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Abstract: Cross-interference is not only an important factor that affects the measuring accuracy of
three-dimensional force sensors, but also a technical difficulty in three-dimensional force sensor
design. In this paper, a cross-interference suppression method is proposed, based on the octagonal
ring’s structural symmetry as well as Wheatstone bridge’s balance principle. Then, three-dimensional
force sensors are developed and tested to verify the feasibility of the proposed method. Experimental
results show that the proposed method is effective in cross-interference suppression, and the optimal
cross-interference error of the developed sensors is 1.03%. By optimizing the positioning error, angle
deviation, and bonding process of strain gauges, the cross-interference error of the sensor can be
further reduced to −0.36%.
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1. Introduction

Three-dimensional force (generally expressed as Fx, Fy, and Fz) refers to the forces
along the X, Y, and Z directions in the space Cartesian coordinate system. Three-dimensional
force measurement is necessary in many important fields, such as precision manufactur-
ing and robots [1–3], medical equipment [4,5], wearable devices [6,7], structural health
monitoring of large buildings [8], etc. Three-dimensional force sensor is an important
tool for measuring three-dimensional forces. However, in practical application, there is
often a situation where the sensor is interfered by Fy (or Fz) when measuring Fx, which
indicates that the measurement results of Fx include the interference of Fy. Similarly, the
measurement results of Fy include the interference of Fx. This is defined as the cross-
interference between Fx and Fy. Cross-interference error is an important index related to
force measuring accuracy. It is a quantitative indicator representing the interference of Fy
on Fx’s measurement result, which reflects the ability of three-dimensional force sensor
to measure force in a specific direction without being interfered with forces from other
directions. Cross-interference error can be calculated as Equation (1) [9], where EFy→Fx
indicates the cross-interference error of Fy on Fx’s measurement result, FSOFx and FSOFy
represent the full-scale output of Fx measuring result under Fx and Fy, respectively.

Scholars have carried out a large amount of fruitful research on cross-interference
error suppression, especially in structural design. For example, the famous piezoelectric
force sensor company KISTLER has developed a series of three-dimensional force sensors
for different applications, with a typical cross-interference error between ±1% and ±3%
for the measuring range of 3~5 kN [10]. Jing Li developed a miniature cross-shaped three-
dimensional piezoresistive force sensor [11], with cross-interference errors of different
directions in the range of 4%~25%. Zexia He designed a six-axis force sensor based on a 3D
capacitor structure with a cross-shape configuration of the shear force sensing cell [12]. The
maximum interference errors for Fx, Fy, Fz, Mx, My, and Mz directions are 1.95%, 2.01%,
1.58%, 1.51%, 1.62%, and 1.47%, respectively. Cui Jing developed a high-sensitive triaxial
tactile sensor based on the multilayer capacitor structure [13]. The maximum interference
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error between the shear X and Y directions and between the shear and normal directions are
7.636% and 1.051%, respectively. MA. A Pajhouh reported a three-dimensional force sensor
based on a T-shaped elastic structure. The cross-interference error is effectively suppressed
to 0.56% in the measuring range of ±50 N, but another one appears to be 12.37% [14].
Qiaokang Liang presented a six-dimensional wrist force/torque sensor based on E-type
membranes compared to the conventional sensor based on cross beams, whose maximum
interference error is 1.6% [15]. Xiu He proposed a novel three-dimensional force sensor
based on an ultrasensitive all-fiber extrinsic Fabry–Perot strain sensor as well as a paperclip-
shaped elastomer. Experimental results show that all of the independent coefficients
are significantly larger than the corresponding interference coefficients; however, cross-
interference errors were not quantified [8].

EFy→Fx =
FSOFy

FSOFx

× 100%, (1)

Thereafter, researchers tried to use machine learning and decoupling algorithms in
a three-dimensional force sensor, hoping to further suppress the cross-interference. For
example, Shizheng Sun reported a fiber Bragg grating (FBG) three-dimensional force sensor
based on the sparrow search algorithm-extreme learning machine. Research shows that
the maximum cross-interference error of this decoupling method is 1.18% [16]. Yang Song
presents an intelligent back-propagation decoupling algorithm for a flexible tactile sensor,
and the experiment shows that the best average decoupling error is 1.69% [17].

Cross-interference suppression has always been a technical challenge in the design and
manufacturing process of three-dimensional force sensors [18]. This paper presents another
method for cross-interference suppression, by using the symmetrical stress distribution of
elastic deformation element and the balance principle of Wheatstone bridge. According
to the proposed method, two three-dimensional force sensors, based on octagonal ring
structure and semi-conductive strain gauge, are fabricated for verification.

2. Principles and Methods
2.1. Elastic Deformation Element

The first step in three-dimensional force sensor design is to select an appropriate
elastic deformation element [19], and the octagonal ring is commonly used, as shown in
Figure 1a. In previous studies, the thin-circular ring (t/R0 ≤ 1/5) theory was often used
to approximate the surface stress distribution of thin-octagonal ring. For the bottom-fixed
thin-circular ring in Figure 1b, its surface normal stress caused by horizontal force Fy and
vertical force Fz can be described in the following equations [9]:

σFy = ±
3FyR0 cos θ

bt2 , (2)

σFz = ±
6FzR0

bt2

(
1
2

sin θ − 1
π

)
, (3)

where σFy and σFz denote normal stress caused by Fy and normal stress caused by Fz,
respectively; R0, b, and t refer to average radius, width, and thickness of the thin-circular
ring; θ presents the location of any position on the thin-circular ring. Formulas (2) and (3)
indicate that Fy causes no stress at the position of θ = 90◦, and Fz causes no stress at the
position of θ = arcsin (2/π) ≈ 39.54◦. Positions where stress equals zero are called “strain
node”, which can help in avoiding cross-interference. For example, strain gauge placed at
θ = 90◦ is only sensitive to Fz since Fy causes no stress here. Similarly, strain gauge placed
at θ = 39.54◦ is only sensitive to Fy since Fz causes no stress here.
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For the octagonal ring, there are literatures reporting that good results are obtained
when the strain gauges are located at the position of θ = 90◦ and θ = 45◦, respectively [20,21].

However, it has some defects:
(1) Some research has pointed out that the value of θ (position of strain node) changes

with the size variation of octagonal ring, which is not a fixed value [22,23].
(2) Strain node represents a line segment (which has no width) on the octagonal ring,

while strain gauge has a length and a width. Specifically, the strain gauge bonded at a strain
node will simultaneously be affected by both Fy and Fz, and thus cross-interference occurs.

Therefore, the strain node may not be a feasible solution for cross-interference sup-
pression. In this paper, structure symmetry is adopted to solve this problem.

2.2. Finite Element Analysis of Octagonal Ring

Figure 2 depicts the modified octagonal ring that is used in this paper, which is contrary
to the octagonal ring in Figure 1a, as both its inner and outer surfaces are octagonal rings.
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The finite element simulation is adopted for octagonal ring stress analysis. Figure 3
and Table 1 provide the physical model and parameter settings for finite element simulation.
The octagonal ring is fixed on its bottom surface, and the stress distribution of surface
1~surface 6 is analyzed under Fx, Fy, and Fz, respectively.

Table 1. Parameter settings for finite element simulation.

Material Density Tensile Yield Strength Compressive Yield
Strength Bulk Modulus

Structural steel 7852 kg/m3 2.5 × 108 Pa 2.5 × 108 Pa 1.6667 × 1011 Pa

Shear Modulus Young’s Modulus Tensile Ultimate
Strength

Compressive Ultimate
Strength Poisson’s Ratio

7.692 × 1010 Pa 2.0 × 1011 Pa 4.6 × 108 Pa 0 Pa 0.3
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2.2.1. Surface Stress Distribution of Octagonal Ring under Fz

According to the simulation results, the stress distribution between surfaces 1 and 2,
surfaces 3 and 4, as well as surfaces 5 and 6 are highly symmetrical, as shown in Figure 4.
In order to provide a more detailed demonstration of the above symmetry characteristic,
Figure 5 depicts the stress amplitude curves along the symmetric paths from surface 1
to surface 6, respectively. Considering surfaces 1 and 2 as an example, the normal stress
on pre-set path 1 and path 2 changes from about 8.0 × 105 Pa to −3.0 × 105 Pa, and the
stress on every corresponding position in path 1 and path 2 has the same value and sign
as in Figure 5a. Similarly, normal stress on surface 3 and surface 4 changes from about
−4.0 × 105 Pa to −5.0 × 105 Pa, with the same value and sign in symmetrical positions.
Moreover, normal stress on surface 5 and surface 6 changes from about 6.0 × 105 Pa to
8.0 × 105 Pa, with the same value and sign in symmetrical positions, as shown in Figure 5b.
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2.2.2. Surface Stress Distribution of Octagonal Ring under Fy

The stress distribution between surfaces 1 and 2, surfaces 3 and 4, as well as surfaces
5 and 6 are still highly symmetrical, as shown in Figure 6, and the difference is that the
sign of the stress is opposite. Figure 7 depicts the stress amplitude curves along the
symmetric paths from surface 1 to surface 6, respectively. Considering surfaces 1 and 2 as
an example, the normal stress on path 1 and path 2 changes from about 2.75 × 105 Pa to
0.25 × 105 Pa (−2.75 × 105 Pa to −0.25 × 105 Pa), and the stress on every corresponding
position in path 1 and path 2 is equal in value but opposite in sign, as shown in Figure 7a.
Similarly, normal stress on surface 3 and surface 4 changes from about 3.60 × 105 Pa to
−9.90 × 105 Pa (−3.60 × 105 Pa to 9.90 × 105 Pa), with the same value and opposite sign
in symmetrical positions. Moreover, normal stress on surface 5 and surface 6 changes from
about 2.00 × 105 Pa to −1.50 × 106 Pa (−2.00 × 105 Pa to 1.50 × 106 Pa), with the same
value and opposite sign in symmetrical positions, as shown in Figure 7b.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 5. Normal stress distribution on pre-set paths of the octagonal ring under Fz. 

2.2.2. Surface Stress Distribution of Octagonal Ring under Fy 
The stress distribution between surfaces 1 and 2, surfaces 3 and 4, as well as surfaces 

5 and 6 are still highly symmetrical, as shown in Figure 6, and the difference is that the 
sign of the stress is opposite. Figure 7 depicts the stress amplitude curves along the sym-
metric paths from surface 1 to surface 6, respectively. Considering surfaces 1 and 2 as an 
example, the normal stress on path 1 and path 2 changes from about 2.75 × 105 Pa to 0.25 × 
105 Pa (−2.75 × 105 Pa to −0.25 × 105 Pa), and the stress on every corresponding position in 
path 1 and path 2 is equal in value but opposite in sign, as shown in Figure 7a. Similarly, 
normal stress on surface 3 and surface 4 changes from about 3.60 × 105 Pa to −9.90 × 105 Pa 
(−3.60 × 105 Pa to 9.90 × 105 Pa), with the same value and opposite sign in symmetrical 
positions. Moreover, normal stress on surface 5 and surface 6 changes from about 2.00 × 
105 Pa to −1.50 × 106 Pa (−2.00 × 105 Pa to 1.50 × 106 Pa), with the same value and opposite 
sign in symmetrical positions, as shown in Figure 7b. 

 
Figure 6. Von Mises stress distribution on the octagonal ring under Fy. Figure 6. Von Mises stress distribution on the octagonal ring under Fy.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 7. Normal stress distribution on pre-set paths of the octagonal ring under Fy. 

2.2.3. Surface Stress Distribution of Octagonal Ring under Fx 
The stress distribution between surfaces 1 and 2, surfaces 3 and 4, as well as surfaces 

5 and 6 show highly symmetrical characteristics, as shown in Figure 8. Moreover, the nor-
mal stress (on paths 1~6) caused by Fx is almost zero when compared with the stress 
caused by Fy and Fz, which can be ignored, as shown in Figure 9a.  

Furthermore, the stress amplitude on each surface shows the characteristic of sym-
metry. Considering surface 1 and surface 2 as an example, the normal stress on paths 7 
and 8 are symmetrically distributed along the vertical centerline, changing from −8.90 × 
105 Pa to 8.90 × 105 Pa with the same value and opposite sign, as shown in Figure 9b. Sim-
ilarly, the same stress distribution rules exist from surface 3 to surface 6. 

 
Figure 8. Von Mises stress distribution on the octagonal ring under Fx. 

 
Figure 9. Normal stress distribution on pre-set paths of the octagonal ring under Fx. 

Figure 7. Normal stress distribution on pre-set paths of the octagonal ring under Fy.

2.2.3. Surface Stress Distribution of Octagonal Ring under Fx

The stress distribution between surfaces 1 and 2, surfaces 3 and 4, as well as surfaces 5
and 6 show highly symmetrical characteristics, as shown in Figure 8. Moreover, the normal
stress (on paths 1~6) caused by Fx is almost zero when compared with the stress caused by
Fy and Fz, which can be ignored, as shown in Figure 9a.
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Furthermore, the stress amplitude on each surface shows the characteristic of symme-
try. Considering surface 1 and surface 2 as an example, the normal stress on paths 7 and 8
are symmetrically distributed along the vertical centerline, changing from −8.90 × 105 Pa
to 8.90 × 105 Pa with the same value and opposite sign, as shown in Figure 9b. Similarly,
the same stress distribution rules exist from surface 3 to surface 6.

In addition to the above finite element simulation method, mechanoluminescent
technology is a useful method for studying the stress distribution of elastic element [24],
which may assist in visualizing the stress distribution directly.

2.3. Cross-Interference Suppression Method

Wheatstone bridge is a typical measuring circuit for strain gauge sensors. To make the
measuring circuit an anti-cross-interference, strain gauges R1~R4 and R9~R12 are arranged
symmetrically on surface 1~surface 6, as shown in Figure 10, where R1 and R2 are symmetric
to each other on surface 1, R3 and R4 are symmetric to each other on surface 2. Moreover,
R1~R4 should be symmetric to each other at the central plane of the octagonal ring. Strain
gauges R9~R12 are located at the center of surface 3~surface 6, with the assumption that all
strain gauges have the same size, gauge factor (GF), and original resistance (R0). According
to the stress distribution characteristic in Section 2.2, the resistance change in strain gauges
caused by Fx, Fy, and Fz, respectively is listed in Table 2.
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Figure 10. Strain gauge location and Wheatstone bridge arrangement for cross-interference
suppression.

Table 2. Resistance change in strain gauges caused by Fx, Fy, and Fz.

Force
Resistance Variation

R1 R2 R3 R4 R9 R10 R11 R12

Fy −∆r1 −∆r1 +∆r1 +∆r1 +∆r2 −∆r2 +∆r2 −∆r2
Fz +∆r3 +∆r3 +∆r3 +∆r3 −∆r4 +∆r4 +∆r4 −∆r4
Fx −∆r5 +∆r5 −∆r5 +∆r5 0 0 0 0

For Fy measurement circuit, the voltage output caused only by Fy is presented in
Equation (4), while the voltage output caused by Fy, Fz, and Fx is presented in Equation (5).

VFy =
(

R4
R1 + R4

− R2
R2 + R3

)
·E

=
(

R0 + ∆r1
R0 − ∆r1 + R0 + ∆r1

− R0 − ∆r1
R0 − ∆r1 + R0 + ∆r1

)
·E

= ∆r1
R0
·E

, (4)

VFy =
(

R4
R1 + R4

− R2
R2 + R3

)
·E

=

(
R0 + ∆r1 + ∆r3 + ∆r5

R0 − ∆r1 + ∆r3 − ∆r5 + R0 + ∆r1 + ∆r3 + ∆r5
−

R0 − ∆r1 + ∆r3 + ∆r5
R0 − ∆r1 + ∆r3 + ∆r5 + R0 + ∆r1 + ∆r3 − ∆r5

)
·E

= ∆r1
R0 + ∆r3

·E

, (5)

The difference between Equations (4) and (5) indicates that Fz will interfere with Fy’s
measurement result, and the theoretical cross-interference error is:

E =

∆r1
R0
·E− ∆r1

R0 + ∆r3
·E

∆r1
R0
·E

× 100% =
∆r3

R0 + ∆r3
× 100%, (6)

According to the principle of semiconductor piezoresistive effect [9]:

∆r3

R0
= GF·ε, (7)

where GF is the gauge factor of the strain gauge (which is 150 for the semi-conductive strain
gauge used in this paper), and ε is the strain at the strain gauge’s location.

Finite element simulation results show that the maximum normal strain at the strain
gauge bonding position is 7.5 × 10−6. Therefore, the maximum value of theoretical cross-
interference error is 0.112% as shown below, which can be ignored.



Sensors 2023, 23, 4573 8 of 14

e =
δr3

r0 + δr3
× 100% =

δr3
r0

1 + δr3
r0

× 100% =
g f ·ε

1 + g f ·ε × 100% =
150× 7.5× 10−6

1 + 150× 7.5× 10−6 = 0.112%, (8)

For Fz measurement circuit, the voltage output caused only by Fz is the same as the
output caused by Fy, Fz, and Fx, as illustrated in Equations (9) and (10). This indicates that
the Fz measurement circuit can independently measure Fz without being interfered by Fy
or Fx.

VFz =
(

R10
R9 + R10

− R12
R11 + R12

)
·E

=
(

R0 + ∆r4
R0 − ∆r4 + R0 + ∆r4

− R0 − ∆r4
R0 + ∆r4 + R0 − ∆r4

)
·E

= ∆r4
R0
·E

, (9)

VFz =
(

R10
R9 + R10

− R12
R11 + R12

)
·E

=

(
R0 − ∆r2 + ∆r4

R0 + ∆r2 − ∆r4 + R0 − ∆r2 + ∆r4
−

R0 − ∆r2 − ∆r4
R0 + ∆r2 + ∆r4 + R0 − ∆r2 − ∆r4

)
·E

= ∆r4
R0
·E

, (10)

2.4. Sensor Design and Fabrication

According to the above cross-interference suppression method, a type of three-
dimensional force sensor is designed as shown in Figure 11. The sensor is composed
of two mutually perpendicular octagonal rings, which can measure Fy, Fz, and Fx. There
is a rectangular base set at the bottom of the sensor, and a thin cylinder set at the top of
the sensor for force loading. The dimensions of the sensor are shown in Table 3, and the
measuring range is set as 0~20 N.
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Table 3. Main dimensions of the developed three-dimensional force sensor.

Thin Cylinder Octagonal Ring Rectangular Base

Diameter Height R0 t b Size Circular hole
6 mm 5 mm 14 mm 4.2 mm 10 mm 70 × 40 × 4 mm3 Φ 7 mm
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The strain gauge used in this paper is a semi-conductive strain gauge purchased from
Anhui Tianguang sensor Co., Ltd. (Bengbu, China). The technical parameters of the strain
gauge are listed in Table 4.

Table 4. Technical parameters of the semi-conductive strain gauge.

Resistance Gauge
Factor Resistor Size Base Size Strain

Limitation Temperature

1000 Ω 150 ± 5% 3.8 × 0.22 mm2 5.0 × 3.0 mm2 3000 µε <80 ◦C

The sensor is fabricated by stainless steel 3D printing, and the semi-conductive strain
gauges are bonded on the octagonal ring using M-Bond 610 glue produced from Vishay
Micro-Measurements. The developed sensors are shown in Figure 12.
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3. Test and Verification
3.1. Experiment Setup

To verify the feasibility of the proposed cross-interference suppression method, the
calibration experiment is carried out as follows:

The sensor was fixed on a horizontal platform, and then the standard force was loaded
by weight in X, Y, and Z directions, respectively, as shown in Figure 13. In each calibration
cycle, the weight rises from 0 to 2000 g with an interval of 200 g, and then decreases from
2000 to 0 g.

The sensor is powered by a GPS-3303C power supplier with 5V DC, and the output
signals are recorded by three Fluke-8846A high-precision digital multimeters. Calibration
in each direction was performed at least three times and the measured results are averaged.

3.2. Results and Discussion

Figure 14a–c depict the static calibration results of each measurement circuit under the
action of loads in the X, Y, and Z directions, respectively. In Figure 14a, the Fx measurement
circuit exhibits good linear output characteristics under Fx, and the slope of its fitting
curve (i.e., output sensitivity) is 1.30 × 10−3 mV/g. The outputs of Fx measurement circuit
under the load in Y and Z directions are shown in red and blue curves, with slopes of
−4.85 × 10−5 mV/g and −2.18 × 10−5 mV/g for their linear fitting curves. The output
sensitivity caused by the load in Y and Z directions is nearly two orders of magnitude
lower than that caused by the load in X direction.
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The cross-interference errors of Fx measurement circuit under Y and Z direction loads
can be calculated by Formula (1). Considering the random error in static calibration results,
this paper uses the output sensitivity (i.e., the slope of the fitting curve) to replace the full-
scale output of the sensor for cross-interference error calculation, as shown in Formula (11):

EFy→Fx =
SFy

SFx

× 100%, (11)

where SFy and SFx are the output sensitivity of Fx measurement circuit during Y and X
direction calibration, respectively.

The cross-interference errors of Fx measurement circuit under Y and Z direction loads
are−3.73% and−1.68%, respectively, as shown in Table 5, which indicates that the load in Y
and Z directions has little impact on the output of Fx measurement circuit. This proves that
the Fx measurement circuit designed using the principle of stress symmetry distribution
and Wheatstone bridge balance principle has good anti-cross-interference ability.

Table 5. Cross-interference errors summarized from sensor calibration results.

Cross-Interference Error Fy→Fx Fz→Fx Fx→Fy Fz→Fy Fx→Fz Fy→Fz

3D force sensor −3.73% −1.68% −1.57% 1.03% 2.43% 4.53%

In Figure 14b, the Fy measurement circuit also exhibits good linear output characteris-
tics under Fy, and the slope of its fitting curve (i.e., output sensitivity) is 2.20 × 10−3 mV/g.
The outputs of Fy measurement circuit under the load in X and Z directions are shown
in red and green curves, with slopes of −3.45 × 10−5 mV/g and 2.26 × 10−5 mV/g for
their linear fitting curves. The output sensitivity caused by the load in X and Z directions
is nearly two orders of magnitude lower than that caused by the load in Y direction. The
cross-interference errors of Fy measurement circuit under X and Z direction loads are
−1.57% and 1.03%, respectively. This indicates that the load in X and Z directions has little
impact on the output of Fy measurement circuit, which means that the Fy measurement
circuit designed using the principle of stress symmetry distribution and Wheatstone bridge
balance principle has good anti-cross-interference ability, as well.

In Figure 14c, the slope (i.e., output sensitivity) of Fz measurement circuit under Z
direction load is 0.938 × 10−3 mV/g. The output sensitivities of Fz measurement circuit
under X and Y direction loads are −2.28 × 10−5 mV/g and 4.25 × 10−5 mV/g, respectively.
According to Formula (11), the cross-interference errors of Fz measurement circuit under X
and Y direction loads are 2.43% and 4.53%, respectively, which is also nearly two orders of
magnitude lower than that caused by the load in Z direction.

Based on the static calibration and cross-interference error results of Fx, Fy, and Fz
measurement circuits, the following points can be drawn:

(1) The Fx and Fy measurement circuits have good anti-cross-interference ability,
especially Fy measurement circuit, which has a lower cross-interference error. However,
the Fx and Fy measurement circuits are identical in terms of elastic element structure, strain
gauge placement, and measurement circuit organization; therefore, their cross-interference
error should also be the same. Moreover, the measured cross-interference errors are higher
than the theoretical calculated results by Formula (8).

This is mainly due to the fact that during sensor design and cross-interference the-
oretical calculation, the preconditions are ideal, such as the initial resistance and gauge
factor of all strain gauges are completely equal, and the distribution of all strain gauges are
completely symmetrical. However, in practical packaging process, it is impossible to ensure
that all the strain gauges in each measuring circuit have the same initial resistance and
gauge factor, and the strain gauges’ position error and parallelism deviation are inevitable.
These may cause inconsistent resistance change in strain gauges in the measuring circuit,
and cause unwanted output when the measuring circuit is subjected to loads in crossing
directions. The solution to this problem is to optimize the packaging process of strain gauge,
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improve the consistency of the initial resistance and gauge factor of the strain gauges, and
reduce the position error and parallelism deviation of the strain gauges.

To verify the rationality of the above analysis, four strain gauges with highly similar
initial resistance and gauge factor are packaged on an octagonal ring to form a Fy measuring
circuit, and the position error and parallelism deviation between the strain gauges are
strictly controlled. The cross-interference errors of “Fx→Fy” and “Fz→Fy” calculated from
the static calibration are −0.36% and 0.47%, respectively, as shown in Figure 14d. This
indicates that the cross-interference error can be effectively reduced by improving the
packaging technology.

(2) Although Fz measurement circuit exhibits good ability in cross-interference suppres-
sion, its maximum cross-interference error is higher than Fx and Fy measurement circuits,
which is inconsistent with the conclusion in Section 2.3 that the theoretical cross-interference
error is zero.

This is mainly due to the fact that in elastic element design, it is assumed that the
stress amplitudes are equal at corresponding positions from surface 3 to surface 6. In fact,
the stress is not strictly equal at corresponding positions, as shown in Figures 5b, 7b and 9b,
which makes the anti-cross-interference ability of Fz measurement circuits inferior to the Fx
and Fy measurement circuits.

For Fz measurement circuit, the cross-interference error caused by Fy is higher than
that caused by Fx. This is due to the fact that in X direction loading, all strain gauges
in Fz measurement circuit are located on the neutral layer of each surface, and the stress
generated on the strain gauges is quite small as shown in Figure 9a, resulting in a relatively
small output under the action of Fx. In Y direction loading, the stress generated on the strain
gauges is non-negligible and inconsistent as shown in Figure 7b, resulting in unwanted
output and making the Fz measurement circuit more susceptible to cross-interference
from Fy.

To further reduce the cross-interference error of Fz measurement circuit, a direct
method is to make the stress generated on surfaces 3~6 equal to the greatest extent possible.
The solution is through the use of a thinner octagonal ring, since for the thin structure, the
stress on its inner surface and outer surface can easily be equal. For the thin octagonal
ring, it is beneficial for improving the stress amplitude at the strain gauge location, which
helps in improving the output sensitivity of Fz measurement circuit and reducing its cross-
interference error. However, using the thin octagonal ring will reduce the load-bearing
capacity in the X and Y directions, which needs to be considered during sensor design.

Table 6 presents a comparison of cross-interference errors between this paper and
other research. The developed three-dimensional force sensor in this paper demonstrates
good anti-cross-interference ability, which proves the feasibility of the cross-interference
suppression method proposed.

Table 6. Cross-interference errors comparison between different literatures.

Literatures [9] [10] [11] [12] [13] [14] This Paper

Cross-interference error
Maximum 3% 25% * 40% * 2.41% 7.64% 12.37% 4.53%

Minimum 1% 4% * / 1.47% 1.05% 0.56% 1.03%

* indicates that the cross-interference error is estimated from the figure of the literature.

4. Conclusions

Aiming at the cross-interference suppression in three-dimensional force measurement,
this paper proposes a three-dimensional force sensor design method based on the symmet-
rical stress distribution and the balance principle of Wheatstone bridge. The experimental
results demonstrate the following:

(1) The proposed sensor design method is experimentally verified to be feasible, and
the maximum and minimum cross-interference errors of the developed sensor are 4.53%
and 1.03%, respectively. Moreover, research shows that by improving the consistency of the
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initial resistance and gauge factor of strain gauges, as well as reducing the position error and
parallelism deviation of strain gauges, this can further reduce the cross-interference error.

(2) The output sensitivity of Fz measurement circuit is only 72.15% and 42.64% of Fx
and Fy measurement circuits. Using a thinner octagonal ring can effectively improve the
output sensitivity and the consistency of strain gauge resistance changes in Fz measurement
circuit, thereby reducing the cross-interference error.

Future work will focus on optimizing the packaging technology of strain gauges and
the thickness of octagonal ring to further reduce the cross-interference error.
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