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Abstract: The network of distributed microphone arrays is usually established in an ad hoc manner;
hence, network parameters such as the mutual positioning and rotation of the arrays, positions of
sources, and synchronization of their recording onset times are initially unknown. In this article,
we consider the problem of passively jointly self-calibrating and synchronizing distributed arrays
in reverberant rooms. We use a typical two-step approach where, initially, the relative geometry
of the network is estimated using Direction of Arrival (DoA) measurements. Subsequently, the
absolute scale and synchronization parameters are estimated using Time Difference of Arrival (TDoA)
measurements. This article presents methods to improve the robustness and accuracy of estimation
of the absolute geometric scaling and synchronization parameters in reverberant conditions, in
which TDoA measurements do not follow a normal distribution; furthermore, outliers often occur.
To remedy these issues, we propose a Weighted Least Squares (WLS) estimator and schema for
weighting the TDoA measurements to increase the estimation accuracy from heteroscedastic TDoA
measurements. In addition, we propose an iterative reweighing algorithm with a binary weight
to detect and reject TDoA outliers, which exploits the residuals of the parametric model in the
least absolute value minimization. A numerical evaluation shows significant improvements in the
proposed method over the state of the art in terms of the relative scaling error and mean absolute
value of the synchronization parameters.

Keywords: distributed sensor networks; calibration; iterative reweighting; microphone array processing;
robust estimation; self-localization; synchronization; localization; sensors

1. Introduction

Smart devices are often equipped with one or more microphones [1], which enable
advanced audio signal processing [2], such as spatial filtering [3,4], source localization [5–7],
and distributed signal enhancement [2]. When several devices with independent sam-
pling clocks are distributed in space and interconnected using wireless data transmission,
the setup is referred to as a Wireless Acoustic Sensor Network (WASN) [1]. Due to its
ad hoc nature, calibration is usually required before any distributed processing can be
performed [8].

Common approaches to self-localization in the WASN employ information about the
distances between sensors and sources, which can be inferred from Time of Flight (ToF)
measurements. In these approaches, the entire set of ToF measurements is processed to
determine the positions of sensors and sources. For example, this can be achieved using
the recently proposed iterative weighted least squares method [9], which is initialized with
a multidimensional scaling technique. Another popular method is the so-called bilinear
approach [10], which exploits matrix factorization through singular value decomposition
and coordinate transformation. The latter approach also allows one to find solutions in
a closed-form manner when certain geometrical conditions are met [11]. Alternatively,
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it is also possible to synchronize the network using ToF measurements, using low-rank
alternating projections [12] or total least squares [13]. In practice, however, these methods
require fully controlled sources (i.e., the knowledge of the source signal) to extract ToF
measurements, which is usually impractical in realistic ad hoc network setups.

On the other hand, there exist much more practical approaches to the self-calibration
of distributed microphone arrays that are based on Time Difference of Arrival (TDoA)
and/or Direction of Arrival (DoA) measurements, which can be reliably detected [14]
directly from signals observed at acoustic sensors without any knowledge of the source
signals. In general, approaches with uncontrolled sources are referred to as passive self-
localization. Self-localization based only on TDoA measurements usually exploits low-rank
properties. Examples of methods that employ TDoA measurements include a three-step
stratification process with rank constraints and factorization [15], a low-rank approximation
using a pseudo-matrix of Time of Arrival (ToA)s [16], and a constrained total least squares
approach [17]. Unfortunately, all of the aforementioned passive approaches are derived
either for a specific number of sensors and sources, or the convergence of the method to
the optimal solution is often troublesome. If multiple sensors are available within a single
device, directional information about DoAs of the incoming waves impinging on such
an array can also be incorporated into self-localization as additional spatial information.
Joining the measurements of TDoA and DoA into a single cost function was proposed
in [18], while the solution was found using iterative optimization methods. Since part
of these measurements may be unreliable due to, for example, strong room reflections,
some solutions to deemphasize unreliable measurements have been discussed in [19].
Recently, a method was proposed for splitting the cost function into multiple local cost
functions, each assigned to a different node. Following this, distributed array calibration
using the so-called damped Newtonian optimization was proposed in [20]. Another
approach [21] consists of combining two types of objective functions, for orientation and
time offset, respectively, with the aim of simultaneously estimating both these parameters
in a distributed self-calibration and synchronization problem. Interesting topics of current
research encompass solutions for scaling WASN [22], in which the weighted least squares
algorithm is applied to find calibration parameters when a new node is added to the
existing WASN. Another area of study involves using implicit representations of source
positions in ToA-based self-calibration problems [23]. Similar to the aforementioned passive
self-localization and synchronization, TDoA and DoA measurements have been jointly
exploited in the self-localization of acoustic transceiver networks, such as in [24], and
an attempt to split the centralized two-step cost function for geometry calibration of
the acoustic transceiver network into local cost functions was presented in [25] using
distributed Newton optimization. Note that the deployment of the latter approaches is,
however, restricted to transceiver nodes only, i.e., each node of the network needs to contain
both the microphone array and the loudspeaker.

In this article, we focus on two-step approaches for passive self-localization and syn-
chronization of distributed microphone arrays. Initially, the relative geometry of the WASN
(up to an arbitrary scaling factor) is estimated based only on the DoA measurement set
using either an angular-based estimator [26–30], or a ray-based estimator [31]. The benefit
of this approach is that, due to better convergence properties, it does not require an appli-
cation of the Random Sample Consensus (RANSAC) [32] technique, which significantly
increases the calibration speed. For details of the first step, i.e., relative geometry estimation
of sources and distributed acoustic sensor arrays, the reader is referred to a short survey
provided in [31]. The second step exploits TDoA measurements and the relative geometry
estimated in the previous step to find the absolute geometry (i.e., the absolute positions of
the sources and sensor arrays), which is achieved by estimating the so-called scaling factor,
which scales up or down the overall relative geometry. Since the devices that create the
WASN are usually not synchronized with each other, the TDoA measurements for indepen-
dent devices will be biased. Therefore, the synchronization parameters of WASN should
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also be estimated in the second step [29]. We discuss in more detail several approaches for
estimating the scaling factor value in further parts of the article.

In this work, we consider a scenario in which WASN is located in a reverberant room.
In fact, this is a typical scenario in which microphone arrays are deployed in practice.
However, although several studies present evaluations of self-calibration and synchro-
nization in reverberant environments [18,27], the existing approaches are not designed to
countermeasure reverberation, and this problem has so far rather been overlooked by the
research community. Room reverberation is a well-known phenomenon [33] that occurs
when a propagating wave is reflected from the surfaces encountered; therefore, the signal
received by any microphone can be considered to be a mixture of multiple copies of the
signal emitted by the sound source with different delay times and attenuations. As a result,
the TDoAs measured from the signals captured in the reverberant room deteriorate signifi-
cantly and do not follow a normal distribution. A significant deterioration in the TDoA
measurements (from their true values) undoubtedly has a negative impact on any pro-
cessing that is based on these measurements. In particular, any self-calibration procedure
will suffer greatly since the measurements used for calibration are usually expected to be
precise. Therefore, the problem of self-calibration and synchronization from measurements
performed in reverberant acoustic conditions should be considered one of the main issues
that this article aims to resolve. We distinguish two attributes of such measurements: firstly,
heteroscedasticity and secondly, the presence of outliers, and subsequently, we propose
an approach to effectively address both of these issues. Note that heteroscedasticity is a
property of a set of random variables where the variances of each variable differ. In the
context of this article, we assume that the variance of each measured time difference of
arrival (TDoA) depends on the distances between the source and the microphones, which
are randomly distributed in ambient space. Thus the main contribution of this article is
a novel iterative algorithm for estimating the scaling factor and recording time onsets,
using a heteroscedastic TDoA measurement set that also contains outliers. Additional
contributions include a detailed experimental evaluation of the novel algorithm and a
comparison with state-of-the-art methods.

The structure of this article is as follows. Section 2 provides a comprehensive formu-
lation of the problem of passive self-localization and synchronization of the network of
distributed microphone arrays. Section 3 discusses practical problems of absolute geometry
estimation with TDoA measurements, and introduces a novel algorithm for robust esti-
mation of the scaling factor and synchronization onset times. Major novelties include the
weighted least squares estimator and an iterative reweighting scheme. Section 4 presents
the results of the conducted numerical evaluations that show a comparison of the proposed
method with the state-of-the-art approach under various acoustic conditions, including
room reverberation. Finally, Section 5 concludes the article.

2. Problem Statement

Let us consider a WASN composed of N-independent devices distributed in a
D-dimensional space (in practical scenarios, either two-dimensional or three-dimensional
rooms are considered, i.e., D = 2 or D = 3), which captures S consecutive acoustic events.
The position of the ith device, where i = 1, . . . , N, is given by vector ni ∈ RD, while
positions of all devices are grouped into the matrix N = [n1, n2, . . . , nN ]

T ∈ RN×D. Each
device is equipped with a microphone array that has a local geometrical structure known
a priori. The orientation of the ith microphone array (the orientation of the microphone
array is equivalent to the orientation of the device) located at position ni in the room is
defined by vector θi ∈ R(D2−D)/2, consisting of the Euler angles, which are further grouped
into the matrix Θ = [θ1, θ2, . . . , θN ]

T ∈ RN×(D2−D)/2. The position of the jth acoustic
event is denoted by vector sj ∈ RD and positions of all the acoustic events form matrix
S = [s1, s2, . . . , sS]

T ∈ RS×D. The basic geometric relation between the position and
orientation of the ith device and the position of the jth acoustic event is defined by vector
pi,j ∈ RD, which represents the position of the jth acoustic event with respect to the local
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position of the reference microphone of the ith device, which is given by the following
equation

pi,j = R(θi)
(

sj − ni

)
, (1)

where R(θi) : R(D2−D)/2 −→ RD×D is a function that generates the rotation matrix from
Euler angles θi.

Since all devices in WASN are independent, we assume that there exists no precise
synchronization of the starting points of audio capture between devices in the network.
The time point at the beginning of the recording taken by the ith device is modeled as a
real scalar value δi ∈ R. The recording onset times of all devices that build WASN are
collected in a single vector ∆ = [δ1, δ2, . . . , δN ] ∈ RN . Finally, the emission time of the jth
acoustic event is denoted as tj ∈ R. Similar to the majority of self-calibration methods from
the literature, in this work, we assume that there is no overlap in time between any pair
of the source signals. As a result, due to the existence of different starting points of the
signal capture by each distributed device, the ToA ξi,j ∈ R of the direct sound of the jth
acoustic event—as captured by the ith device—is additionally biased by δi. Thus, ToA can
be modeled as follows:

ξi,j =

∥∥∥sj − ni

∥∥∥
2

c
+ tj − δi, (2)

where c is the speed of sound and∥·∥p denotes the p-norm Lp. The timeline of the aforemen-
tioned events that occur when WASN starts to capture the microphone signals associated
with an acoustic event is presented in Figure 1.

Figure 1. Timeline of events in the WASN when it begins to capture signals. Firstly a message
triggering the recording is sent to all devices in the network. Each device begins to record the signal
after receiving the message, but due to the latency in the network, individual devices start to record
the signals related to the acoustic event at different points in time.

In this work, our aim is to estimate a set of unknown parameters N, Θ, ∆, S using
only the quantities that can be measured passively, without knowing the precise time
point when the acoustic event takes place (i.e., in our passive approach tj is an unknown
parameter) and without the knowledge of the waveform of the acoustic signal that is
emitted (which constitutes the so-called uncontrolled source). To this end, we exploit only
the measurements of DoA and TDoA of unknown acoustic events. For the jth acoustic
event, the DoA di,j ∈ RD at the ith device is modeled as

di,j =
∥∥∥pi,j

∥∥∥−1

2
pi,j. (3)
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In this work, DoAs are measured using intra-array signals, and the geometry relative
up to the scaling factor γ, denoted as Θ, Ñ, S̃ is estimated based on the set of DoA
measurements [29]. To estimate the scale factor of geometry and synchronization offsets ∆,
we exploit a set of measurable TDoAs between the ith and kth devices that capture the jth
acoustic event, which can be modeled as

τ
j
i,k = ξi,j − ξk,j =

∥∥∥sj − ni

∥∥∥
2
−
∥∥∥sj − nk

∥∥∥
2

c
− δi,k , (4)

where δi,k = δi − δj.
In this article, we propose a two-step Maximum Likelihood (ML) method for the

self-localization and synchronization of distributed microphone arrays, consisting of the
following processing steps. First, we find the relative geometry (i.e., Θ, Ñ, and S̃), based on
the measured DoAs using an ML approach that exploits the concept of half lines, known
as rays [31]. We selected this approach because it is known to be highly robust toward
random parameter initialization compared to many state-of-the-art approaches, as shown
e.g., in [31]. Next, we refine the relative geometry using the ML estimator derived using
directional statistics with robustness incorporated against DoA measurement errors [30].
Finally, we perform the second step, which consists of the estimation of the scaling factor
and synchronization offset times using an iterative method proposed in Section 3. As will
be shown in experimental evaluations in Section 4, the proposed approach enables us to
successfully increase the robustness against TDoA measurement errors, very effectively
removing strong outliers.

3. Absolute Geometry Estimation and Synchronization

The relationship between the relative geometry given by matrices Ñ, S̃ and the absolute
geometry given by matrices N, S can simply be defined as

N = γ Ñ, (5a)

S = γ S̃, (5b)

where γ ∈ R is the scaling factor. This ambiguity in the relative geometry can be resolved
by estimating the scaling factor, which can be achieved using the measured TDoAs. In the
literature, we can distinguish between two approaches to the estimation of the scaling factor,
intra-array approach which involves measurements between the signals of microphones
within a single array, and the inter-array approach, involving measurements between the
signals of microphones from different arrays. Usually, only the signal of a single (reference)
microphone from each array is used to mitigate the computational load) TDoAs.

An estimation of the scaling factor using intra-array TDoAs was presented in [28]
for circular microphone arrays. The main advantage of this approach is the lack of bias
caused by synchronization offsets in measured TDoAs since all measurements applied for
the estimation of the scale parameter originate from a single device. Unfortunately, this
approach requires precise TDoA measurements due to the high sensitivity of localization
to measurement errors for acoustic sources located in the far field of the array. Thus, in
practice, this approach is limited to scenarios where sources are located in close proximity
to the arrays and, thus, WASN is limited to be rather small in size (e.g., a few devices, such
as smartphones lying on a desk).

Those limitations do not affect the approaches based on inter-array TDoAs [26,27,29]
since the magnitude of those measurements is usually greater by at least one order. In
addition, the distribution of the positions of acoustic events and microphone arrays is much
more similar. Consequently, the issue of sources being in the far field for the entire WASN
(i.e., for every array simultaneously) is usually not encountered. This approach was initially
used in [26,27], which exploits the known a priori relative geometry of the WASN and,
hence, the estimation of the scaling factor usually involves just one or several individual
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TDoAs. For more realistic cases, where WASN is not synchronized prior to deployment, a
similar strategy was used in [29] to derive the Least Squares (LS) estimator that, based on
all measured TDoAs, jointly estimates the scaling factor of the relative geometry and the
synchronization offset times.

In addition to the synchronization offset bias, the TDoA measurements are affected
by a phenomenon known as reverberation, which significantly obstructs the accuracy of
those measurements. Figure 2 shows example distributions of absolute measurement errors
between the true and inferred TDoA estimates in terms of the distance between the position
of the source and the position of the microphone pair used to estimate a particular TDoA.
We can observe two straightforward relations between the magnitude of the error and the
distance. The first is a steady increase in the measurement error observed for an increasing
distance, and the second is a significant probability increase of the occurrence of outliers
when acoustic sources are farther away than a certain threshold distance. Both of those
relationships are associated with a decreasing power of the signal that propagates over the
direct path. The deterioration of the correlation between the received microphone signals is
caused by the low power of the direct propagation path component, compared with the
power of other propagation paths related to wave reflections at boundaries in the room. For
a certain threshold distance, late reverberation starts to become a dominant component in
the received signals (which yields a low direct-to-reverberant ratio), significantly increasing
the probability of the occurrence of outliers among the estimated TDoAs.
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(a) The reverberation time (RT60) in the room was approximately 250 [ms]. About 16% of the
measured TDoAs are outliers.
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(b) The reverberation time (RT60) in the room was approximately 750 [ms]. About 62% of the
measured TDoAs are outliers.

Figure 2. Distributions of the absolute inter-array time difference of arrival measurement error as
a function of (a) the average distance between the position of the source and the positions of the
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microphones in the pair and (b) the maximum distance between the position of the source and the
position of the microphones. TDoA measurements were estimated for randomly placed N = 25
microphones and S = 25 acoustic events generated by short speech utterances emitted at random
positions in the reverberant room of 7× 5× 3 [m] size, and the self-noise of the microphones was
−60 [dB]. The red line denotes the outlier boundary for the TDoA measurement error, which exceeds
10 [ms].

Section 3.1 introduces a weighted LS estimator for the scaling factor and synchroniza-
tion offsets; it attempts to mitigate the effect of an increasing TDoA measurement error at
longer distances. In Section 3.2, we propose a new robust estimator of the scaling factor
and synchronization offsets based on iterative reweighing with binary weights.

3.1. Weighted Least Squares for Heteroscedastic Measurements

The estimator for the scaling factor and synchronization offsets presented in [29] could
be seen as a nonlinear ML estimator [16,34] with linear constraints on the microphone and
source positions. According to the Gauss–Markov theorem, this estimator is efficient only
for a homoscedastic set of TDoA measurements. In practice, the variance of the estimated
TDoAs between the source and two microphones is not constant and strongly depends
on the acoustical conditions of the environment. As a result, the TDoA measurements are
actually heteroscedastic. Given this notion, we introduce here a modified version of the LS
estimator described in [29], which takes into account the non-constant variability of each
measured TDoA, which can be written as

γ̂LS, ∆̂
LS, N̂, Ŝ = argmin

∆,γ,N,S

S

∑
j=1

N

∑
i=1

N

∑
k=1

wj
i,k

(
τ

j
i,k − τ̌

j
i,k

)2
subject to N = γÑ∧ S = γS̃, (6)

where wj
i,k ∈ R is a weighting coefficient for each estimated value of τ̌

j
i,k. As shown in [29],

it is possible to reformulate problem (6) as an unconstrained problem. To this end, the
modeled value of TDoA, denoted by τ

j
i,k, can be expressed as

τ
j
i,k = γ τ̃

j
i,k − δi,k, (7)

where τ̃
j
i,k is the relative TDoA, computed based on the known relative geometry in the

following manner:

τ̃
j
i,k = c−1

(∥∥∥s̃j − ñi

∥∥∥
2
−
∥∥∥s̃j − ñk

∥∥∥
2

)
. (8)

As a result of this substitution, a constrained problem (6) is reformulated into the weighted
linear LS problem given by

γ̂LS, ∆̂
LS

= argmin
γ,∆

S

∑
j=1

N

∑
i=1

N

∑
k=1

wj
i,k

(
γτ̃

j
i,k − δi + δj − τ̌

j
i,k

)2

2
, (9)

where γ̂LS, ∆̂
LS denotes the weighted least squares solution [35]. Problem (9) consists of

solving an overdetermined system of SN2 linear equations with the following unknown
variables γ, δ1, δ2, δ3, . . . , δN , by minimizing the value of the squared residuals. To control
the impact of each equation (i.e., residual) on the solution, the weights wj

i,k for each residual
are introduced. The matrix form of problem (9) is given as

q̂LS = argmin
q
∥Aq− τ̌∥2

2 , (10)



Sensors 2024, 24, 114 8 of 24

where A ∈ RSN2×N denotes the matrix of weighted coefficients of the system of linear
equations, τ̌ ∈ RSN2

denotes the vector of weighted constant terms, and q denotes the
unknown variables of the system. Since the solution ∆̂

LS is invariant to translation, we
constrain the value of δ̂LS

1 to be 0, as suggested in [29]. The solution to the problem
given by (10) can be conventionally computed in closed form using the Moore–Penrose
pseudoinverse of matrix A, and it is given as

q̂LS = A†τ̌, (11)

where matrix A and vector τ̌ can be built using Algorithm 1, (·)† denotes a Moore–Penrose
pseudo-inverse of the matrix, and vector q̂LS = [γ̂LS, δ̂LS

2 , δ̂LS
3 , . . . , δ̂LS

N ]T ∈ RN contains
optimal (in the least squares sense) values of the scaling factor and synchronization offsets.

Algorithm 1: Synthesis of the design matrix A and measurement vector τ̃. It
constitutes a modified version of the algorithm initially presented in [29]

Data: τ̃(i,k),j, τ̌(i,k),j
Result: Matrix A = [al,i] and vector τ̌ = [τ̌l ]
Initialization: A← 0SN2×N ; τ̌ ← 0SN2×1
for j← 1 to S do

for i← 1 to N do
for k← 1 to N do

l ← (j− 1)N2 + (i− 1)N + k
τ̌l ← w(i,k),jτ̌(i,k),j
al,1 ← w(i,k),jτ̃(i,k),j
if i > 1 and i ̸= k then

al,i ← −w(i,k),j

end
if k > 1 and i ̸= k then

al,k ← w(i,k),j

end
end

end
end

To set the weights for the problem given by (6), we exploit the a priori known relative
geometry of WASN and domain knowledge. As noted earlier (cf. Figure 2), the variance
of the TDoA measurements depends on the distance between the sound source and the
microphones that received this signal. This is a well-known relation that results from
the occurrence of reverberation in the room [33,36]. Since the absolute distances between
the sources and microphones are unknown, we exploit the relative distances that can be
calculated using the relative geometry Ñ, S̃, as the latent variable that indirectly indicates
the variance of the measured τ̌(i,k),j. We propose using the maximum distance between the
source and the microphones in the relative geometry ϕmax

(i,k),j ∈ R, which can be written as

ϕmax
(i,k),j = max

(∥∥∥s̃j − ñi

∥∥∥
2

,
∥∥∥s̃j − ñk

∥∥∥
2

)
, (12)

or an average distance ϕ
avg
(i,k),j ∈ R given as

ϕ
avg
(i,k),j =

∥∥∥s̃j − ñi

∥∥∥
2
+
∥∥∥s̃j − ñk

∥∥∥
2

2
. (13)
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As shown in Figure 2, both of these variables capture the heteroscedasticity of the TDoA
measurements. Finally, to take into account the heteroscedasticity of the measured TDoA,
we propose to set the weights w(i,k),j of the LS problem (6) to scalar values d(i,k),j ∈ R,
computed in the following manner:

d(i,k),j =

1−
ϕ(i,k),j

max
x,y,z

ϕ(x,y),z


β

, (14)

where parameter β ∈ R controls the steepness of the transfer function, and ϕ(i,k),j is either
set as ϕmax

(i,k),j or ϕ
avg
(i,k),j.

3.2. Robust Estimation with Iterative TDoA Reweighing

The main disadvantage of the LS estimator given by (9) is its high sensitivity to
outliers in the TDoA measurement set. As a result, the solution given by (11) will usually
be significantly deteriorated by outliers, which can reduce the performance of the estimator
in practical deployment in reverberant rooms. As mentioned earlier, the probability of the
occurrence of outliers substantially increases when the distance between the source and
one of the microphones exceeds a certain threshold value. Unfortunately, since we only
operate on the relative distances, and conditions of the acoustical scene are usually also
unknown, in this work, we do not exploit this prior, as proposed with the heteroscedastic
measurement in Section 3.1.

To mitigate the impact of outliers, we propose using an iterative reweighing algorithm
with binary weights for each TDoA measurement, which takes advantage of the minimiza-
tion of the Least Absolute (LA) values. The LA estimation is known to be more robust than
the LS estimation to the outliers due to the employed norm L1 instead of the norm L2 for
the residuals, which places less emphasis on large residuals, thereby achieving an increase
in robustness toward the outliers.

The problem of jointly estimating the scaling factor and synchronization offset param-
eters, along with the LA value can be written as

γ̂L1 , ∆̂
L1 = argmin

γ,∆
fL1(γ, ∆), (15)

where γ̂L1 , ∆̂
L1 are the estimated optimum parameters, and fL1(γ, ∆) ∈ R is an objective

function, defined as

fL1(γ, ∆) =
S

∑
j=1

N

∑
i=1

N

∑
k=1

wj
i,k

∥∥∥γ τ̃
j
i,k − δi,k − τ̌

j
i,k

∥∥∥
1

. (16)

Unlike (9), the analytical (i.e., closed-form) solution to the problem given by (15) with (16)
does not exist and it is usually found with iterative methods such as simplex-based ap-
proaches [37], the direct descent approach [38], or the maximum likelihood estimation [39].
In this work, we solve problem (15) by minimizing an objective function (16) with the
quasi-Newton optimization method, known as L-BFGS [40–42], which exploits the gradient

∇ fL1 =

[
∂ fL1

∂γ
,

∂ fL1

∂δ1
,

∂ fL1

∂δ2
, . . . ,

∂ fL1

∂δN

]T

∈ RN (17)

of the objective function fL1 from (16), with vector elements, respectively, given by

∂ fL1

∂γ
=

S

∑
j=1

N

∑
i=1

N

∑
k=1

wj
i,k rj

i,kτ̃
j
i,k , (18a)
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∂ fL1

∂δz
=

S

∑
j=1

 N

∑
i ̸=z

wj
i,zrj

i,z −
N

∑
k ̸=z

wj
z,krj

z,k

, (18b)

rj
i,k = sgn

(
γ τ̃

j
i,k − δi,k − τ̌

j
i,k

)
, (18c)

where sgn(x) is the sign function . Since the objective function fL1 is not differentiable in the
entire domain, due to the fact that the sign function is not defined for 0 value, we set sgn(0)
to be equal to zero, i.e., sgn(0) = 0. Consequently, the gradient ∇ fL1 for non-differentiable
points will be transformed into a subgradient [42,43]. Since the objective function fL1

is, in general, convex, the proposed quasi-Newton method should tend to converge to
global minima, resulting in the optimal solution [42]. In practice, we did not encounter any
problems with the convergence of the method to the optimal solution, but we found that
random initialization of estimated parameters might result in a large number of iterations
required to reach convergence. To reduce the number of iterations required for convergence
to the optimum solution, we propose using the least squares solution γ̂LS, ∆̂

LS, which can
be calculated according to (11), as a starting point for the proposed optimization method.
We also investigated the modified L1 loss function, such as the Huber loss function [44]
or pseudo-Huber loss function [45] for the objective function (16), but did not observe an
improvement in precision with such modifications.

The second interesting property of the LA estimator is that its solution could be ex-
ploited for the detection of outliers. To investigate this property, we analyze the distribution
of residuals for the LA solution and compare it with the distribution of residuals for the LS
solution, when the TDoA measurements contain outliers. The histograms of the residuals
of the TDoA measurements for both solutions are presented in Figure 3, e.g., a simulated
distributed scenario. As can be seen in Figure 3a, the residuals of the solution for the LS
estimator yield a distribution that is strongly concentrated around some mean value, and
the shape of the distribution resembles the Gaussian distribution. The characteristic of
this distribution precludes any successful analysis with the purpose of detecting outliers.
On the other hand, the residual distribution of the LA estimator presented in Figure 3b
exhibits a clear separation between two groups of residuals, which vary in residual value.
In the following, we further investigate the relationship between the residuals for the
estimated parameters and the true residuals for the ground-truth parameters. These ex-
ample relationships are presented in Figure 4. Based on the value of the true residual, we
can reliably distinguish which measurement belongs to the outliers, i.e., a measurement
with a true residual value greater than 1× 10−4 , and which one belongs to the inliers,
i.e., a measurement with a true residual value lower than 1× 10−4. If we closely analyze
Figure 4a, then there is a substantial separation distance between the residual of outliers
and the residuals of inliers on the true residual axis for both LA and LS estimators, which
we expected. In the case of the LA estimator, the substantial separation distance can be
observed as well for the estimated residual axis that correctly separates outliers from inliers.
Furthermore, the residual values of the estimated parameters are much more correlated
with the values of the true residuals, as their distribution is more concentrated around the
oracle estimator line, cf. Figure 4.



Sensors 2024, 24, 114 11 of 24

10 7 10 6 10 5 10 4 10 3 10 2

Estimated residual values

0

10

20

30

40

50

#

(a) Histogram of values for residuals of TDoA measurements
and TDoAs estimated from the model using the LS estimator.
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(b) Histogram of values for residuals of TDoA measurements and
TDoAs estimated from the model using the LA estimator.

Figure 3. Comparison of the histogram of residuals for the scaling factor and synchronization offset
parameters obtained by (a) the LS and (b) the LA estimators.

(a) (b)

Figure 4. Comparison of the residual distribution for the scaling factor and synchronization offset
parameters obtained by different estimators. Each individual point on the graphs represents the
residual between the measured value and the TDoA value estimated by the parametric model. The
axis denoted as the true residual represents the value of the residual for the ground truth parameters.
Axis denoted as the estimated residual represents the value of the residual for the estimated parameters.
The residuals for the oracle estimator would be on the black line. Points above the black line are
overestimated. On the other hand, points under the black line are underestimated. Red dots denote
the residuals that resulted from the LA estimation and green crosses denote the residuals that resulted
from the LS estimation. (a) Comparison of residuals for LA and LS estimation methods without
any weighting, i.e., all weights wj

i,k were set to 1. (b) Comparison of residuals for the LA and LS
estimation methods after five iterations of the proposed reweighing method with binary weights.

In general, the separation distance between outliers and inliers of the residuals for
the LA estimates depends on the unknown acoustic conditions and noise. The residual
distribution for the unweighted LS estimator is generally underestimated, especially for
outliers, cf. Figure 4a. From our observations over a substantial number of experiments,
the above remarks on distributions of the residuals for LA and LS estimators hold with
good approximation for varying acoustic conditions. The conclusion of this analysis is that,
using residuals obtained from parameters estimated with LA value minimization, we can
detect outliers by finding two clusters with small and large residuals. In general, this kind
of problem can be classified as unsupervised learning, where we need to find those two
clusters of residuals. For example, it could be successfully solved with a basic clustering
algorithm, such as k-mean clustering [46]. Instead, to reduce the computational complexity
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of the method, we propose to apply a thresholding algorithm instead. Given the weights
and the optimal solution for the LA value minimization, i.e., γL1 and ∆L1 , the value of
residual rL1

(i,k),j ∈ R is computed as

rL1
(i,k),j = wj

i,k

∥∥∥γ̂L1 τ̃(i,k),j − δ̂L1
i + δ̂L1

k − τ̌(i,k),j

∥∥∥
1

. (19)

Furthermore, based on the computed residuals, the two basic thresholding parameters are
estimated, namely the mean value µτ ∈ R, given as

µτ =
2

SN(N − 1)

S

∑
j=1

N

∑
i=1

N

∑
k=i+1

rL1
(i,k),j , (20)

and the standard deviation στ ∈ R, given as

στ =

√√√√ 2
SN(N − 1)− 2

S

∑
j=1

N

∑
i=1

N

∑
k=i+1

(
rL1
(i,k),j − µτ

)2
. (21)

Finally, based on those two parameters and the residual for each measured TDoA, we
propose to determine a binary weight b(i,k),j ∈ {0, 1} using the following thresholding rule:

b(i,k),j =

1 if
(

rL1
(i,k),j − µτ

)
< ηrστ

0 otherwise
, (22)

where ηr is a tuning parameter for the rth iteration of the algorithm.
In each iteration, our aim is to change the tuning parameter in a manner, where

ηr+1 > ηr. The change in the value of the tuning parameter ηr, depending on the iteration,
is motivated as follows. Initially, we aim to reject as many potential outliers as possible,
even if a large number of inliers is rejected as well. As a result, the estimated parameters
give a roughly better result, which translates to better outlier detection in the next iteration.
Better outlier detection due to more correct parameter estimation allows one to relax the
threshold (controlled by the tuning parameter), and as a result, increase the number of
inliers. We advise starting with η1 = 1 and gradually increasing it with a step of 0.5. Finally,
our algorithm should exploit both types of weights, namely the aforementioned binary
weight and the weight from the LS problem. Therefore, we proposed that the new weights
w(i,k),j for each TDoA measurement are updated based on the computed binary weights
b(i,k),j and the weights d(i,k),j proposed in the previous section d(i,k),j, which is achieved by
using the following relation:

w(i,k),j = d(i,k),jb(i,k),j . (23)

With the use of the newly computed weights, the LS solution given by (11) is found and
forms the final solution. The LS solution is chosen to calculate the final result since, in
theory, it is considered the best linear unbiased estimator. If the assumed number of
iterations is not completed, the LS solution is used as initialization for the LA estimator in
the next iteration.

In general, the proposed iterative reweighing approach to the robust estimation of
the scaling factor and the recording onset time is summarized in Algorithm 2. Example
distributions of residuals of estimators LA and LS after five iterations of the proposed
method can be seen in Figure 4b. A significant improvement in the residual distribution for
the LS residuals was achieved by excluding outliers with proper weighting. The evaluation
of the proposed method is presented in detail in Section 4.
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Algorithm 2: The proposed iterative reweighing algorithm to the robust estima-
tion of the scaling factor and recording onset time

Data: τ̌(i,k),j, Ñ, S̃, η1, η1, . . . , ηR

Result: γ̂L2 , ∆̂
L2

Compute τ̃(i,k),j; Equation (8)
Compute d(i,k),j; Equation (14)
w(i,k),j ← d(i,k),j
for r ← 1 to R do

Build A and τ̌ according to Algorithm 1
Compute γ̂L2 , ∆̂

L2 ; Equation (11)
if r < R then

γL1
init ← γ̂L2

∆
L1
init ← ∆̂

L2

Obtain γ̂L2 , ∆̂
L2 by solving optimization problem (15) using the L-BFGS

procedure
Compute rL1

(i,k),j; Equation (19)
Compute µτ ; Equation (20)
Compute στ ; Equation (21)
η ← ηr
Compute b(i,k),j; Equation (22)
w(i,k),j ← d(i,k),j · b(i,k),j

end
end

4. Experimental Evaluation

In this section, the proposed robust estimator of the scaling factor and recording
onset times is evaluated. As a baseline method for performance comparison, we use an
unweighted linear LS estimator proposed in [29]. Unless otherwise stated, all experiments
are conducted in a three-dimensional (D = 3) room of size 10× 10× 3 [m], with five
tetrahedral microphone arrays (N = 5) and ten acoustic sources (S = 10). To obtain
significant statistical results, in all experiments, we perform 1000 trials (K = 1000) for each
test point. For evaluation purposes, in each experimental trial, both microphone arrays
and sources are placed randomly within the room with a uniform distribution throughout
the room volume. For each array, the recording onset times are sampled from a uniform
distribution with an interval of 1 to 100 [ms].

Since the evaluated method requires information about the relative geometry of
WASN, we employ an approach presented in [31] to estimate it from DoA measurements.
To estimate the DoA and TDoA measurements from the raw microphone signals, we use
the well-known Steered Response Power with Phase Transform (SRP-PHAT) [47,48] and the
Generalized Cross-Correlation with Phase Transform (GCC-PHAT) [49], respectively. The
microphone signals are synthesized at a sampling frequency of 16,000 [Hz], by convolving
room impulse responses (RIRs) with short (about 3 s long) speech segments. The room
impulse response, for each pair of the microphone and source positions, is generated with
the image source method [50]. Finally, white noise is added to the convoluted signal to
simulate the microphone’s self-noise at the signal-to-noise ratio (SNR) level of around
−60 [dB]. Since the proposed method concentrates on the second optimization step, we
aim to mitigate the impact of the relative geometry estimator on the presented results. To
this end, if not stated differently, the DoA measurements are estimated from speech signals
convolved with the RIR that contains only the direct propagation path between the source
and the microphone, with added microphone noise. In this case, the variability of the DoA
estimates does not depend on reverberation but it still deteriorates by microphone noise.
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In the first experiment, we aim to evaluate the ability of the proposed iterative reweigh-
ing approach to detect outliers in the TDoA measurement set by properly setting the binary
weight b(i,k),j to the value of 0 for outliers and value 1 for inliers. As an outlier, we consider
a TDoA measurement that diverges from its ground truth value by more than ±0.5 [ms]
(about ±5 sampling intervals). To eliminate the impact of the weighting scheme proposed
in Section 3.1 for the heteroscedasticity of the measurements set, as it will be evaluated
further on, in this experiment, all weights d(i,k),j are set to the value of 1. As a result, weights
w(i,k),j are equal to 1 in the first iteration of the proposed Algorithm 2, and in the following
iterations, the weights are set just to b(i,k),j. For the purpose of this experiment, we set
the reverberation time (RT60) of the room to a mild value of 200 [ms], to achieve a small
number of potential outliers that naturally occur in the TDoA measurement set. Next, a
random inlier from the measurement set is distorted by changing its magnitude so that it
becomes an outlier, which is realized by adding a random value sampled from a uniform
distribution with an interval from 0.5 to 5.0 [ms]. The procedure of introducing TDoA
measurement distortions is repeated until the desired (in this experiment) percentage of the
outliers in the TDoA measurements is reached. The proposed outlier detection algorithm is
evaluated on such a TDoA measurement set. This experiment was performed for TDoA
measurement sets that contain from about 5% to 40% of the outliers, and the results of this
experiment are depicted in Figure 5. By the detailed analysis of the results in Figure 5a,
we can observe that for a very small number of outliers in the TDoA measurement set,
the number of outliers detected by the proposed method is higher by about 5% than the
number of outliers detected by the oracle outlier detector. On the other hand, with an
increasing number of outliers in the measurement set, the number of outliers detected by
the proposed method approximately approaches the value of the oracle detector. Such
behavior can be well explained since when a small number of outliers are present in the
measurement set, the standard deviation of residuals is going to be significantly smaller.
As a result, the proposed thresholding rule identifies inliers with residuals significantly
larger than the mean µτ as outliers, even though these residuals are still much smaller than
those of actual outliers. However, this small drawback should not substantially affect the
quality of the solution in terms of the estimated parameters. On the other hand, when the
number of outliers increases, which corresponds to the vast majority of real use cases, the
proposed statistics and thresholding perform significantly better, and the proposed method
nearly reaches the performance of the oracle detector. In order to confirm the correctness of
outlier detection, in addition, we analyze the number of correctly detected outliers (true
positive rate) and the number of inliers incorrectly detected as outliers (false positive rate).
Figure 5b presents those two dependencies for a varying number of outliers in the TDoA
measurement set. The results indicate that the proposed estimator correctly detects almost
all outliers in the investigated range, with small variations of approximately 1%.

The second experiment evaluates the proposed weighting schemes that improve the
estimation of the scaling factor and recording onset times when TDoA measurements
are heteroscedastic due to the presence of the reverberation phenomenon. In Section 3.1,
we propose the weighting scheme based on one of two types of distances, namely the
maximum distance ϕmax

(i,k),j given by (12), and the average distance ϕ
avg
(i,k),j given by (13). To

carry out the experiment, we use the solution given by (11) to solve problem (6) with the
two weighting schemes mentioned above and an unweighted version (i.e., no weighting
is achieved by setting w(i,k),j) = 1), which can be considered equivalent to the baseline
approach [29]. Parameter β in (14) is set to the value of 5 for this and all subsequent
experiments. The evaluation is carried out for the reverberation time ranging from 150 to
750 ms with a 50 ms interval step. In order to quantitatively compare the aforementioned
three different weighting options, we propose to apply two metrics, namely the mean
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relative absolute error (MRAE) and mean absolute error (MAE). The MRAE metric is used
to evaluate the quality of the estimated scaling factor and is given by

MRAE(γ) =
1
K

K

∑
k=1

∣∣∣γ̂(k) − γ(k)
∣∣∣∣∣∣γ(k)

∣∣∣ , (24)

where the upper index (·)(k) denotes the kth experimental trail. The relative error is used
for the scaling factor since it depends on the estimated relative geometry determined in the
first step, whose scale value depends on the initialization, i.e., for the initialization I0, the
ground truth scaling factor might be 10, but for the initialization I1 ̸= I0, the ground truth
scaling factor might as well be equal to 100. For more details on this matter, the reader is
referred to [29]. The MAE metric will be used for the recording onset times ∆, and it is
given by

MAE(∆) =
1

KN

K

∑
k=1

N

∑
i=1

∣∣∣δ̂(k)i − δ
(k)
i

∣∣∣. (25)
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Figure 5. Evaluation of the proposed method in the context of outlier detection for a controlled
number of outliers in the TDoA measurements set. (a) Presents the dependency between the number
of outliers in the measurements and the number of outliers detected with the proposed method.
(b) Shows the rates of correctly detected outliers (true positive rate) and the rates of incorrectly
marked inliers as outliers (false positive rate) by the proposed method.

Figure 6 shows the results of this experiment. The characteristic lines in both plots
of Figure 6a,b exhibit similar relations and, thus, we discuss them both at the same time.
All three weighting schemes achieve very similar (nearly the same) performance for the
lowest reverberation time value (RT60 = 150 [ms]), but a detailed inspection shows that the
baseline achieves the best result, the next average distance weighting, and the maximum
distance weighting. In these acoustic conditions, the number of outliers is very low (if they
at all exist), and the distribution of measurements is almost homoscedastic. Consequently,
it is expected that the baseline method (unweighted linear LS estimator) achieves the best
results in nearly non-reverberant acoustic conditions. The situation changes completely
when the reverberation time increases, as would be the case in any practical scenario.
The difference between the three approaches becomes notable, the order is reversed, and
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the mutual relative gain stabilizes for all other tested reverberation times. As a result,
the baseline method achieves the highest error in both considered error measures, the
average distance weighting comes second, and the lowest error is observed for the maximal
distance weighting. Regardless of the weighting scheme, both errors increase quickly with
an increasing reverberation time level for the range between 150 and 400 ms, which is
caused by the occurrence of an increasing number of outliers. For reverberation times
greater than 400 [ms], the errors start to saturate. This is probably caused by a significant
number of outliers in the measurements, which start to dominate during the model fitting.
It should be noted that only the maximal weighting scheme is able to achieve average
synchronization between devices lower than the sampling interval for the reverberation
time set to 200 [ms]. Finally, since the maximal weighting scheme achieves the best results
in most cases, this weighting is selected for all subsequent experiments as the default
weighting scheme.

M
RA

E

(a) Mean relative absolute error of three studied weighting
approaches for the estimated scaling factor at varying
reverberation times.

(b) Mean absolute error of three studied weighting approaches for
the estimated recording onset times at varying reverberation times.

Figure 6. This figure presents the results of the experiment where three weighting schemes (maximal
distance, average distance, and unweighted) are evaluated in the reverberant room. (a) Shows the
mean relative absolute error of the scaling factor. (b) Shows the mean absolute error for the recording
onset times. The reverberation time (RT60) varies from 150 to 750 [ms].

In the third experiment, similar to the previous one, several configurations of the
proposed methods are compared for different reverberation time values, in the range from
150 to 750 [ms].

In the following, all investigated configurations are listed:

1. The first investigated configuration is a baseline, but instead of using a reverberant and
noisy microphone signal for the TDoA estimation, only the direct propagation path
with the microphone noise is taken into account. Such configurations will provide a
lower reference bound on estimation errors for other configurations. The results for
this configuration are denoted by a black dashed line with a dot marker in Figure 7.

2. The second configuration is the baseline approach, in which the LS estimator with all
weights set to 1, i.e., w(i,k),j = 1. The results for this configuration are denoted by a
blue dashed line with a dot marker in Figure 7.

3. The third configuration is the LS estimator with maximal distance weighting
w(i,k),j = ϕmax

(i,k),j. The results for this configuration are denoted by a blue solid line
with a cross marker in Figure 7.

4. The next configuration will be an LA estimator with all weights set to 1
w(i,k),j = 1 . The results for this configuration are indicated by a green dashed
line with a dot marker in Figure 7.
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5. The fifth configuration is an LA estimator with maximal distance weighting
w(i,k),j = ϕmax

(i,k),j. The results for this configuration are denoted by a solid green
line with a cross marker in Figure 7.

6. The sixth configuration is an approach proposed in Algorithm 2 with one change,
all weights d(i,k),j are set to 1. The results of this configuration are denoted by a red
dashed line with a point marker in Figure 7.

7. Finally, the last configuration is an approach proposed in Algorithm 2, with the
maximal distance weighting w(i,k),j = ϕmax

(i,k),j. The results for this configuration are
denoted by a solid red line with a cross marker in Figure 7.

Figure 7. Comparison of the performance of the different configurations for varying reverberation
times. (a) Mean relative absolute error of the scaling factor estimator. (b) Mean absolute error of the
recording onset time estimator.

The first reference baseline configuration exhibits constant values of both metrics due
to its independence from the reverberation time. The MRAE value for the scaling factor
settles at a level approximately equal to 2× 10−4, and the constant value of MAE for the
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recording onset times is approximately 1× 10−6 [s]. These values set an experimental
lower bound on the estimation errors for the evaluated results presented in Figure 8.
In general, all three configurations based on the weighting with the proposed maximal
distance weighting scheme, i.e., configurations 3, 5, and 7, show performance improvement
in their respective unweighted versions, i.e., configurations 2, 4, and 6. The only test
point where the difference is not significant between all configurations is when there is
almost no reverberation, i.e., for the lowest reverberation time value of 150 [ms]. However,
from Figure 8a, it can be seen that configurations 4 and 7 still achieve a slightly better
result for the scaling factor. There is also a substantial difference in performance between
the LS, LA, and the proposed LS with iterative rejection. In most test cases, a simple LS
estimator (configurations 2 and 3) reaches the highest error value, as it is most exposed
and sensitive to outliers. Intermediate performance is obtained for the LA estimator
(configurations 4 and 5), which is less sensitive to the outliers and achieves much lower
estimation errors than the simple LS estimator. Finally, the proposed method summarized
by Algorithm 2 (configurations 6 and 7) combines the assets of the LS and LA estimators
and achieves overall remarkably better results than other methods. A significant advantage
of the proposed method is especially visible for the mild to medium/high reverberation
time (ranging from 200 [ms] to 500 [ms]), where the difference between the baseline
and the proposed method in terms of the estimation error is close to three orders of
magnitude at some test points. Furthermore, the proposed method (configuration 7)
reaches nearly the lower bound for test points from 200 [ms] to 500 [ms] as it is close
to the performance of the reference configuration 1 for that range. With an increasing
reverberation time (above 600 [ms]), all configurations are starting to approach similar levels
of error but still keep performance order intact. Lastly, the synchronization performance
of the proposed method allows the WASN to be synchronized to the level below a single
sampling interval for a significantly higher reverberation time than in the baseline method.
In this experiment, the cutoff reverberation time for the baseline method is 200 [ms].
The weighted LS (configuration 3) improves it roughly by about 50 to 250 [ms]. The LA
estimators achieve a slightly better cutoff reverberation time (configurations 4 and 5), which
reaches values of 300 [ms] and 400 [ms], respectively. Finally, a massive improvement in
terms of the cutoff reverberation time is achieved by the proposed method (configuration 7),
which pushes its value by another 200 [ms] to the level of 600 [ms].

Up to this point, we evaluated the proposed method under conditions that mitigate
the impact of the estimation of the relative geometry (which is performed within the first
optimization step) on the result of the second optimization step (which constitutes the
major issue addressed in this article). Recall that this mitigation was achieved, in previous
experiments, by using DoA measurements estimated with only a noisy microphone signal
(without reverberation). To fully evaluate the performance of the proposed approach in
practical deployments, we present the results of two additional experiments that do not
take into account this mitigation, in which reverberant microphone signals are used for DoA
estimation too. In the following two experiments, we compare the proposed method with
several well-established state-of-the-art approaches [20,28,31]. To this end, we introduce
three additional evaluation metrics that show the average displacement of the estimated
positions from the ground-truth values. These metrics are defined as

RMSE(Θ̂) =
1

KN

K

∑
k=1

N

∑
i=1
∥θ̂i − θi∥2, (26a)

RMSE(N̂) =
1

KN

K

∑
k=1

N

∑
i=1
∥n̂i − ni∥2, (26b)

RMSE(Ŝ) =
1

KS

K

∑
k=1

S

∑
j=1
∥ŝj − sj∥2. (26c)
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Table 1 presents the results of experiment 4, which are obtained with the setup described
at the beginning of this section with numerically simulated microphone signals. Both
TDoA and DoA were estimated from reverberant noisy microphone signals. Analyzing
the numerical results from Table 1, it can be observed that approaches such as in [28] do
not take into account the compensation for the onset time, and do not achieve reasonably
low position and orientation errors, regardless of the room reverberation time level. In the
case of the moderate reverberation time (RT60 = 400 [ms]), the other two methods [20,31]
and the approach proposed in this article achieve very comparable results. In the case of
a long reverberation time, the methods presented in [20,31] again perform comparably,
while the algorithm proposed in this article achieves significantly better results for all
evaluation metrics. The following conclusions can be drawn from these results. In the
case of long reverberation time levels, the proposed method is able to correctly identify
and reject outliers despite the non-ideal relative geometry, estimated in the first step of the
network calibration algorithm, and as a consequence, it yields much better estimates of
the unknown parameters of the wireless acoustic sensor network. On the other hand, the
proposed algorithm does not significantly deteriorate the results for moderate reverberation
time levels compared with other existing methods and, in fact, it achieves similar results
under moderate conditions.

Table 1. Comparison of the proposed method with alternative approaches for self-calibration. RMSE
of the estimated parameters for K = 100 random geometries in a simulated reverberant room of size
10× 10× 3 [m] with different reverberation time levels (RT60 = 400 and 800 ms).

Method RT60 RMSE(Θ̂) RMSE(N̂) RMSE(Ŝ) MAE(∆̂)

[28]
400 [ms] 28.9 2.52 [m] 3.26 [m] 13.76 [ms]

800 [ms] 38.5 2.99 [m] 4.23 [m] 14.76 [ms]

[31]
400 [ms] 1.7 0.11 [m] 0.14 [m] 1.13 [ms]

800 [ms] 7.1 0.27 [m] 0.41 [m] 2.76 [ms]

[20]
400 [ms] 2.8 0.14 [m] 0.16 [m] 1.16 [ms]

800 [ms] 8.0 0.29 [m] 0.39 [m] 2.66 [ms]

Proposed 400 [ms] 3.1 0.13 [m] 0.17 [m] 1.16 [ms]

800 [ms] 5.1 0.18 [m] 0.25 [m] 1.36 [ms]

As the final experiment, an evaluation was performed using acoustic signals measured
using real distributed microphone arrays connected by a wireless network in the real Audio
Lab room at the premises of AGH University of Krakow (the setup is shown in Figure 8). In
experiment 5, we use five circular microphone arrays, each containing eight microphones,
mounted on a single-board computer with a Wi-Fi interface, as depicted in Figure 9.

The microphone arrays were placed on a table, while a person walked through the
room and spoke short sentences in different locations across the room. A total of 10 such
speaker locations were used as the source signals (used for the calibration of the distributed
network). Table 2 presents the numerical results obtained after processing the acoustic
signals with the proposed algorithm and three baseline methods [20,28,31]. The conclu-
sions, made from observations of the results obtained from real measured acoustic signals,
coincide well with the conclusion of experiment 4 for synthetic signals. For medium room
reverberation conditions, the errors in position and orientation are slightly smaller for the
proposed algorithm than for the remaining three existing methods. These results confirm
that the proposed approach actually notably improves the precision of all studied estimates.
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Figure 8. Five microphone arrays placed on the table in AGH’s Audio Lab room.

Figure 9. A circular microphone array, with eight microphones, mounted on a single-board computer
with a wireless network interface.

In summary, the proposed algorithm substantially outperforms the baseline approach
across a broad spectrum of reverberation time values. Unlike the current state-of-the-art
methods, our proposed method (i.e., Algorithm 2) robustly and accurately estimates both
the geometry scaling factor and the recording onset time values, even under realistic room
reverberation conditions.
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Table 2. Comparison of the results obtained from the proposed method and alternative state-of-the-art
approaches for self-calibration performed with acoustic microphone signals recorded in the real room.
At the time of publication, we were unable to measure the compensation for the recording onset
times due to hardware limitations; thus, the table lacks a column for MAE(∆̂).

Method RMSE(Θ̂) RMSE(N̂) RMSE(Ŝ)

[28] 0.43 0.99 [m] 1.23 [m]

[31] 0.15 0.21 [m] 0.33 [m]

[20] 0.12 0.22 [m] 0.31 [m]

Proposed 0.08 0.14 [m] 0.20 [m]

5. Conclusions

This article addresses the problem of self-localization and synchronization of dis-
tributed microphone arrays in reverberant rooms using a popular two-step approach. The
primary focus is on the second step, in which the scaling factor and recording onset times
are estimated using TDoA measurements. We analyze the problems of TDoA estimation
in the presence of reverberation and the implications these errors have on the estimation
of the absolute geometry and synchronization of the onset times between the distributed
arrays, both of which occur in the second step.

In the context of estimating the required scaling factor and recording onset times, this
analysis leads to identifying two major issues. The first one is the heteroscedasticity of
the TDoA measurement set, and the second concerns the occurrence of outliers. Both of
these issues relevantly impact the state-of-the-art methods, which are optimal for Gaussian
noise. In order to mitigate heteroscedasticity, this article proposes a weighted linear least
squares estimator supported by two weighting schemes that exploit the relative geometry
estimated in the first step, as well as domain knowledge presented in Section 3. To address
the problem of outliers, we propose an iterative TDoA reweighing algorithm with binary
weights, which exploits least absolute value minimization and thresholding to detect and
reject strong outliers in TDoA measurements. The experimental evaluation of the proposed
method shows a significant improvement in accuracy and robustness to adverse acoustic
conditions caused by room reverberation.
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Abbreviations
The following abbreviations are used in this manuscript:

WASN wireless acoustic sensor network
ToF time of flight
ToA time of arrival
TDoA time difference of arrival
DoA direction of arrival
RANSAC random sample consensus
TOPS test of orthogonality of projected subspaces
SRP-PHAT steered response power with phase transform
GCC-PHAT generalized cross-correlation with phase transform
vMF von Mises–Fisher
PDF probability density function
LS least squares
LA least absolute
ML maximum likelihood
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