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Abstract: One of the most important applications in the wireless sensor networks (WSN) is to classify
mobile targets in the monitoring area. In this paper, a neural network(NN)-based weighted voting
classification algorithm is proposed on the basis of the NN-based classifier and combined with the
idea of voting strategy, which is implemented on the nodes of the WSN monitoring system by means
of the “upper training, lower transplantation” approach. The performance of the algorithm is verified
by using real-world experimental data, and the results show that the proposed method has a higher
accuracy in classifying the target signal features, achieving an average classification accuracy of
about 85% when utilizing a deep neural network (DNN) and deep belief network (DBN) as the base
classifier. The experiment reveals that the NN-based weighted voting algorithm enhances the target
classification accuracy by approximately 5% in comparison to the single NN-based classifier, but the
memory and computation time required for the algorithm to run are also increased at the same time.
Compared to the FFNN classifier, which exhibited the highest classification accuracy among the four
selected methods, the algorithm achieves an improvement of approximately 8.8% in classification
accuracy. However, it incurs greater overhead time to run.

Keywords: WSN; multi-target classification; NN-based classifier; NN-based weighted voting algorithm

1. Introduction

WSNs consist of nodes with limited capacity for signal sensing, processing, and
wireless communications [1]. Target classification in WSNs plays a critical role in the
maintenance of intelligent transportation systems [2] and battlefield environment monitor-
ing [3], while the large amount of sensor data acquired by WSNs and the limited processing
capability is the main constraints to target classification in WSNs.

In recent years, researchers have redirected their focus from theoretical studies of target
classification in WSNs to practical implementations. In practical applications, particularly
in battlefield surveillance settings, limited energy and communication capabilities mean
that WSN nodes cannot transmit all collected signal data to the remote monitoring center
for target classification. The optimal approach is to perform target classification on the
WSN node and transmit only the classification results to the remote monitoring center,
enabling energy conservation and the extension of the node’s lifespan.

The process of classifying targets in a WSN involves detecting the target, acquiring
data, performing feature extraction on the acquired data, and using a classifier to clas-
sify the extracted features of the target signals. In the case of multi-target classification
in WSNs, it can be seen as a single-label multi-classification algorithm that has limited
computational resources.

Multi-classification methods are categorized into three groups: classical multi-classification
methods, single-label multi-classification algorithms consisting of multiple binary classifiers,
and neural network-based methods.

The most commonly utilized classical multi-classification algorithms are K-nearest
neighbor (KNN) [4], decision tree (DT) [5], Naïve Bayes (NB) classifier [6], and adaboosting
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algorithm [7]. These algorithms employ their own specific judgment criterion to calculate
the input feature data and assign corresponding category labels. The benefit of this algo-
rithm lies in the clear and interpretable judgment criterion, but it suffers from issues such
as overfitting and a negative impact on data with high dimensions, ultimately affecting
classification accuracy [8].

The second method involves employing multiple binary classifiers to convert a multi-
classification problem into several binary classification problems, and the final outcome is
determined by the result tree of these classifiers. Typical techniques used for this approach
are the OAA-SVM method [9], DAGSVM [10], BTMSVM method [11], and binary-tree SVM
method [12]. However, a large number of classifiers requires training, and the presence of
unclassifiable data are disadvantages of these algorithms.

The neural network-based method is the third type of approach that has captured the
attention of researchers in recent years. This technique postulates that there is a nonlinear
correspondence between each target feature and its corresponding category label. After
establishing this correspondence through the sample feature data and training the network
with determined parameters, the trained network then computes the input feature data to
determine the corresponding category label. Wang et al. [13] proposed a powerset fusion
network (PFN) method to classify moving targets using acoustic-vibrational signal features.
Xu et al. [14] used the parallel recurrent neural network (PRNN) method to classify vibrating
targets. Belsare et al. [15] have created a convolution neural network (CNN) trained using
preprocessed data for feature extraction and waste image classification in WSN. In addition
to this, Kim [16] proposed the Gaussian mixture model (GMM) algorithm for node-level
target classification in WSN.

In our prior study [17], we conducted a comparison of three categories of classification
methods for classifying vehicle signals in WSNs. The results show that the NN-based
algorithm exhibited superior classification accuracy. Nonetheless, their engineering im-
plementation was more intricate, particularly during the network training phase, making
them less suitable for node-level application in WSNs.

Therefore, for enhancing classification accuracy of the NN-based classifier, we propose
a multi-classifier weighted voting strategy. The experimental outcomes of this strategy,
utilizing three classifiers, demonstrate that it substantially improves classification accuracy
as compared to a single classifier. Furthermore, we propose an approach for implementing
the NN-based classifier guiding by the thoughts of “upper-end training, lower-end trans-
plantation”, to simplify the target classification process of NN-based classifiers into matrix
computation. This approach enables the neural network-based multi-classifier weighted
voting method to be engineered on WSN nodes with limited resource consumption.

The rest of the paper is organized as follows. Some related work are reviewed in
Section 2. Section 3 introduces the proposed multi classifier weighted voting strategy
for target classification in details. Based on this, Section 4 describes the engineering
implementation process of the NN-based weighted voting algorithm to resource-limited
WSN nodes. Section 5 is the discussion of the method’s performance; and the paper is
concluded in Section 6.

2. Related Work

In this section, we conducted a brief review regarding the effectiveness of different
classification algorithms for target classification in previous studies. This section is organized
into two parts: performance of different classification algorithms, and NN-based classifier.

2.1. Performance of Different Classification Algorithms

In our previous study [17], three groups of classification methods mentioned above
were compared for their effectiveness in classifying vehicle targets in WSNs. KNN, DT,
NB, AdaBoost, DAGSVM, and NN-based methods were utilized for classifying the vehicle
targets, respectively. The classification results indicate that all these methods achieved
the purpose of target classification in WSN with differences in performance. The KNN
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algorithm is the simplest algorithm in terms of implementation, but the classification
accuracy is unsatisfactory compared with other algorithms. The NN-based classifier has
a higher classification accuracy, but it has a higher memory and computational overhead.
Simplification of the classification process of the NN-based classifier is considered to
achieve better target classification accuracy while making the algorithm run on WSN nodes
with limited resources.

2.2. NN-Based Classifier

When applying neural network for target classification, its network structure is consid-
ered as a mapping approximation system from input to output. The feedback adjustment
characterization of the neural network is used to realize the mapping relationship from
input (feature data of the target signal) to output (label of the corresponding target), and
then the classifier is constructed.

Basheer et al. [18] detailed the structure and application of neural networks. Figure 1
is the typical structure model of the presented neural network and neurons. This model is
a nonlinear threshold model that features numerous inputs and a solitary output. Certain
symbols are used to represent different elements of the neuron. Specifically, the input
signals are denoted by xi, and the ith weight of the neuron is denoted by iwi. The adder is
utilized to calculate the weighted sum of the input signals. Additionally, the bias term of
the neuron is represented by bi, which makes it possible to effectively adjust the range of
the neuron’s inputs. Finally, the output of the ith neuron is denoted by yi. An activation
function, f(·), is employed to establish the non-linear relationship between the neuron’s
input and output.
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Figure 1. Structure of neural network.

Given the input xi, weights iwi, bias term bi, and activation function f(·) of the neuron
described above, neuron k can be expressed by the following Equations (1) and (2):

u(k) =
T

∑
j=1

xi•iwi + bk (1)

y(k) = f (uk) = f (
T

∑
i=1

xi•iwi + bk) (2)

where u(k) represents the weighted sum of neuron inputs and y(k) denotes output for the
kth neuron. These equations provide a concise description of a neural model that uses
multiple layers of connected neurons to form a neural network for nonlinear map fitting.
Theoretically, as long as there is a clear mapping relationship between the input sample
feature data and the corresponding category label, the mapping relationship can be fitted
by adjusting the parameters of the neurons in the network through network training.
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3. Multiple Classifiers Weighted Voting Strategy

Using multiple classifiers to vote can effectively improve the accuracy of classification,
and the NN-based weighted voting method is described in detail below.

3.1. Strategy of Voting

Voting, or Majority Voting [19], is a commonly employed method for combining
classifiers. This method is based on the following principle: a set of trained base classifiers
(Base Classifier) is used to make classification decisions on the feature data to be classified.
Each base classifier casts a vote for the decision result that corresponds to the target class,
and the class with the most votes is selected as the classification result for the entire set of
classifiers. In this paper, three classifiers are utilized to determine the classification results
through a voting process. Figure 2 illustrates the classification process.
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Figure 2. Principles of multi-classifier voting classification methods.

Assume that there are L base classifiers Cl (l = 1, 2, . . ., L) in the combined classifier,
and the output of the each base classifier Cl is a class probability estimate P(f (w) = k|Cl),
which represents the magnitude of the probability that the feature data to be classified, w,
is predicted as class k (k = 1, 2, . . .) by the respective classifier Cl. The probability estimates
of all base classifiers are combined to calculate the following equation’s value:

P( f (w) = k) =
1
L

L

∑
l=1

P( f (x) = k|Cl) (3)

The combined classifier determines the probability that the feature vector, w, belongs
to class k, and assigns w to the class with the highest probability value. If all classifiers
within the combined classifier classify the feature vector w to be classified as an independent
event, the classification accuracy of the base classifiers after voting is raised to the P(w),
where each base classifier Cl in the combined classifier has a classification accuracy of Pc.

P(w) = 1−
f loor(L/2)

∑
l=0

Cl
L(Pc)

l(1− Pc)
L−l (4)

The function floor(.) rounds downward, while floor(L/2) represents the greatest
integer not exceeding L/2. Take L = 3 as an example to illustrate the classification accuracy
of the combination classifier, the classification accuracy of the combination classifier is:

P(w) = 1− C0
3(Pc)

0(1− Pc)
3 − C1

3(Pc)
1(1− Pc)

2

= 1− (1− Pc)
3 − 3Pc•(1− Pc)

2

= 1− (1− Pc)
2•(2Pc + 1)

(5)

The classification accuracy P(w) is calculated with Pc as the variable, and Figure 3
displays the trends of classification accuracy obtained using a base classifier with
1 and 3 classifiers, respectively.
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When base classifiers accurately classify feature vectors over 50%, the accuracy of a
combined classifier that utilizes three base classifiers to classify feature vectors through
voting is significantly greater than that of a single classifier. The increased voting that
takes place after classification by multiple classifiers allows for effective comparison of
misclassified feature vectors of individual classifiers and subsequent correction of errors
through the application of the “majority rule” principle.

The classification results using the voting algorithm in the best-case scenario without
assigning weights to each classifier vote are displayed in Table 1.

Table 1. Classification results of the multi-classifier voting method in the ideal case.

Title 2 Classifier 1
Voting

Classifier 2
Voting

Classifier 2
Voting

Voting
Results

A 1 1 0 2
B 0 0 0 0
C 0 0 0 0
D 0 0 1 1

When processing the voting results, the category with the most votes is identified as
A, and the corresponding target category for the feature data was then also classified as
A. However, when the classifier is not set with the voting weights, voting classification
using the voting method may result in target categories receiving the same number of votes,
leading to an inability to classify them. Table 2 displays an example of such voting results.

Table 2. Classification Results of Multi-Classifier Voting Methods in Extreme Cases.

Title 2 Classifier 1
Voting

Classifier 2
Voting

Classifier 2
Voting

Voting
Results

A 0 1 0 1
B 1 0 0 1
C 0 0 0 0
D 0 0 1 1

As shown in Table 2, the same number of votes were tallied for all three categories:
A, B, and D. Consequently, it is unfeasible to determine the category corresponds to the
given feature data with the highest votes. To address this predicament, we proposing
voting weight values after achieved the classification results from each classifier. If the
classification result of a classifier is considered to be more credible, it is given a larger
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voting weight, whereas a less credible result will be given a smaller weight. Even when
multiple classifiers have voting results, as displayed in Table 2, the final vote counts for
each class will differ once weights are implemented. The class of the data to be classified
can still be successfully determined.

3.2. Calculation of Classifier Weights

The primary challenge regarding the incorporation of voting weights is to establish
the level of confidence in the classifier’s classification results. The accuracy of classification
depends on the performance of the NN-based classifier that has been trained and the
features of the data to be classified. The features of the data cannot be controlled, and
the classifier’s performance is significantly influenced by the training sample dataset that
was used. The principle of classifying neural networks assumes a functional relationship
between target feature data and corresponding categories. Sample dataset is used to train
the network so that it fits this relationship, processing the feature data for classification.

The mapping accuracy between the feature data fitted by the network and their corre-
sponding classes is higher when there is a large distance between the target feature data
of different classes and no data mixing occurs in the sample dataset. The Lance–Williams
method [20] is suitable for calculating the distance between sample data for training the
classifier. The details of the calculations process is explained in the literature [17].

4. Engineering Implementation of the Algorithm

Neural networks require significant computation during training, but the micro-
controller processor chips utilized in WSN intelligent monitoring system nodes lack the
capability to handle this task. To address this issue, the NN-based voting classification
method necessitates the implementation by adopting the “top-end training and bottom-
end transplantation” approach. This approach entails training the network on a PC and
transplanting its network parameters to the WSN node.

The algorithm’s process is illustrated in Figure 4. Initially, the PC carries out “top-end
training” processing, in which using segmented feature data to train NN-based classifiers.
Additionally, the voting weights of the classifiers to be identified along with the sample data
of the segment are calculated while obtaining the network parameters of several NN-based
classifiers at the end of the training. After completing the training, the parameters of NN-
based classifiers are acquired, which includes the connection weights and the bias between
the neurons. Following that, “down-end transplantation” is performed on the WSN node.
The network parameters of NN-based classifiers are exported and stored in the memory
chip of the processor unit of the WSN intelligent monitoring system. Lastly, the feature
data that requires classification is processed by using the parameters of neural networks.
The results of multiple classifiers are utilized to conduct weighted voting classification.
Classification results of multiple classifiers obtained by weighted voting process. Then,
respective vote scores of categories A, B, C, and D are calculated, and the one with the
highest vote score is taken as the final classification result.

The following sections provide explanations for the training of the neural network,
transplantation of the NN-based classifier, training data preprocessing, and the flow of the
proposed strategy.

4.1. Training of Neural Networks

Neural networks are computationally demanding and time-consuming during train-
ing, particularly when utilizing lower-performance-embedded processor units. To address
this challenge, a common strategy is to train the network on the PC and then transplant it
to the embedded processor unit for use.

The top-training phase of the NN-based classifier is illustrated in Figure 5. The network
is initially trained utilizing training data, and obtained the parameters of the network.
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Figure 5. Flow of “Upper Training” in NN-based classifier.

When training a NN-based classifier, predetermined values should be set for the
number of layers and number of neurons in each layer. The number of neurons in input
and output layers depends on the feature data and the number of target categories. The
feature vectors utilized in this study are 16-dimensional, thus requiring 16 neurons in the
input layer. The output layer consists of four neurons corresponding to the four target
categories (A, B, C, and D). For the four target categories, A, B, C, and D are assigned the
labels of (1 0 0 0), (0 1 0 0), (0 0 1 0), and (0 0 0 1), respectively. This allows for the output of
1 to correspond to a neuron in the output layer for each category. The network requires a
pre-set number of intermediate layers and neurons in each layer. For this paper, we have
set two intermediate layers with 100 and 60 neurons per layer, respectively.
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The trained NN-based classifier can be represented by a set of parameters, including
the input layer network weight matrix iw, input layer neuron bias vector ib, intermediate
layer network weight matrix hw, intermediate layer neuron bias vector hb, output layer
network weight matrix ow, and the output layer bias vector ob.

4.2. Transplanting of NN-Based Classifier

After training the network, a set of NN-based classifier parameters are settled. These
network parameters are exported and deposited into the processor unit on the node of the
WSN system to classify the data.

The computational flow for classifying the target data using the settled parameters is
illustrated in Figure 6. The feature vector utilized for classification is represented by the
symbol w. The equation for determining the classification result, denoted as r, is displayed
in Equation (6).

r = sigm{sigm[sigm(w•iw + ib)•hw + hb]•ow + ob} (6)

where sigm(.) is the selected sigmoid activation function for training, the formula
displayed below:

sigm(x) =
1

1− e−x (7)
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4.3. Training Data Preprocessing

When training the neural network, some training data with large deviations from
the mean value may cause misclassification, leading to poorer algorithm performance.
Moreover, using the same training dataset to train all three classifiers does not fully optimize
the performance of the comparison segment of the algorithm. Thus, the training data is
processed using the segmented averaging means to ensure that the dataset for training has
a certain degree of variation.
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Assuming the feature data for training is a matrix F with N vectors as depicted below:

F =


f1
f2
...
fN

 =


w11 w12 · · · w1m
w21 w22 · · · w2m

...
...

...
...

wN1 wN2 · · · wNm

 (8)

The feature matrix is initially partitioned into three sections, namely FP1, FP2, and
FP3, as illustrated in the equation below:

FP1 = [f1, f2, · · · fM]T

FP2 = [fM+1, fM+2, · · · , f2M]T

FP3 = [f2M+1, f2M+2, · · · , fN ]
T

(9)

To minimize the impact of outlying values in the training data on the classifier’s
performance, we perform an averaging treatment on the three data segments. The first
segment remains unchanged, the first and second segments’ data are averaged to create
the new second segment data, and the first, second, and third segments’ data are averaged
to create the new third segment data. The resulting averaged segment data, FT1, FT2 and
FT3, are listed below.

FT1 = FP1
FT2 = (FP1 + FP2)/2
FT3 = (FP1 + FP2 + FP3)/3

(10)

The main purpose of segmenting the feature matrix of the training data is to create a
varied training dataset for training three NN-based classifiers. Additionally, averaging the
segmented data aims to eliminate outliers in the training data.

4.4. The Flow of the NN-Based Weighted Voting Strategy

The algorithm flow of the NN-based weighted voting strategy is explained in Algo-
rithm 1. It should be noted that the number of parameters in Equation (6) varies with
different network structures. As a result, the formula for calculating the classification
results based on the network parameters needs to be modified accordingly.

Algorithm 1: NN-based Weighted Voting Algorithm

Input: Extracted feature data (including sample feature data F, and the corresponding labels
L; and feature data to be categorized CF, category labels is denote as Li (i = 0, . . ., N), where N is
the number of categories).

Output: Corresponding target category label (denote as L)
(1) Preprocessing the training dataset using the segmented averaging means introduced in

Section 4.3. The feature data and labels for the processed samples (FT1, FT2, FT3) and (CF1, CF2,
CF3) have been acquired.

(2) Three NN-based classifiers are trained utilizing the acquired sample data ((FT1, FT2, FT3),
(CF1, CF2, CF3)):

utilizing (FT1, CF1) for training classifier 1;
utilizing (FT2, CF2) for training classifier 2;
utilizing (FT3, CF3) for training classifier 3;
(3) Based on the parameters of the trained NN-based classifier, extract the parameter matrix

(iw,ib,hw,hb,ow,ob) for subsequent classification.
(4) The Lance-Williams method, as described in Section 3.2, is utilized to calculate the weights

of the three classifiers, identified as WC1, WC2, and WC3. These weights are computed using the
sample feature data (FT1, FT2, and FT3) and the target feature data CF that is to be classified.

(5) According to the computational formula presented in Section 4.2, the matrices detailing
the parameters of the three classifiers are employed in order to compute the feature data to be
classified. Subsequently, the classification results of the three classifiers, denoted as r(c1), r(c2),
and r(c3), are obtained;
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(6) Statistically weighted classification result r is derived from the classifier weights
computed in (4):

r = WC1× r(C1) + WC2× r(C2) + WC3× r(C3)
Find the item with the highest weight of the label L, and its corresponding category is the

classification result of the input feature data.

5. Performance of Multi-DBN Weighted Voting Algorithm

In this paper, the proposed algorithm is validated using the feature data of four
targets, which are AAV vehicles, DW vehicles, small domestic vehicles, and pedestrians.
Among them, the signal data of AAV vehicles, DW vehicles from are gathered from a
real-world experiment, named the third SensIT situational experiment [21]. The details of
the experiment were described in the paper mentioned above.

The signal of small vehicle and personnel were tested in real-world scenarios using
WSN nodes specialized for collecting signals. The sensor nodes were placed on open ground
at various distances from the road, with adjustments made gradually. WSN nodes collected
sound, vibration, infrared, and magnetic signals from a range of targets including various
types of vehicles and individuals. The experiment selects the acoustic and vibration signals
obtained from small vehicles and personnel targets. The schematic diagram demonstrating
the experiment, presented in Figure 7a,b, shows the acquired acoustic signals of small vehicle.
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The data from both AAV and DW vehicles in the SensIT dataset, as well as from
personnel and small vehicles in the acquired dataset shown above, are combined to create
a multi-target signal dataset for the validation of the proposed classification algorithm. The
feature extraction method utilizes the WCER approach, which is described in detail in the
paper [22].

The features data are 16-dimensional vectors. From the sensIT dataset, we perform
feature extraction on the signals of AAV and DW vehicles, and acquired 9930 feature vectors
from the acoustic signals of the AAV vehicle and 10,498 feature vectors from the acoustic
signals of the DW vehicle. In total, 726 feature vectors were extracted from the acoustic
signal generated by a person, and 879 feature vectors were extracted from the acoustic
signal of the small vehicle.

In this study, 3403 AAV feature vectors (34.3%) were utilized to train the classifier,
while the remaining 6527 feature vectors (65.7%) were used for testing. Overall, 3205 DW
feature vectors (30.5%) were utilized for training, and the remaining 7293 feature vectors
(69.5%) were used for testing. Additionally, 230 personal feature vectors (31.7%) were
training data, and the remaining 496 feature vectors (68.3%) were testing data. For small



Sensors 2024, 24, 123 11 of 16

vehicle feature vectors, 201 of them (22.4%) were utilized for training, and the remaining
7293 feature vectors (77.6%) were used for testing.

5.1. Performance Analysis of Multi-DBN Weighted Voting Algorithm

The SensIT experiment employed AAV vehicles and DW vehicles, while the intro-
duced experiment in Figure 7 utilized personnel and small vehicles as the target to be
classified, using part of the selected acoustic signals from four target types and extracting
the feature data using the WCER feature extraction algorithm [22]. The target category
label corresponding to the AAV vehicle target feature data was set to be {1 0 0 0}; the target
category label corresponding to the DW vehicle sample feature data was set to be {0 1 0 0};
the target category label corresponding to the personnel target feature data was set to be
{0 0 1 0}; and the target category label corresponding to the small vehicle target feature data
was set to be {0 0 0 1}.

Three deep belief networks (DBN) [23] were used as basic classifiers, each with the
same network size of one input layer, two intermediate hidden layers and one output
layer. The input layer of the classifier network contains 16 neurons, representing the
16-dimensional feature vectors of the target signal. The first hidden layer of the intermediate
layer contains 100 neurons, and the second hidden layer contains 60 neurons. The output
layer contains four neurons, corresponding to the four different types of targets.

The training data was first segmented and averaged, which was then divided into
three equal-sized segments, for training three DBN classifiers. The voting weights for these
classifiers were then calculated using the aforementioned sample feature data segments.
The three trained classifiers were fed the feature data for calculation and voting classifi-
cation. The resulting classification was then compared to the original target categories to
determine accuracy. After obtaining accuracy for all datasets, the average classification
accuracy for each target category was calculated.

Table 3 shows the details of the three classifiers and the final voting results. The voting
weights indicate the relative weight of this classifier in performing category voting; 0.8252
is the voting weight of classifier 1, meaning that if classifier 1 identifies a feature data as
target A, then target A is assigned a vote value of 0.8252.

Table 3. Multi-DBN classifier classification accuracy of different targets.

Classifier Classifier 1 Classifier 2 Classifier 3 Voting Classification
ResultsVoting Weighted Value 0.8252 0.7839 0.7613

Classification accuracy of AAV 68.12% 66.06% 69.65% 73.37%

Classification accuracy of DW 80.21% 83.11% 72.35% 85.42%

Classification accuracy of personnel 87.24% 84.63% 81.18% 90.76%

Classification accuracy of small vehicle 68.12% 66.06% 69.65% 88.96%

According to Table 3, the following conclusions can be drawn from the results of
the multi-DBN voting classification method for classifying AAV vehicles, DW vehicles,
personnel, and small vehicles.

(1) The proposed NN-based weighted voting strategy can accurately classify different
targets in the WSN system, with a classification accuracy of over 70% for the four target
categories when using the DBN as the basic classifier. (2) The NN-based weighted voting
classification algorithm enhances the overall classification accuracy when compared to
the average results of the three individual classifiers for AAV targets. The voting session
significantly improves accuracy rates by about 5% when compared to the single DBN classi-
fication. The classification accuracy rate for DW targets increased by approximately 5.86%,
while the rate for personnel targets increased by 6%. Additionally, the increase in classifica-
tion accuracy is approximately 6.5% when the NN-based weighted voting classification
algorithm utilizes DBN as the basic classifier. For targets of small vehicles, the increase in
classification accuracy is approximately 3.49%. (3) Additionally, the classifiers’ performance
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varies based on the sample data used to train them. For AAV targets, the classification
accuracy of classifiers trained using the third segment of sample data after segmentation is
significantly lower compared to the first two classifiers. (4) The classification accuracy of
classifiers for both AAV and DW targets is generally low, which can be attributed to their
lower accuracy for both target types. Classification accuracy is generally low because the
acoustic and vibration Seismic of AAV targets and DW targets are similar, and it is more
difficult to distinguish the feature data.

5.2. Effect of Network Size on Algorithm Classification Accuracy

For studying how the size of network affect the classification accuracy of NN-based
weighted voting strategy, we utilized neural networks of varying size as the basic classifiers
to classify the target data.

(M, N) were used to represent the dimensions of the hidden layer in the DBN classifier.
Here, M refers to the number of neurons in the first layer, while N indicates the number of
neurons in the second layer. We utilized the DBN classifiers with scales (100, 40), (100, 60),
(100, 80), (200, 60) and (300, 60) to classify the targets, respectively.

The classification accuracy of three DBN classifiers and NN-based weighted voting
algorithm were computed. The classification results for both AAV vehicles and DW vehicles
are illustrated in Figure 8.
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As illustrated in Figure 8, from the classification accuracies of the single classifier and
the voting strategy at various network sizes, we can draw the following conclusions:

(1) The proposed voting classification strategy yields higher accuracy than the highest
accuracy achieved by the three single classifiers. Additionally, there is no discernable
correlation between network size and classification accuracy of the DBN classifier,
larger networks do not necessarily result in higher accuracy.

(2) The classification accuracy of DW vehicles decrease as the network size increases.
Additionally, the DBN classifier’s classification accuracy for AAV vehicles is negatively
correlated with the network size. When the classifier’s accuracy for AAV vehicles
improves, the corresponding accuracy for DW vehicles decrease.

Since there is no direct relationship between the size of the neural network and
overall classification accuracy. Therefore, it is important to comprehensively consider the
actual application scenario of the method to select the appropriate network size. As the
network size increases, the NN-based weighted voting strategy requires more memory and
computation source.



Sensors 2024, 24, 123 13 of 16

5.3. Comparison with Other Multi-Objective Classification Methods

In addition to deep learning algorithms, (KNN) [24], the Plain Bayes (NB) method [25],
and the Extreme Learning Machine (ELM) [26] algorithms are also well-established classical
methods for multi-classification. These centralized methods were applied to classify the
four target signals in the WSN monitoring system and compare the results with those of
the NN-based weighted voting methods.

The average classification accuracy is noted as OAc, the formula is presented as follows:

OAc =
1
P

P

∑
i=1

Ac(i) (11)

where Ac(i) is the classification accuracy of the ith class, and P is the number of target class.
Table 4 shows the overall average classification accuracy of each classification algo-

rithm for four kinds of targets.

Table 4. Comparison of classification effects of different algorithms.

Algorithm KNN NB ELM NN-Based Weight Voting

accurancy 61.71% 63.85% 71.88% 84.63%

time consumption (s) 0.0043 0.0077 0.1783 0.4892

where the average classification time is determined by adding the classification time
for all data records in the dataset and dividing by the total number of data records. Based
on the overall average classification accuracy results of each algorithm for the four targets
presented in the table, we can draw the following conclusions:

(1) The NB method yields a lower average classification accuracy of approximately 63.85%
when used to classify multiple vehicle signals detected in the WSN system. The main reason
for this is that when the sample training dataset is small, the a priori probability model,
obtained by analyzing the training data using the Naive Bayes (NB) method, is not accurate.

(2) Additionally, when classifying multiple target signals using the Adaboosting method,
the accuracy is lower compared to other methods.

(3) When classifying multiple vehicle signals detected in the WSN monitoring system,
the neural network-related methods (such as the multi-DBN voting method and
FFNN method) exhibit higher average classification accuracy. Moreover, the neural
network method’s advantage in classification accuracy becomes more apparent after
the network optimization.

(4) The NN-based weighted voting method achieves the highest classification accuracy,
although its classification time is the longest compared to other methods.

When implementing the multi-DBN neural network using the “top-end training,
bottom-end transplantation” approach, the main memory consumption occurs during
the top-end training phase. The memory consumption of bottom-end transplantation is
dependent on network parameters. In this paper, we used a four-layer network for the DBN
classifier with a total of 280 neurons, divided into 16, 100, 60, and 4, respectively. The result-
ing network parameters consist of six matrices, sized 16 × 100, 16 × 1, 100 × 40, 100 × 1,
40 × 4, and 40 × 1, respectively, occupying approximately 11.8 kB of memory space.

5.4. Comparison of Classification Performance Using Different Neural Networks

For comparing the classification performance using different neural networks on target
classification, we employed the Feedforward neural network (FFNN) [27], deep neural
network (DNN) [28], and DBN as the base classifiers of the NN-based weighted voting
algorithm. All the neural networks have 16 neurons in the input layer and 4 neurons in
the output layer. FFNN includes one hidden layer with 100 neurons, while DNN includes
three hidden layers with 100 neurons in each hidden layer. The classification accuracy of
using the FFNN, DNN, and DBN are summarized in Table 5.
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Table 5. Comparison of classification effects using different NN-based classifier.

Neural Network Types DBN FFNN DNN

Average classification accuracy 84.63% 75.76% 85.49%

Based on the classification accuracies tabulated using different types of neural net-
works as base classifiers, we can draw the following conclusions:

(1) The neural network-based weighted voting algorithm yields varying classification
results when employing different neural networks.

(2) Classification accuracy significantly improves when using DNN and DBN classifiers
compared to FFNN, with an achievement of about 85%.

6. Conclusions

In this paper, a novel NN-based weighted voting strategy on the basis of single NN-
based classifier and combined with the idea of voting method for multi-target classification
in WSNs is proposed. The introduced approach uses multiple NN-based classifiers cooper-
ating with each other to classify multi targets. According to the training and classification
characteristics of neural networks, we propose the means of “top-end training, bottom-end
transplantation” for transplanting the NN-based weighted voting classification method to
the WSN node. The experiment results reveal that the proposed method has a higher accu-
racy in classifying the target signal features, achieving an average classification accuracy of
about 85% when utilizing DNN and DBN as the base classifier. Moreover, the NN-based
weighted voting algorithm enhances the target classification accuracy by approximately 5%
in comparison to the single NN-based classifier.

However, there are still several issues that necessitate further investigation.

(1) A more thorough investigation of classification accuracy among algorithms using
various neural networks to determine the optimal neural network structure.

(2) The simulations show a significant impact of different training sets on the classifi-
cation performance of neural networks, and more studies are needed to reveal the
underlying patterns.

(3) The size of the neural network, particularly the number of hidden layers, can impact the
classifier’s classification accuracy. However, augmenting the number of hidden layers
increases computing power demands, and finding a balance requires further research.
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AAV Assault amphibian vehicle
DW Dragon wagon
KNN K-nearest neighbor
ELM Extreme Learning Machine
NB Naive Bayes
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