
Citation: Zakir, A.; Salman, S.A.;

Takahashi, H. SOCA-PRNet:

Spatially Oriented Attention-Infused

Structured-Feature-Enabled

PoseResNet for 2D Human Pose

Estimation. Sensors 2024, 24, 110.

https://doi.org/10.3390/s24010110

Academic Editor: Loris Nanni

Received: 5 November 2023

Revised: 3 December 2023

Accepted: 20 December 2023

Published: 25 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SOCA-PRNet: Spatially Oriented Attention-Infused
Structured-Feature-Enabled PoseResNet for 2D Human
Pose Estimation
Ali Zakir 1,* , Sartaj Ahmed Salman 1 and Hiroki Takahashi 1,2

1 Department of Informatics, Graduate School of Informatics and Engineering, The University of
Electro-Communications, Tokyo 182-8585, Japan; s2140019@edu.cc.uec.ac.jp (S.A.S.);
rocky@inf.uec.ac.jp (H.T.)

2 Artificial Intelligence Exploration Research Center/Meta-Networking Research Center, The University of
Electro-Communications, Tokyo 182-8585, Japan

* Correspondence: a2240012@edu.cc.uec.ac.jp

Abstract: In the recent era, 2D human pose estimation (HPE) has become an integral part of ad-
vanced computer vision (CV) applications, particularly in understanding human behaviors. Despite
challenges such as occlusion, unfavorable lighting, and motion blur, advancements in deep learning
have significantly enhanced the performance of 2D HPE by enabling automatic feature learning
from data and improving model generalization. Given the crucial role of 2D HPE in accurately
identifying and classifying human body joints, optimization is imperative. In response, we introduce
the Spatially Oriented Attention-Infused Structured-Feature-enabled PoseResNet (SOCA-PRNet) for
enhanced 2D HPE. This model incorporates a novel element, Spatially Oriented Attention (SOCA),
designed to enhance accuracy without significantly increasing the parameter count. Leveraging the
strength of ResNet34 and integrating Global Context Blocks (GCBs), SOCA-PRNet precisely captures
detailed human poses. Empirical evaluations demonstrate that our model outperforms existing
state-of-the-art approaches, achieving a Percentage of Correct Keypoints at 0.5 (PCKh@0.5) of 90.877
at a 50% threshold and a Mean Precision (Mean@0.1) score of 41.137. These results underscore the
potential of SOCA-PRNet in real-world applications such as robotics, gaming, and human–computer
interaction, where precise and efficient 2D HPE is paramount.

Keywords: 2D human pose estimation; CV; SOCA-PRNet; Global Context Blocks

1. Introduction

The widespread use and improvement in computer vision (CV) technology in various
everyday settings, such as smartphones, digital cameras, and surveillance systems, generate
a constant stream of image and video data. Extracting information about human activities
from this data is of great importance. Central to these interaction mechanisms is HPE. HPE
focuses on identifying and categorizing various joints in the human body. It captures each
joint’s coordinates, such as arms, head, and torso—often termed keypoints, to delineate a
person’s posture. Over recent decades, the automated interpretation of HPE has become a
significant research interest within the field of CV. It forms the foundation for numerous
complex CV tasks. It provides a base for predicting 3D HPE, identifying human actions and
motion prediction, parsing human body components, and retargeting human movements.
Additionally, 2D HPE offers substantial support across applications, from understanding
human dynamics, monitoring crowd anomalies or riots, spotting instances of violence,
detecting unusual behaviors, and enhancing human–computer interaction (HCI) to aiding
autonomous vehicle advancements [1]. The complexity of 2D HPE stems from various
factors, occluded keypoints, challenging lighting and background conditions, motion blur,
and the intimidating task of implementing the model in real-time due to its vast number of
parameters [2].
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In the initial phases of research in 2D HPE, the field predominantly relied on tra-
ditional methods such as probabilistic graphical models [3,4]. These approaches were
characterized by a considerable dependence on manually designed features incorporated
into models. While effective to an extent, this reliance on handcrafted features often
posed significant limitations, restricting the models’ capacity for broader generalization
and optimal performance. The intricate nature of human poses, varying across diverse
contexts and environments, posed challenges that these traditional methods struggled to
consistently address.

As the field evolved, a paradigm shift occurred with the advent of deep learning
techniques. This marked a substantial transformation in the approach to 2D HPE. Deep
learning, diverging from the constraints of manual feature engineering, brought the ca-
pability of automatically extracting relevant features and learning from data. This shift
was particularly catalyzed by the advancements in convolutional neural networks (CNNs).
CNNs’ ability to process complex image data effectively and their versatility in learning
feature hierarchies propelled 2D HPE into a new era. The success of CNNs and their
applications in pose estimation underscored the potential of deep learning, paving the way
for the development and incorporation of various sophisticated deep learning strategies
that built on the foundational achievements of CNNs [5].

With this backdrop, the primary objective of our paper is to further enhance the predic-
tion accuracy of 2D HPE methods while optimizing efficiency through a reduced parameter
set. We recognize the challenges posed by large deep learning models, particularly when
deployed in real-time or resource-constrained settings. Such models, while powerful, can
be computationally demanding, memory-intensive, and may require specialized hardware.
Additionally, their complexity often risks overfitting, where performance on training data
does not translate to unseen data. Addressing these concerns, our research aims to strike
a balance between accuracy and efficiency, creating versatile and cost-effective models
suitable for a range of applications, from edge computing devices to large-scale cloud infras-
tructures. This endeavor leads us to propose SOCA-PRNet, a framework that epitomizes
this balance by integrating advanced features within a streamlined architecture.

Our research led us to the simple baseline network [6], which has demonstrated
superior performance compared to other top-down methodologies. Its streamlined and
efficient architecture positions it as a prime foundation for further advancement in 2D HPE.
Building on this foundation, we introduce SOCA-PRNet. This framework is characterized
by integrating a Spatially Oriented Attention-Infused Structured Features module, with
a modified version of ResNet serving as its primary feature extractor [7,8]. Within this
ResNet adaptation, we have omitted the average pooling and the last fully connected
layers, emphasizing convolutional layers. To further simplify the model and decrease
its complexity, we have employed ResNet34 over the more elaborate variants such as
ResNet50, 101, or 152, all of which possess a larger parameter count. We have added
two deconvolution layers designed to enhance visual processing capabilities and mitigate
quantization distortions from large output stride sizes. While it is understood that a smaller
network size might impact the model’s accuracy due to the trade-off between precision
and parameter quantity, we have addressed this by another significant inclusion is the
integration of Global Context Blocks (GCBs) [9], which aims to expand the performance
of both the downsampling and upsampling modules. Furthermore, our innovative SOCA
module merges and amplifies feature representations through spatial attention, channeling
these refined features to the upsampler layers, thereby bypassing traditional skip con-
nections [10,11]. This methodology fosters hierarchical representations with enhanced
spatial awareness, adeptly capturing complex details. These modifications and attributes
are designed to offer a detailed, context-rich representation of data, ensuring the model’s
stability.

The threefold contribution of the SOCA-PRNet model can be summarized as follows:

• We introduced the SOCA-PRNet, deliberately choosing ResNet34 over more intricate
models to streamline its structure. This decision promotes efficiency without sacri-
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ficing capability. Further enhancements include adding two deconvolution layers,
bolstering the model’s visual processing, and addressing the quantization distor-
tion from large output stride sizes. We integrated GCBs into the downsampler and
upsampler modules to endow the model with robust global context features.

• Central to our design is the SOCA module. It merges features derived from various
downsampler layers. These collective features undergo refinement via a spatial atten-
tion mechanism and are subsequently channeled to the appropriate upsampler layers.
The outcome is a generation of hierarchical representations with enhanced spatial
awareness, adeptly capturing intricate pose details.

• To evaluate the merits of our proposed model, we subjected it to rigorous testing
on the MPII dataset. Both quantitative and qualitative assessments revealed that
SOCA-PRNet outperforms existing 2D human pose estimation techniques in terms of
accuracy while maintaining a more favorable computational cost.

This article follows a structured approach, with several sections. Section 2 presents
an overview of prior research conducted in the same field. Section 3 elaborates on the
comprehensive methodology of our proposed SOCA-PRNet. Section 4 covers pertinent
information regarding the experimental setup and implementation details. An analysis
of both qualitative and quantitative results is exhibited in Section 5. Section 6 offers an
in-depth analysis of our results.The final section, Section 7, draws conclusions and lays out
plans for future exploration.

2. Related Works

Deep learning approaches are utilized in designing network architectures for 2D HPE
to extract robust features that span from low to high levels. These approaches are typically
categorized into two frameworks: the top-down and bottom-up frameworks. The method
of the top-down paradigm involves a sequential process where the initial step is to identify
the human bounding boxes in an image, followed by executing the single HPE for every
identified box. This type of approach is not a suitable method for managing large crowds
as the computational time for the second step increases in association with the number of
individuals present [1,8]. A. Toshev et al. [12] have made a pioneering contribution to the
field of HPE by introducing a CNN for the first time.

They leveraged the CNN’s robust fitting capability to regress the coordinates of human
joints implements a cascading structure to refine the outcomes continuously, though the
model tends to overfit because the weights of the fully connected layer depend on the
distribution of the training dataset. The convolutional pose machine (CPM) [13] and stacked
hourglass networks [10] solved this issue by predicting heatmaps of 2D joint locations.
Two main object detection techniques exist in 2D HPE: the RCNN [14] series and the
SSD series [15]. The RCNN series employs a complicated network structure that achieves
high accuracy and introduces the Mask-RCNN approach, which builds upon the faster
RCNN architecture [14] by incorporating keypoint prediction. As a result, this method
achieves excellent results in HPE, demonstrating strong competitiveness in this domain.
Conversely, the SSD series offers an average compromise between precision and Y. Chen
et al. [16] present the concept of a cascaded pyramid network (CPN) that uses GlobalNet
to identify simple keypoints and Refine-Net to handle more challenging keypoints. To
be more precise, Refine-Net includes multiple standard convolutional layers that merge
feature representations from all levels of GlobalNet.

The process of bottom-up methods starts with detecting keypoints for every human
instance present in an image. Subsequently, the keypoints of the same individual are joined
to form skeletons of multiple instances. This grouping optimization problem is crucial
in determining the outcome of the bottom-up approach. Some representative methods
utilize this approach, and they are [5,17]. Open-Pose, as described in [5], utilized two
branches—one of which employed a CNN to predict all keypoints based on heatmaps, and
the other used a CNN to acquire part affinity fields. The part affinity fields represent 2D
direction vectors, and they serve as a confidence metric to determine if the keypoints are
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associated with the same person. Ultimately, both branches are merged to generate the
concluding prediction. The approach known as associative embedding [11], derived from
hourglass networks [10], is end-to-end trainable. The source detected and accumulated
keypoints in one step without requiring two separate processes.

Implementing bottom-up approaches can be challenging due to the difficulty of
combining information from multiple scales and grouping features together. Even with
the introduction of effective grouping procedures, these methods still struggle to contest
top-down strategies for pose estimation. In recent times, the majority of cutting-edge
outcomes have been achieved through top-down methodologies. Our research traced the
top-down approach and developed a successful 2D HPE model. This addresses the issue of
top-down approaches by modifying a baseline network with Spatially Oriented Attention-
Infused Structured Features. We utilized a simpler ResNet34 model and removed specific
layers to reduce complexity. We then added deconvolution layers and GCB to improve
visual processing and global context features. The proposed SOCA module combines
and enhances feature representations from various layers, enabling better capture of finer
details through hierarchical representations with spatial awareness.

3. Proposed SOCA-PRNet

We introduce SOCA-PRNet, a novel framework in the field of 2D HPE, distinguished
by its integration of a SOCA module with a modified ResNet architecture. This framework
is designed to address the intricate requirements of pose estimation by enhancing feature
representation and spatial awareness. Our approach begins with the primary objective
of 2D HPE; given an RGB image or a video frame labeled as I, the goal is to identify the
posture. The pose P of any individual is represented in this visual content. This posture,
expressed as P, is characterized by a set of N specific keypoints. Each keypoint is denoted
by a two-dimensional coordinate (xn, yn). The number of keypoints, N, can vary based
on the dataset used for training a model. Thus, our objective is to pinpoint the pose
P = {Pi}N

i=1 for every k individual within the input. Algorithm 1, while general, represents
the fundamental process of pose estimation in the field of 2D HPE. It serves as a baseline
framework from which the innovations of SOCA-PRNet are developed. The algorithm
outlines the standard procedure of initializing the posture set, detecting individuals in the
image, identifying keypoints, and compiling these into a posture representation.

Algorithm 1: Foundational process of 2D human pose estimation (HPE)
Data: RGB image or video frame I
Result: Posture P of every individual in I
Initialize P = ∅ (Set to store postures of individuals);
Detect number of individuals k in image I;
for i = 1 to k do

Detect K keypoints for individual i in I;
For each keypoint n, obtain its coordinates (xn, yn);
Store the keypoints for individual i as Pi;
Add Pi to P;

end
Return P;

In developing SOCA-PRNet, we adapted the ResNet architecture, emphasizing convo-
lutional operations and reducing complexity. Specifically, we chose ResNet34 for its balance
of efficiency and performance and added two deconvolution layers to enhance visual
processing. We also integrated GCBs to improve both downsampling and upsampling
modules and introduced the SOCA module, a key innovation that merges and amplifies
feature representations through spatial attention. This module directs refined features to the
upsampler layers, effectively bypassing traditional skip connections. These modifications
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aim to provide detailed, context-rich data representations, ensuring both stability and
accuracy in pose estimation.

Building on the foundational process outlined in Algorithm 1, the SOCA-PRNet
introduces specific enhancements. These include the integration of the SOCA module
and the ResNet architecture’s adaptation, which collectively enhance the accuracy and
efficiency of pose estimation. This advanced approach, leveraging novel techniques for
feature representation and spatial awareness, marks a significant evolution from the general
framework of 2D HPE.

Figure 1 presents the detailed structure of SOCA-PRNet, clearly explaining it from
the simple baseline network as shown in Figure 2 [6], upon which our research builds.
The figure is designed to distinctly show the architectural changes and the inclusion of
novel components unique to SOCA-PRNet. Key differences are highlighted, such as the
replacement of certain ResNet layers with GCBs and the addition of the SOCA module.
These differences are visually contrasted against the architecture of existing networks,
emphasizing the enhancements and optimizations we have incorporated.

Figure 1. Detailed architecture of our proposed SOCA-PRNet model for 2D HPE.

Figure 2. Detailed architecture of the simple base line model for 2D HPE [6].
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In the following subsections, we explore the structure of SOCA-PRNet as depicted
in Figure 1. We will provide a comprehensive explanation of each component, from the
modified ResNet base through the integration of deconvolution layers and GCBs to the final
integration of the SOCA module. This detailed breakdown will clarify the functionality of
each element in our model and explain how these components collaboratively contribute
to the model’s overall performance, highlighting the advancements our network brings to
2D HPE.

3.1. Enhancing Backbone Model with Modified ResNet and Deconvolution Module

The structure of the residual network is commonly utilized for dense labeling tasks.
To achieve this, we employed such kind of network structure that slowly decreases the
resolution of embeddings to capture extended-range details, which subsequently increases
feature maps while recovering spatial resolution. Hourglass and simple baseline net-
works create smaller output feature maps than their input feature maps, which are then
resized using a simple transformation technique that can cause quantization errors. When
data processing is biased, prediction errors can occur due to horizontal flipping and
how the model processes the output resolution [18]. We incorporated two deconvolution
modules into our approach to tackling the above mentioned challenges. These modules
were designed to generate a complete output feature map and were integrated within
the architecture of the simple baseline network. We opted to use ResNet34, which has
fewer parameters than more complex ResNet models like 50, 101, or 152. We modified
ResNet [7] by removing the average pooling segment and fully connected part and replac-
ing them with four ResNet blocks after a convolutional and pooling layer. The modifications
are visually depicted in Figure 3. The first set of layers in the network, which includes
a convolutional layer and a pooling layer, reduces the size of the feature maps by half.
As the input passes through each block of the network, additional convolutional layers
are used to decrease the feature maps by two strides while simultaneously increasing the
number of filters by a factor of two. We added five deconvolutional modules with batch
normalization and HardSwish activation, each doubling the feature resolution map until
the output matches the input. The fourth and fifth deconvolutional layers have channel
sizes of 64 and 32, respectively.

Figure 3. Modified ResNet with deconvolution module.

3.2. Amplifying Model Performance with GCB

In computer vision, a Global Context Block is a module designed to capture the
overall spatial information of an input feature map, aiming to improve object recognition
in an image. In convolutional layers, the association among pixels is only considered
within a local neighborhood and baseline network. We opted to use ResNet34, which have
fewer parameters compared to more complex ResNet; capturing long-range dependencies
requires multiple convolution layers. To address this limitation, researchers proposed a
non-local operation [19], which employed a self-attention mechanism from [20] to model
long range dependencies. Using a global network creates an attention map tailored to each
query position, enabling the collection of contextual features that can then be integrated into
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the features of the corresponding position. GCNet is presented as a highly well organized
and operative method for global context modeling [9]. This method employs a query
agnostic attention map to generate a contextual representation that can be globally shared
and then incorporates it into the features of each query location in the network.

Our proposed method uses GCBs [9] to enhance the spatial information of input
feature maps. Specifically, as illustrated by the sky-blue blocks in Figure 1, GCBs are
incorporated into each ResNet block as well as the first four blocks of the deconvolution
modules. We generate a spatially aware attention heatmap using a 1 × 1 convolution and
SoftMax to produce attention weights, which are then used in attention pooling to extract
a global context feature. Channel-wise dependencies are obtained using the bottleneck
transform technique. Afterward, the resulting global context features are combined with
the features of each position in the network, as shown in the following Equation (1).

fg =
h

∑
i=1

w

∑
j=1

wij fij (1)

where in Equation (1), fg represents the global context feature, h and w are the height and
width of the input feature map, wij is the attention weights at position (i, j), and fij is the
feature vector at the position (i, j).

3.3. SOCA Module

The Spatially Oriented Attention-Infused Structured Features (SOCA) module over-
comes the limitations of earlier frameworks, such as the simple baseline framework [6],
which did not integrate skip connections [10,21]. These connections have proven effective
in U-Net and hourglass networks for retaining spatial information at each feature map,
allowing for an efficient transfer of spatial information across the network, and leading to
improved localization.

In contrast to these earlier approaches, our SOCA module, as depicted in Figure 4,
represents a significant advancement. Unlike traditional skip connections that typically
rely on direct concatenation or summation of feature maps, SOCA employs a novel ap-
proach of combining hierarchical features from various layers. It utilizes spatial attention
to selectively enhance features that are critical for pose estimation. This process involves
the elementwise multiplication of feature maps from the first four Global Context Blocks,
ResNet blocks, and spatially oriented attention feature maps. As a result, SOCA provides
a more targeted enhancement of features, emphasizing areas crucial for accurate pose
estimation. The design of the SOCA module is specifically tailored to generate more rele-
vant details by focusing on key locations for pose estimation while effectively suppressing
less relevant background information. This leads to a significant improvement in feature
specificity, which is crucial for pose estimation tasks. The spatially aware attention mech-
anism of SOCA ensures that the enhanced features are optimally tuned to the demands
of pose estimation, contributing to robust and accurate model performance, especially in
complex scenes.

Our analysis further highlights the advantages of the SOCA module over traditional
skip connections. The method of feature integration used by SOCA, through spatial atten-
tion and elementwise multiplication, aligns well with tasks that require high accuracy in
localization. This approach offers a more refined and context-aware integration of features
compared to the simpler methods used in traditional skip connections. By examining the
existing literature on skip connections and spatial attention mechanisms, we underline
the improvements that SOCA brings in terms of feature representation and model perfor-
mance. The enhancements in performance with the integration of the SOCA module are
evident in the experimental results and analysis section.attest to its effectiveness. Analyzing
these data in various pose estimation scenarios reveals the practical benefits of SOCA over
conventional methods.

Our observation indicates that the SOCA module is a more effective feature combi-
nation mechanism for 2D HPE models compared to traditional skip connections. SOCA’s
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focus on spatially oriented feature enhancement is expected to lead to improved accuracy
in pose estimation, particularly in complex and varied scenarios.

Figure 4. Visualization of the SOCA module’s feature integration and weights W generation and
distribution mechanisms.

3.4. Heatmap Joint Prediction

Our model employs a sophisticated approach to estimate joint positions by transform-
ing pixel-level predictions into a spatial probability distribution, represented as heatmaps.
This transformation is facilitated by a 2D Gaussian function centered on each joint’s true
location within the confines of a bounding box. The intensity at each pixel location (x, y)
on the heatmap Hk(x, y) is computed in Equation (2):

Hk(x,y) = exp

−
[
(x− yk)

2 + (y− yk)
2
]

2σ2

 (2)

In Equation (2), Hk represents the heatmap for kth joint where k ∈ {1, 2, . . . , K}, and
(x, y) show the position of the specified pixel in the heatmap. The kth joints coordinated
are denoted by (xk, yk). After several experimental iterations, we found that setting σ to
6 offers an optimal balance, capturing the joint’s essence without excessive spreading.

4. Experimental Setup
4.1. Dataset

Our experimentation to evaluate the effectiveness of our proposed model utilized
the widely recognized MPII (Max Planck Institute for Informatics) Dataset [22]. This
expansive dataset encompasses over 25,000 annotated images, representing more than
40,000 individuals, each annotated with 16 unique keypoints. We strategically divided this
dataset into two subsets: one for training and the other for testing. For the training phase,
we used 28,000 images to develop and fine-tune our model. Subsequently, we reserved a
separate set of 11,000 images to evaluate the model’s performance, offering an objective
measure of its robustness and accuracy.

4.2. Implementation Details

We employed a range of data augmentation techniques to enhance our model’s ro-
bustness against scale and spatial rotation variations. We introduced a random horizontal
flip to the dataset, diversifying its content and helping to mitigate overfitting. Addition-
ally, we made rotation adjustments, enabling the model to process images tilted between
−40 and +40 degrees, which improves its adaptability to varied orientations. To ensure the
model effectively recognizes objects of different sizes, we adjusted scaling within a range
of 0.7 to 1.3. The model was built using the PyTorch framework. During training, we set
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a learning rate of 1× 10−5, used a batch size of 16, and deployed six workers for parallel
data processing. The training process extended over 150 epochs.

4.3. Loss Calculation Function

Using the correct loss function is crucial for precise model training. In our methodol-
ogy, we opted to utilize the Mean Square Error (MSE) loss function, which has been utilized
in previous works such as [6,8,23], to evaluate the model’s error. The formula for MSE is
presented in Equation (3).

L =
∑K

k=1

∥∥∥Hk − Ĥk

∥∥∥
K

(3)

In Equation (3), Ĥk represent the estimated heatmap for the kth joint, whereas Hk is
the heatmap for the kth joint k ∈ {1, 2, . . . , K}. In our implementation, we have provided
the option to weight the errors for different joints differently using target-weight. If this
option is enabled, the MSE for each joint is computed after multiplying the heatmaps by
their respective weights. This allows us to prioritize or deprioritize certain joints based on
their importance or reliability in the dataset.

4.4. Optimization of Model

The optimization of models can be enhanced with the implementation of a new variant
of the Adam optimizer named AdamW. The key difference between Adam and AdamW
lies in their approach to weight decay. While Adam intertwines weight decay with its
adaptive learning rate—sometimes resulting in suboptimal training dynamics—AdamW
distinctly decouples weight decay from learning rate updates. This separation minimizes
the interference between the adaptive learning rate and weight decay, fostering more
stable and consistent optimization. Consequently, models optimized with AdamW tend
to exhibit less overfitting than those using the original Adam, making AdamW a favored
choice among many deep learning practitioners. We conducted a series of experiments, the
comprehensive details of which are presented in Section 6 and summarized in Table 3.

4.5. Activation Functions

In deep learning, activation functions are pivotal in determining a neural network’s
output. For our research, we adopted the HardSwish activation function, which has
showcased notable advantages over the conventional ReLU function. Mathematically,
ReLU is expressed as in Equation (4).

f (x) = max(0, x) (4)

In contrast, HardSwish is described in Equation (5).

f (x) = x× min(max(0, x + 3), 6)
6

(5)

This distinction is visually represented in Figure 5, where the blue curve depicts
the ReLU function that nullifies all negative values, and the green curve illustrates the
HardSwish function, which offers a smoother gradient and does not nullify negative
values as abruptly. Furthermore, a common challenge with ReLU is the ’dying neuron’
problem, where specific neurons become inactive and stop learning. With HardSwish, we
improved the overall performance of our network model and achieved better results in our
experiments. Our results, detailed in Section 6 and summarized in Table 3, indicate that the
integration of the HardSwish activation function significantly enhances the performance of
our model. This improvement suggests that HardSwish may be advantageous in a wide
range of deep learning applications.
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Figure 5. Comparative visualization of HardSwish and ReLU activation functions.

4.6. Evaluation Metrics

In HPE tasks, evaluation metrics are crucial for measuring model performance. Among
the commonly used metrics, we adopted PCK (Percentage of Correct Keypoints) and
Mean@0.1 for our evaluation. PCKh is a specific variant of PCK. Instead of using absolute
distances, PCKh leverages the head bone link length as a reference. A prediction is deemed
correct if the distance between the predicted and actual keypoints is within 50% of this
reference length, denoted as PCKh@0.5. Meanwhile, Mean@0.1 quantifies the average
discrepancy between predicted and actual keypoints, but the head bone link length normal-
izes it. This normalization makes it scale-invariant, ensuring consistent evaluation across
different image resolutions and subject sizes.

5. Experimental Results and Discussion

Our comparative analysis involved an array of models, evaluated across distinct
input resolutions of 256× 256, 384× 288, and 384× 384, as illustrated in Table 1. The
baseline models, which included SimpleBaseLine [6], PRTR [24], HRNet-W32 [25], and
macro–micro [26] configurations, were examined at 256× 256 and 384× 384 for a subset
of configurations.
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Table 1. Performance comparisons of our SOCA-PRNet with other model results on MPII dataset.

Model Backbone Input Head Sh Elbow Wrist Hip Knee Ankle Mean Mean@0.1

SimpleBaseLine [6]

Pose-Resnet50 256× 256 96.351 95.329 88.989 83.176 88.420 83.960 79.594 88.532 33.911
384× 384 96.658 95.754 89.790 84.614 88.523 84.666 79.287 89.066 38.046

Pose-Resnet101 256× 256 96.862 95.873 89.518 84.376 88.437 84.486 80.703 89.131 34.020
384× 384 96.965 95.907 90.268 85.780 89.597 85.935 82.098 90.003 38.860

Pose-Resnet152 256× 256 97.033 95.941 90.046 84.976 89.164 85.311 81.271 89.620 35.025
384× 384 96.794 95.618 90.080 86.225 89.700 86.862 82.853 90.200 39.433

PRTR [24] Pose-Resnet101 384× 384 96.300 95.000 88.300 82.400 88.100 83.600 77.400 87.900 -
Pose-Resnet152 96.400 94.900 88.400 82.600 88.600 84.100 78.400 88.200 -

HRNet-W32 [25] Pose-hrnet_w32 256× 256 97.100 95.900 90.300 86.400 89.100 87.100 83.300 90.300 37.700

macro–micro [26] Pose-Resnet50 256× 256 96.650 95.490 89.220 83.650 88.290 84.440 80.910 88.890 -

SOCA-PRNet

Pose-Resnet18
256× 256 96.965 95.688 89.398 84.051 90.254 85.029 80.728 89.425 34.483
384× 288 97.169 95.788 90.131 84.462 90.341 85.331 81.696 89.766 36.435
384× 384 97.203 96.264 90.472 85.489 90.981 86.379 81.890 90.297 39.670

Pose-Resnet34
256× 256 97.237 95.805 90.012 84.891 90.064 85.976 81.507 89.846 36.417
384× 288 97.271 96.247 90.608 85.642 91.016 86.984 82.712 90.536 38.158
384× 384 96.930 96.298 91.188 86.072 91.535 87.668 83.137 90.877 41.137
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When considering the baseline models at 256× 256 and 384× 384 resolutions, the
SOCA-PRNet34 model demonstrated a remarkable PCKh@0.5 score of 89.846 at 256× 256,
which further increased to 90.877 at 384× 384. These scores were significantly higher
than those achieved by SimpleBaseline [6] and HRNet-W32 [25], as evidenced by the
Mean@0.1 scores of 36.417 and 41.137, respectively, underlining the effectiveness of SOCA-
PRNet’s approach. The model’s robustness to resolution scaling was particularly notable
when compared to these benchmarks. The exceptional efficiency of SOCA-PRNet34 is
further emphasized by its requirement of only 30 million parameters for training, which is
considerably lower than the baseline models. This parameter efficiency, juxtaposed with
its superior performance metrics, highlights the unique advantages of SOCA-PRNet over
SimpleBaseline [6] and HRNet-W32 [25].

The SOCA-PRNet18 model was also evaluated across the same input size range. In
line with the SOCA-PRNet34, the SOCA-PRNet18 surpassed baseline models in terms
of PCKh@0.5 and Mean@0.1 metrics while operating with fewer parameters, reinforcing
the efficacy of our approach. Furthermore, the HRNet-W32 [25] model demonstrated
commendable performance with a PCKh@0.5 of 90.300 at the 256× 256 resolution. However,
even this strong competitor was marginally outperformed by our SOCA-PRNet models at
higher resolutions, as reflected in the Mean@0.1 scores.

Figure 6 visually contrasts the accuracy and parameter counts of various 2D HPE
models, including our SOCA-PRNet18 and SOCA-PRNet34, as well as the Pose-Resnet
series of SimpleBaseline [6] and Pose-hrnet32 [25], which are listed in Table 2. This
comparison highlights the efficiency and performance balance achieved by different models.
Notably, SOCA-PRNet34 excels with a high PCKh@0.5 score of 90.875, using only 30 million
parameters, demonstrating an optimal balance between accuracy and model economy.
This is particularly impressive when compared to models like Pose-Resnet152, which has
over double the parameters but similar accuracy levels. SOCA-PRNet18 also performs
competitively, achieving close accuracy to more complex models with just 21 million
parameters, illustrating the effectiveness of our approach in resource-limited scenarios.
This analysis demonstrates the strength of SOCA-PRNet models in providing high accuracy
with a reduced parameter count, affirming the success of our architectural optimizations in
2D HPE.

Figure 6. Visual analysis of 2D HPE models in terms of accuracy and parameter count.
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Table 2. Comparison of model complexity: parameter counts in various models.

Model No. Parameters (M)

Pose-Resnet50 [6] 34.0
Pose-Resnet101 [6] 53.0
Pose-Resnet152 [6] 68.6
Pose-hrnet32 [25] 28.5
SOCA-PRNet 18 21.0
SOCA-PRNet 34 30.0

The data we present in graphical form offer a more intuitive understanding of our
research outcomes. Specifically, Figure 7a displays the PCKh@0.5 scores for individual
joints, contrasting the performance of our proposed SOCA-PRNet models against the
SimpleBaseline [6] at a resolution of 256× 256. Notably, SOCA-PRNet34 demonstrates
significant improvements in challenging keypoints like the Elbow, Wrist, Hip, Knee, and
Ankle over the PoseResNet baseline models. SOCA-PRNet18, despite being slightly less
performant than its SOCA-PRNet34 counterpart, also shows a competitive edge, particu-
larly in accurately estimating the Hip and Knee joints. These outcomes are significant as
they highlight the efficacy of the SOCA-PRNet models, which are specifically designed
to balance reduced model complexity with high accuracy. The superior performance
of SOCA-PRNet34 in keypoints like the Hip and Knee, even surpassing the more com-
plex PoseResNet152 model, underscores the success of integrating the SOCA module
and our streamlined architecture. This balance is crucial for applications where model
efficiency is as important as accuracy, particularly in real-world scenarios with limited
computational resources.

In Figure 7b, the Mean and Mean@0.1 scores across all joints offer a clear comparison
of our SOCA-PRNet models against the PoseResNet baseline models. The SOCA-PRNet34
stands out with the highest Mean accuracy of 90.877% and Mean@0.1 score of 41.137%,
indicating its superior overall accuracy and precision in joint localization. This performance,
especially in the Mean@0.1 metric, highlights its capability in accurately detecting joints
in challenging conditions. The SOCA-PRNet18 also demonstrates notable performance,
outperforming the PoseResNet50 and PoseResNet101 in Mean accuracy, which reinforces
the effectiveness of our model design. Although slightly behind SOCA-PRNet34, it main-
tains high accuracy with fewer parameters. Comparatively, the PoseResNet152, despite
its competitiveness, does not match the performance of SOCA-PRNet34, emphasizing the
advancements our models bring in balancing efficiency and accuracy in 2D HPE.

The SOCA-PRNet18 model was also evaluated across the same input size range. In
line with the SOCA-PRNet34, the SOCA-PRNet18 surpassed baseline models in terms of
PCKh@0.5 and Mean@0.1 metrics while operating with fewer parameters, reinforcing the
efficacy of our approach. Furthermore, the HRNet-W32 model demonstrated commendable
performance with a PCKh@0.5 of 90.300 at the 256× 256 resolution. However, even this
strong competitor was marginally outperformed by our SOCA-PRNet models at higher
resolutions, as reflected in the Mean@0.1 scores. This trend is visualized in Figure 6, which
showes our models’ competitive edge in accuracy and model economy.

The data we present in graphical form offer a more intuitive understanding of our
research outcomes. Specifically, Figure 7a displays the PCKh@0.5 scores for individual
joints, contrasting the performance of our proposed SOCA-PRNet models against the
baseline models at a resolution of 256× 256. This visual comparison highlights the relative
proficiency of each model in joint estimation accuracy. Complementing this, Figure 7b ag-
gregates the performance metrics, presenting a concise overview of the Mean and Mean@0.1
scores across all joints at the same resolution. These collective metrics serve to encapsulate
the models’ precision in joint localization in a single, comparative glance.

To contextualize our findings within practical applications, Figure 8 illustrates the
practical efficacy of the SOCA-PRNet34 model by showing its pose estimation results
on images from the MPII dataset. This visual representation demonstrates the model’s
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real-world applicability and solidifies its potential for accurate human pose estimation in
varied and complex scenarios.

(a) (b)

Figure 7. Graphical Illustration of the proposed model and simple baseline models. (a) Illustration of
PCKh@0.5 results: proposed model and simple baseline models. (b) Graphical analysis of Mean and
Mean@0.1: proposed models and simple baseline models.

Figure 8. Qualitative results on MPII pose estimation result, containing viewpoint change, occlusion,
and self-occlusion.

6. Ablation Study

Our ablation study aimed to optimize performance in 2D HPE with a focus on the
individual contributions of different components that are deconvolution layers, the SOCA
module, activation functions, and optimizers.

6.1. Initial Model Development

We initiated with the ResNet34 architecture, leading to our base model, PRNet34-
3xDeconvolution. Equipped with three deconvolution layers, this model achieved a Mean
accuracy of 86.607 and a Mean@0.1 value of 24.421, as presented in Table 3.

Table 3. An ablation analysis: evaluating network performance across varied additional modules.

Model Input Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1

PRNet34-3 × Decon
384 × 384

95.805 94.463 86.978 80.400 87.467 80.940 75.200 86.607 24.421
PPNet34-5 × Decon 96.351 95.312 89.671 84.616 88.523 84.807 80.563 89.113 37.359

SOCA-PRNet34 96.930 96.298 91.188 86.072 91.535 87.668 83.137 90.877 41.137
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6.2. Assessing Deconvolution Layers

To assess the impact of additional deconvolution layers, we subsequently developed
the PPNet34-5xDeconvolution model with five deconvolution layers. This variant showed
an increase in Mean accuracy to 89.113 and Mean@0.1 to 37.359, in Table 3, indicating the
effectiveness of added deconvolution layers in visual processing.

6.3. Evaluating the SOCA Module

Our exploration, however, was not limited to these results. Recognizing the potential of
integrating global context into our model, we introduced GCN. This led to the emergence
of the SOCA-PRNet34 model. The novel SOCA module, embedded within, integrates
feature representations from varied layers. The resultant architecture thus becomes adept
at capturing intricate details through layered representations while maintaining spatial
awareness. The outcomes of this integration were obvious: SOCA-PRNet34 outperformed
its predecessors, achieving an impressive Mean accuracy of 90.877 and a Mean@0.1 of
41.137, as presented in Table 3.

6.4. Comparative Analysis of Activation Functions and Optimizers

Further, we conducted a comparative analysis of activation functions and optimizers
across these model variants. For PPNet34-5xDeconvolution, switching from ReLU and
Adam to HardSwish and AdamW improved Mean accuracy from 88.925 to 89.113. In
the case of SOCA-PRNet34, the ReLU-Adam configuration achieved a Mean accuracy of
88.259, while the AdamW optimizer, particularly when paired with HardSwish, elevated
performance to a Mean accuracy of 90.877, as detailed in Table 4. This demonstrates the
notable influence of activation functions and optimizers on model performance.

Our systematic ablation study reveals that each component—additional deconvo-
lution layers, the SOCA module, and the choice of activation function and optimizer—
independently contributes to enhancing the performance of 2D HPE models. These insights
highlight the potential of component-specific optimizations in advancing the field.

Table 4. Comprehensive Ablation analysis: assessing network performance across distinct activation
functions and optimization techniques.

Model Activation Function Optimization Mean Mean@0.1

PPNet34-5 × Decon ReLU Adam 88.925 36.784
HardSwish AdamW 89.113 37.359

SOCA-PRNet34
ReLU Adam 88.259 38.457
ReLU AdamW 89.415 39.493

HardSwish AdamW 90.877 41.137

7. Conclusions and Future Work

In this study, we introduced the SOCA-PRNet for 2D HPE, a novel approach that
binds the efficient ResNet34 architecture to find a balance between computational sim-
plicity and visual processing capability. The model’s design is further encouraged by
including GCBs in the downsampler and upsampler modules, ensuring the assimilation of
comprehensive global context features. Our proposed SOCA module plays a crucial role
in merging and directing features with heightened spatial attention, allowing the model
to generate detailed hierarchical representations. When compared to standard models
on the MPII dataset, SOCA-PRNet’s enhanced performance becomes evident, driven by
its refined feature processing, optimal activation function, and advanced optimizer. As
we look to the future, SOCA-PRNet’s adaptability presents it as a promising option for
applications beyond 2D HPE, such as 3D human pose estimation, object recognition, and
hand pose estimation. Given its versatility, the model is anticipated to contribute signifi-
cantly to enhancing interactive experiences in the rapidly expanding fields of HCI, robotics,
and gaming.
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Abbreviations

The following abbreviations are used in this manuscript:

SOCA-PRNet Spatially Oriented Attention-Infused Structured-Feature-enabled PoseResNet
CV Computer Vision
HPE Human Pose Estimation
GCB Global Context Blocks
HCI Human–Computer Interaction
CPM Convolutional Pose Machine
CNN Convolutional Neural Network
CPN Cascaded Pyramid Network
PCKh Percentage of Correct Keypoints
MPII Max Planck Institute for Informatics
MSE Mean Square Error
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