however, it is important to note that these sensors lack flexibility and are not designed to
bend or adapt to changes in the device’s curvature. Therefore, the bending radius of the
device is considered to be very small, i.e., negligible. Each of these hardware components
plays a role in posture classifications as follows:

1. Raspberry Pi Zero W: The chosen model for the Raspberry Pi is the Zero W model,
which is a compact model that is lighter than other microcontrollers and has 40 GPIO
connectors. The processor clocks at 1 GHz with 512 MB of ram. Meanwhile, it has
a micro-SD slot where the OS is stored and a mini-HDMI port. By utilizing the
Raspberry Pi’s compact size and ports, the IMU can be connected to process readings.
The Raspberry Pi is from the Raspberry Pi Foundation (Cambridge, England).

2. MPU-9250 Inertial Measurement Unit: This is a three-axis inertial measurement unit
(IMU) that contains an accelerometer, gyroscope, and magnetometer. These sensors
will be used to detect the motion of the person, which is then used for posture
classification. The IMU module is from UIOTEC (Shenzhen, China).

3. TCA9548A Multiplexer: An I2C multiplexer is used, as three IMU sensors from the
same manufacturer cannot be interfaced with the Raspberry Pi, as the manufacturer
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assigns all sensors with the same address of 0 × 68. The multiplexer allows multiple
connections, and it provides eight I2C channels as input and connects directly to the
Pi’s I2C bus.

4. Power Bank: A 10,000 mAh power bank is used to power up the Raspberry Pi and is
also attached to the brace to continuously power it as it is used throughout the day.
The power bank is from Promate technologies (Taipei, Taiwan).

5. Back Brace: The brace serves as a posture corrector and provides back lumbar support.
The back brace is used to place the hardware components on, and they are mounted
on certain positions of the brace.
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To interface the hardware components with each other, the following procedure should
be taken. Figure 3b shows a circuit diagram, depicting the connections between the sensors.
All three IMU sensors are linked to the multiplexer via two connections. Each sensor is
individually attached to one of the channels of the multiplexer, utilizing the Serial Data
(SDA) and Serial Clock (SCL) lines. The multiplexer, in turn, is linked to the Raspberry Pi’s
SDA and SCL pins on the I2C bus, facilitating communication between devices. Notably,
both the sensors and the multiplexer draw power from the 3.3 V pin on the Raspberry
Pi, ensuring their operational functionality. Using the IMU sensors to collect posture
data and transmit them to the server, this allows the posture readings to be used for pre-
processing and classification. However, to allow the data to be transmitted to the server
for classification, a communication link must be established between the physical and
application layers.

4.2. Communication Layer

After the physical layer, the data are transmitted to the server via the communication
layer. This layer enables the transmission and interaction between the IMU sensors and the
Raspberry Pi with the internal server located at the application layer. Various communica-
tion standards are utilized such as HTTP and WiFi to transmit data. To transmit the IMU
readings for classification, they are sent through the Raspberry Pi server. An HTTP request
is executed for the Raspberry Pi server, where the data are sent in bulk, which includes
the readings taken from every second in that interval. A pc server is set up to obtain the
data from the Raspberry Pi, storing them in the server. In the PC server, a machine learning
classification model is applied to the transmitted data, with the classified data being stored
in the server. This will then determine the possibility of a user experiencing UCS and
monitor their posture over time. After transmitting the data to the classifier, the result is
displayed on the mobile application. The mobile interface will make an HTTP request to
the server to register and log in, and after sending the request to the server, it will display
the classified posture.

4.3. Application Layer

As a link is formed between the physical and application layers, the readings are
transmitted to the server, which are then pre-processed and classified. In total, 18 features
are obtained from the accelerometer and gyroscope sensors from the three axes. We failed to
see any variations from the gyroscope sensors; thus, their respective features were dropped,
reducing the dimensionality of the data. By reducing the dimensionality of the data, six
features were used for classification. In classification, two approaches were implemented.
The first approach was based on time dependence and included various ML and neural
network (NN) classifiers. These classifiers include K-nearest neighbors (KNN), Naïve Bayes,
decision trees, random forests, Multi-Layer Perceptron (MLP), and SVM. These classifiers
are well suited for analyzing tabulated types of data, as they can effectively process and
classify the tabular IMU data without considering the temporal aspect of the data. Each
classifier has its own underlying principles and methodologies to classify the data based
on the patterns and the relationships present within the features and the labels.

On the other hand, an LSTM model was implemented to deal with time-dependent
data. It is well suited for analyzing IMU data with a temporal aspect. The LSTM architecture
that was implemented consists of multiple layers, with the input shape defined based on the
dimensions of the IMU data, which are the six IMU measurements. This model consists of
two layers used to classify the posture, as seen in Figure 4. The first layer is an LSTM layer
with 64 neurons added as the first layer. This layer processes the sequential data, capturing
long-term dependencies and retaining the memory of past information. Subsequently, a
dense layer with a sigmoid activation function is added to produce the final classification
output. The sigmoid function, σ(x), is quantified in Equation (6), where it takes the input
value, x, and outputs a value between 0 and 1. Since the output ranges between 0 and 1, it
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acts as a probability estimate, making the sigmoid function a suitable activation function in
binary classification.

σ(x) =
1

1 + e−x (6)
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4.4. Interface Layer

Classifying the posture readings based on the aforementioned techniques requires
the use of an interface to interact with the user by developing a mobile application. The
mobile application allows different individuals to register and log in, as Figure 5a shows.
Different individuals, such as physicians and patients, can use the mobile application. For
example, in Figure 5b, the physician interacts with the application to access a patient’s
data and see how their posture has improved over time. This builds a framework between
the physician and the patient to monitor the patient’s posture and the effectiveness of the
current treatment. Meanwhile, the patient can associate the brace by scanning a QR code to
start recording data and check their current posture, as displayed in Figure 5c.

The patient can check their posture progress over time and see how often they were in
a hunchback position during that period. If the user is in a hunchback position for more
than 50% of the time, then this can be a sign which shows that the user is experiencing
UCS and should consult their doctor. For clarity, Figure 6a,b display their respective
graphs. Figure 6a illustrates the user’s hunchback status over time, showcasing two cases:
hunchback and non-hunchback. This duality is depicted in the figure by assigning a value
of 1 to denote a hunchback status and 0 for a non-hunchback status. These values enable
binary classifications that are observable over time. As the user frequently maintains a
hunched position for extended periods, this raises the possibility of the user experiencing
signs of UCS. Figure 6b shows that if the user maintains a hunched position for less
than 50% of the time, then there are no observable signs of the user suffering from UCS.
Otherwise, it might be a strong indication that the user is exhibiting symptoms of UCS. The
frequency curve in Figure 6a affects the percentage of hunchback during the entire duration,
as evident in Figure 6b. If the frequency of hunchback increases and exceeds 50%, then
the bar graph will shift to the right and become red. On the other hand, if the frequency
of hunchback decreases and is less than 50%, then the bar graph will shift to the left and
become green. The feature of graphing the posture over time helps the physician assess
whether the current back brace is effective in improving the posture and if there are signs
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of improvement. Different users interface with the mobile application, allowing the doctor
to monitor a patient’s posture and observe the effectiveness of the current treatment plan.
This reduces the number of patient visits to the clinic, reducing hospital fees. Furthermore,
storing the history and details of the patient’s posture in a server can help the doctor plan
future treatment plans.
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5. Testing and Results
5.1. Experiment Setup

The dataset used for classification is in the form of tabulated, continuous, and numeri-
cal values. All data were derived from three different three-axis IMU sensors placed on
the brace along the back of the cervical, thoracic, and lumbar spine. These placements
were in accordance with the sensor placements seen in the study by Fathi et al. [14]. In
the study by Fathi et al., the testing was carried out on five subjects who were asked to
perform incorrect postures associated with AS. Thus, for the data collection for this dataset,
five subjects were used to collect data in a similar manner. All subjects were asked to
wear the brace and perform their daily activities in a healthy, straight posture. In the
second phase of data collection, they were asked to perform a hunchback posture while
recreating the same activities performed in the first phase. This allowed for variation in the
data, as the subjects had their data recorded while being idle (sitting, standing) and while
walking. The initial data recordings accounted for all accelerometer and gyroscope data
in all three axes, totaling 18 different features. Upon data derivation, the cleaning process
began by examining all features to determine the best features in terms of variation. Only
six features affected classification in the end, which were the accelerometer data from the
three sensors. The other 12 features, notably all gyroscope features, were not used to train
the model as they did not contribute to the model, and that would assist in reducing the
dimensionality of the dataset. Furthermore, the dataset displayed several outliers due to
common sensor errors, which were removed to ensure that outliers do not have negative
effects on the classification model. In the end, the features chosen for the dataset were
Sensor 1 accelerometer z axis (Az1), Sensor 2 accelerometer x and z axes (Ax2 and Az2),
and finally, all accelerometer axes for Sensor 3 (Ax3, Ay3, and Az3).

The configuration of this system is made up of two main hubs: the brace and the server
machine. The brace is powered by a Raspberry Pi Zero W2, which is interfaced with the
three IMU sensors to collect data from the user and send it to the server for classification.
Meanwhile, the server handles all data storage, classification, and functions. To power
this, a Windows desktop machine is used as the local server. Communication between
the server and the brace is carried out through local Wi-Fi. Both hubs are set up as Flask
servers that communicate with each other using HTTP requests. On the server, multiple
routes are created to account for all functions needed by the system to classify the posture
of a user. Additionally, the mobile application allows the user to connect to and interact
with the brace by utilizing a similar communication model with HTTP requests. This setup
makes it possible to test and evaluate the efficacy of the back brace against different models
to verify the possibility of detecting and monitoring UCS.

5.2. Model Testing

After pre-processing and cleaning the data, the dataset was tested on time-independent
and time-dependent approaches based on multiple classifiers. These classifiers were tested
to determine the one with the best accuracy on the dataset. These classifiers were selected
since they are often used for classification and prediction. All classifiers in this section
were run through a hyperparameter tuning using the GridSearchCV library to determine
which set of hyperparameters performed the best on the dataset. The evaluation was
conducted on a testing set, yielding various evaluation metrics for each classifier. These
metrics include accuracy, AUC score, macro-average precision, recall, and the F1 score.

While exploring different methods, a rule-based approach was taken into consideration
to use data from the IMU to classify hunchback posture. Thresholds were identified by
visualizing histograms for each feature to determine potential breakpoints that could
separate the two classes. The histograms revealed that the accelerometer values for the
two classes overlapped, making it challenging to define a set of rules that could accurately
distinguish between the two postures. Additionally, the accelerometer values were found
to be highly sensitive to the specific context in which they were collected, which further
complicated the development of a rule-based classification approach. The IMU data
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were slightly different from the previous run at some testing runs. The patterns in the
data remained. However, the values differentiated from the previous data. This would
sometimes render the thresholds less effective and require modification to fit the new
deviation in the data. Therefore, classical ML and neural network models were used to
classify the posture readings into hunchback and non-hunchback positions to detect and
monitor the possibility of the user experiencing UCS over time.

5.2.1. Decision Trees

This approach forms a tree-like model and recursively divides the dataset into subsets.
Nodes are created and applied to the entire dataset until it reaches the leaf node, which
determines the algorithm’s output. According to Figure 7, the decision tree model is not
the most effective model for posture classifications due to the complex and variable nature
of the dataset, which differs depending on the user; therefore, a dynamic model should be
used instead.
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Figure 7 shows the ROC curve, precision–recall curve, and confusion matrix for the
decision tree model. Figure 7a shows that the AUC is 62%, which indicates that the model
was not able to distinguish between hunchback and non-hunchback positions in most
cases. Meanwhile, the precision–recall curve in Figure 7b displays the relationship between
the model’s precision and recall, which had an average precision score of 60%, whilst the
macro-average precision and recall scores were 80% and 67%, respectively. This variation
demonstrates that a decision tree favors precision over recall, meaning it is ineffective
in determining all positive cases. Finally, the confusion matrix in Figure 7c shows how
correctly (or incorrectly) the model was able to distinguish hunchback positions against
non-hunchback positions. Even though there is a high percentage of TP and TN scores,
there remains a proportionally high percentage of FP cases at 33.5%. This can result in
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issues where the smart brace falsely attributes hunchback and UCS to the patient, making
the patient follow unnecessary treatment plans which have no effect.

5.2.2. Naïve Bayes

Naïve Bayes is an ML model that is based on Bayes’ theorem of probability, which
describes the probability of an event based on prior knowledge of conditions that might
be related to the event. By assuming that the features are conditionally independent,
the probability of each feature and class is calculated, and then it makes predictions on
unlabeled data. Although Naïve Bayes has document and text analysis applications, it falls
short on medical classification. This shortcoming can be seen in Figure 8, where Naïve
Bayes performs poorly compared to other algorithms.
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Since the Naïve Bayes algorithm assumes that the features are independent, it will
perform predictions based on that assumption. However, the different features of the
dataset are based on the spine, which are dependent on each other. This makes Naïve
Bayes a poor algorithm to use for posture classification. This can be seen in Figure 8a,
where the AUC is 50%, which means the model cannot distinguish between hunchback
and non-hunchback positions. Figure 8b shows how the precision–recall curve has a score
of 0.50, which means that the model was able to correctly predict the posture 50% of the
time. Meanwhile, the confusion matrix in Figure 8c indicates that the TP and FP rates are
each 50%, indicating that the model randomly predicts if the posture is hunchback or not.
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5.2.3. KNN

KNN performed the best out of all the time-independent classifiers since it is robust to
noise as it classifies based on the labels of the K-nearest neighbors, and noise would not
influence the majority class of the K neighbors. Determining distinct decision boundaries
becomes a hard task when the data intersect, as seen from the previous classifiers. KNN
operates by categorizing a fresh example according to its K-nearest neighbors’ class labels.
Overlapping data indicates that there may be neighboring instances belonging to different
classes, which KNN can leverage by recognizing the nearest neighbors of a new instance,
irrespective of their class.

Figure 9 displays the performance of the KNN model and how it has an AUC of
93%, as seen in Figure 9a. Figure 9b is the precision–recall curve, which shows that
it has lower false positive and negative rates, significantly lower than Naïve Bayes or
decision trees. The confusion matrix in Figure 9c shows that the KNN model was able
to predict the truth 2787 times in a total of 3000. Meanwhile, false labels rarely occur at 6
and 207 times, respectively, showing how well it can distinguish between hunchback and
non-hunchback positions.
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5.2.4. Random Forest

Random forest is another classical machine learning algorithm that forms multiple
decision trees independently. Taking the average or the most common outcomes for each
decision tree forms the result of the random forest algorithm. Compared to decision trees,
random forest had a slight but insignificant improvement compared to decision trees.
These slight differences can be observed in Figure 10, where Figure 10a shows that the
AUC is 67.5% compared to the decision trees, which had an AUC of 67.0%. Additionally,
Figure 10b,c show that the precision–recall curves and the confusion matrix resemble that
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of decision trees, which indicates that using multiple decision trees for posture classification
will have a negligible difference in accuracy and other metrics.
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5.2.5. SVM

SVM is an ML algorithm that works well with high-dimensional datasets. SVM aims
to find a hyperplane in N-dimensional space that can separate the different classes in
the feature space. Even though the SVM can handle complex and non-linear data, it is
susceptible to noise, preventing the model from generalizing the data to unseen data.
Therefore, issues arise when applying the SVM to posture readings where the different
features have a complex and dependent relation to one another. This can be observed
in Figure 11, where the SVM did not produce high results in testing and had a similar
performance to the decision tree and random forest algorithms.

Figure 11a shows that the AUC of the ROC curve is 67.0%, with average precision and
macro-precision scores of 60% and 80%, respectively, as shown in Figure 11b. This indicates
that the SVM has limited distinction between hunchback and non-hunchback positions
while slightly leaning towards correct identification. Figure 11c shows the confusion matrix
of the classification model, where it had TP and TN rates of 50% and 16.8%, while having
an FP rate of 33.2%, which accounts for a third of all samples. Therefore, examining various
neural networks and time-dependent models can help enhance accuracy and the metrics.
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5.2.6. MLP Classifier

The MLP classifier is a neural network model that is used for classification purposes
in machine learning. The architecture of the MLP classifier involves an input layer, multi-
ple hidden layers, with the number of layers being proportional to the complexity of the
dataset, and an output layer. The complex relationship of the input parameters makes the
MLP classifier a suitable model to use for hunchback classification. Tuning the hyperpa-
rameters, such as the activation function and the hidden layers’ size, optimizes the model’s
performance. A common issue that some neural network models face is overfitting, which
can be mitigated by applying regularization techniques such as dropout and weight decay.
Compared to the other ML algorithms apart from KNN, the MLP classifier performs the
best in accuracy, precision, recall, and F1 score.

Figure 12 displays the various curves for the classifier, which is shown to have signifi-
cantly better results than some of the other models. In Figure 12a, the ROC has an area of
87%, meaning that it can distinguish between hunchback and non-hunchback positions,
being surpassed only by KNN at 93%. Figure 12b displays the classifier’s precision–recall
curve, which has an average precision score of 0.80, showing that the model has a good
balance between precision and recall. This balance between precision and recall suggests
that the model performs well in capturing and classifying positive instances. Figure 5c
shows the confusion matrix of the MLP classifier, where most of the samples are correctly
classified as TP and TN, giving average precision and recall rates of 89% and 87%, re-
spectively. This makes the MLP classifier perform better than the ML classifiers, except
for KNN.
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5.2.7. LSTM

Even though some of the aforementioned models and algorithms such as KNN and
the MLP classifier can distinguish between hunchback and non-hunchback positions, these
models are time-independent, which creates issues in capturing posture changes and bodily
dynamic patterns. The LSTM model is a time-dependent and sequential recurrent neural
network (RNN) that can capture temporal dependencies and sequence predictions. Since a
hunchback posture and UCS vary over time, this makes LSTM a more suitable model to
use for classification compared to the time-independent models.

Alongside the enhanced accuracy rates, Figure 13a shows that the LSTM model has an
AUC of more than 0.99. This AUC score indicates that the model performs well as it can
always distinguish between hunchback and non-hunchback postures. Figure 13b displays
the model’s confusion matrix, which has TP and TN rates of 48.2% and 51%, respectively.
The high percentages of the TP and TN rates indicate that the model will predict hunchback
and non-hunchback positions correctly with minimal error, since the FP and FN rates are
both less than 1%.



Sensors 2024, 24, 135 23 of 28Sensors 2024, 24, x FOR PEER REVIEW 25 of 31 
 

 

 
(a) (b) 

Figure 13. LSTM model curves: (a) ROC curve and (b) confusion matrix. 

5.3. Experimental Results 

The experiment aimed to compare various models in posture classification, focusing 

on predicting hunchback occurrences. The findings revealed distinct performance varia-

tions among these models, with LSTM standing out as the top performer among all mod-

els. Notably, KNN demonstrated superior performance compared to the other time-inde-

pendent models, although not reaching the accuracy levels of LSTM. Table 3 presents a 

comprehensive view of the models’ performance based on accuracy, AUC score, precision, 

recall, and F1 score. In particular, KNN’s effectiveness stemmed from its utilization of 

distance as a metric, contrasting with Naïve Bayes and decision trees, which treated indi-

vidual features as independent. This approach enabled KNN to achieve a 92.9% accuracy 

in correctly classifying hunchback and non-hunchback postures, with the AUC score re-

flecting its high performance of 93%. This shows that KNN is able to correctly capture 

most of the positive instances of the classification, as reflected by the precision, recall, and 

F1 scores. Conversely, Naïve Bayes and decision trees, due to their assumption of feature 

independence, depicted poor accuracy, AUC, and F1 scores, with decision trees slightly 

outperforming Naïve Bayes but still exhibiting inadequate results. Naïve Bayes, in partic-

ular, suffered from a critical drawback by assuming conditional independence, leading to 

a mere 50% accuracy rate, essentially equating to random guessing. Employing an ensem-

ble method like random forest, which aggregates the outcome of multiple decision trees, 

resulted in minor enhancements across accuracy, AUC score, precision, recall, and F1 

score. However, the improvements were relatively minor. SVM presented poor results, 

similar to decision trees, with only precision having a slightly high result of 80%, indicat-

ing accurate predictions of positive instances. However, its recall of 67% reveals a ten-

dency to miss some positive instances. A neural network model in the form of an MLP 

classifier showcased consistent performance across different metrics at around 87%, sur-

passing the other time-independent models, except KNN. Finally, LSTM, which is de-

pendent on time, emerges as the most superior model, outperforming all the models, in-

cluding KNN. With an accuracy, AUC score, precision, recall, and F1 score all exceeding 

99%, LSTM highlighted the significant advantages of time-dependent models in classifi-

cation tasks. The model’s classification capability enabled it to capture posture variations 

over time, making its performance remarkable. 

  

Figure 13. LSTM model curves: (a) ROC curve and (b) confusion matrix.

5.3. Experimental Results

The experiment aimed to compare various models in posture classification, focus-
ing on predicting hunchback occurrences. The findings revealed distinct performance
variations among these models, with LSTM standing out as the top performer among
all models. Notably, KNN demonstrated superior performance compared to the other
time-independent models, although not reaching the accuracy levels of LSTM. Table 3
presents a comprehensive view of the models’ performance based on accuracy, AUC score,
precision, recall, and F1 score. In particular, KNN’s effectiveness stemmed from its uti-
lization of distance as a metric, contrasting with Naïve Bayes and decision trees, which
treated individual features as independent. This approach enabled KNN to achieve a 92.9%
accuracy in correctly classifying hunchback and non-hunchback postures, with the AUC
score reflecting its high performance of 93%. This shows that KNN is able to correctly
capture most of the positive instances of the classification, as reflected by the precision,
recall, and F1 scores. Conversely, Naïve Bayes and decision trees, due to their assumption
of feature independence, depicted poor accuracy, AUC, and F1 scores, with decision trees
slightly outperforming Naïve Bayes but still exhibiting inadequate results. Naïve Bayes,
in particular, suffered from a critical drawback by assuming conditional independence,
leading to a mere 50% accuracy rate, essentially equating to random guessing. Employing
an ensemble method like random forest, which aggregates the outcome of multiple decision
trees, resulted in minor enhancements across accuracy, AUC score, precision, recall, and
F1 score. However, the improvements were relatively minor. SVM presented poor results,
similar to decision trees, with only precision having a slightly high result of 80%, indicating
accurate predictions of positive instances. However, its recall of 67% reveals a tendency
to miss some positive instances. A neural network model in the form of an MLP classifier
showcased consistent performance across different metrics at around 87%, surpassing
the other time-independent models, except KNN. Finally, LSTM, which is dependent on
time, emerges as the most superior model, outperforming all the models, including KNN.
With an accuracy, AUC score, precision, recall, and F1 score all exceeding 99%, LSTM
highlighted the significant advantages of time-dependent models in classification tasks.
The model’s classification capability enabled it to capture posture variations over time,
making its performance remarkable.
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Table 3. Different classifier metrics.

Classifier Accuracy AUC Score Macro-Avg.
Precision Score

Macro-Avg.
Recall Score

Macro-Avg.
F1 Score

Decision trees 66.50% 67.00% 80.00% 67.00% 62.00%
Naïve Bayes 50.00% 50.00% 25.00% 50.00% 33.00%

KNN 92.90% 93.00% 94.00% 93.00% 93.00%
Random forest 68.13% 67.50% 80.00% 68.00% 65.00%

SVM 66.80% 67.00% 80.00% 67.00% 63.00%
MLP classifier 87.47% 87.00% 89.00% 87.00% 87.00%

LSTM (time-dependent) 99.20% >99.00% 99.51% 99.13% 99.32%

Testing and experimenting with the different models give an overview over the stabil-
ity, sensitivity, and specificity of the model. It also allows the response time to be obtained.
Among the time-independent models, KNN stood out for its superior performance. It
exhibited remarkable stability compared to the other models. While each training session
captures slightly different data, it was able to perform well regardless of the data fluc-
tuations among the trained models. Even though the inherent variations persisted, the
KNN model was still able to distinguish between hunched and non-hunched postures.
Its stability can be attributed to the nature of the KNN model, where it uses distance as
a metric and is based on different interacting variables. Models like decision trees rely
heavily on the original training data for predictions. In contrast, KNN’s non-parametric
nature enabled it to dynamically adjust to data changes, consistently delivering reliable
results in both the training and testing phases.

Other crucial metrics used to assess the performance of the model are the sensitivity
and specificity, where the sensitivity measures the proportion of true positives among all
the actual positives, i.e., the recall for the true positive class. Meanwhile, the specificity
is the proportion of true negatives among all the actual negatives, i.e., the recall for the
false positive class. These two metrics show how reliable the diagnostic and classification
model is in capturing the true positive and negative. Table 4 shows the accuracy, sensitivity,
and specificity for the KNN and LSTM models. By comparing the time-dependent and
time-independent models, LSTM has higher accuracy, sensitivity, and specificity rates of
99.20%, 99.13%, and 99.51%, respectively. Furthermore, its sensitivity and specificity rates
have less variations, meaning that the model captures both the positive and negative classes
of hunchback and non-hunchback postures. On the other hand, KNN has slightly lower
accuracy and sensitivity rates of 92.90% and 93.00% and a lower specificity rate of 86.20%.
This means that the model has a preference in capturing the positive instances more than
the negative instances. In terms of diagnostics, it is essential to balance the sensitivity
and specificity with a high sensitivity, ensuring that individuals with hunchback postures
will not be missed, while a high specificity ensures that people who are non-hunchback
are less likely to be misclassified as hunchback. Through experimentation with these
two models, it was demonstrated that LSTM outperformed KNN in correctly identifying
and capturing individuals without hunchback. Even though both models had accuracy
rates above 90%, the LSTM model was more accurate in classifying hunchback and non-
hunchback postures among the tested subjects. The different metrics show the advantages
that the time-dependent methods have against the time-independent methods, making
them effective classification models.

Table 4. Sensitivity and specificity of different models.

Classifier Accuracy Sensitivity Specificity

KNN 92.90% 93.00% 86.20%
LSTM 99.20% 99.13% 99.51%
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Alongside the stability, repeatability, sensitivity, and specificity, the response time
helps to show how responsive the model is when interacting with the two servers. Ideally,
the response time should be as short as possible by minimizing delays and latencies. The
system hinges on swift communication between the local Flask server and the Raspberry
Pi. The goal is to maintain a response time under 1 s for real-time reading classification.
An analysis of the response times recorded between these servers consistently showed
durations between 0.543 and 0.712 s, as can be seen in Table 5 and Figure 14. The Figure
shows a graphical representation of the different response times, as presented in Table 5.
The range consistently meets our target threshold, with an average response time of 0.6244 s.
There are multiple factors that create differences between each response time. These factors
include a high number of load requests on the server, high latency between the servers,
and the accumulation of requests in a queue waiting process. These factors cause slight
variations between each response time. All in all, this swift exchange ensures the timely
classification of real-time data. Meeting our response time goal signifies the efficiency of
this communication, which is crucial for seamless data processing.

Table 5. Response time testing at different requests.

Real Time Response Time (s)

15:30:20 0.543
15:31:05 0.621
15:32:12 0.712
15:33:01 0.589
15:34:20 0.657
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6. Conclusions and Future Work

The shift to a sedentary lifestyle has increased postural problems, such as hunchback,
which is a vital sign of UCS. This paper aimed to detect and monitor UCS by correlating
it to the hunchback posture. Given the prevalence of slouched and hunchback postures
in society, particularly in the Middle East [2], the system can identify these issues in
individuals. Identifying these issues will help alleviate the effects of UCS by correcting
an individual’s posture and promoting healthier habits. As people’s well-being improves,
productivity will increase, which can help individuals perform their jobs more consistently
and for longer periods. This is particularly aligned with the UN sustainability goals, which
aim to raise the standard of living and improve the overall quality of life. Therefore, having
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a back brace that detects and monitors postural issues will positively impact society. By
enabling users to observe their progress over time, they can understand how a back brace
corrects their posture and to what extent their posture is improving. Similarly, integrating
doctors’ features into the mobile application allows them to evaluate the effectiveness of
the treatment plan, saving time and costs associated with in-person visits. Overall, a smart
corrective back brace facilitates the detection and monitoring of UCS, enabling patients to
observe and improve their posture for long-term health benefits.

This system offers numerous advantages to both patients and healthcare providers.
Its real-time progress allows patients to actively engage in their treatments, facilitating
improved communication with doctors and streamlining the treatment process. Moreover,
the system’s posture detection capability encourages individuals to seek timely medical
attention when poor posture is detected. Its wireless functionality, reliant solely on local
Wi-Fi for connectivity to the mobile application, enhances convenience and accessibility.
However, a notable limitation is its inability to definitively diagnose UCS. Although it
effectively identifies signs of UCS by detecting associated Hunchback posture, official
medical diagnosis is still necessary to confirm UCS. Anticipated future advancements aim
to enhance accuracy and directly detect UCS, enabling more precise diagnoses in patients.

This paper focused on detecting and monitoring signs of posture problems, specifically
UCS, via certain postures such as hunchback. The back brace can be extended to include
the detection of stress through back posture. This extension would aid in evaluating and
displaying a user’s stress levels while using the brace. Additionally, one of the primary
causes of UCS is FHP, which is linked to respiratory and cardiovascular illnesses. Therefore,
a back brace can involve detecting FHP and identifying the various illnesses caused by
it. The literature indicates additional avenues to explore, including stress, cardiovascular,
and respiratory illnesses, all of which are detrimental to a person’s overall well-being.
Different wearables, such as smart watches, can be used to alert the user if they are feeling
stressed or anxious and give helpful tips on how to reduce stress. In addition to exploring
different illnesses associated with FHP, the physical brace can be improved. This could be
achieved by attaching additional sensors on external straps without inconveniencing the
user. A neck strap can also be incorporated to have direct access to the nape of a person’s
neck to identify FHP more easily. These additional sensors can help detect UCS and other
underlying disorders more efficiently, such as turtleneck syndrome, which can help reduce
societal postural problems. The examples above highlight the potential to innovate this
field, creating highly functional and sophisticated systems that make healthcare more
effective, efficient, and convenient.
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