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Abstract: Energy-optimal adaptive cruise control (EACC) is becoming increasingly popular due to its
ability to save energy. Considering the negative impacts of system noise on the EACC, an improved
modified model predictive control (MPC) is proposed, which combines the Sage-Husaadaptive
Kalman filter (SHAKF), the cubature Kalman filter (CKF), and the back-propagation neural network
(BPNN). The proposed MPC improves safety and tracking performance while further reducing energy
consumption. The final simulation results show that the proposed algorithm has a stronger energy-
saving capability compared to previous studies and always maintains an appropriate relative distance
and relative speed to the vehicle in front, verifying the effectiveness of the proposed algorithm.

Keywords: model predictive control (MPC); cubature Kalman filter; energy-optimal cruise control;
artificial neural network

1. Introduction

Electric and hybrid vehicles are gaining popularity as environmentally friendly alter-
natives to conventional fuel vehicles due to their reduced emissions and lower operating
costs [1–3]. However, electric vehicles face issues such as limited range, extended charging
times, and high battery costs [4]. As a result, it is crucial to develop eco-driving assistance
systems that optimize energy consumption in electric vehicles while maintaining safety
and comfort [5].

Adaptive cruise control (ACC) is a widely used driving assistance system that auto-
matically adjusts a vehicle’s speed and maintains a safe distance from the vehicle ahead.
Nevertheless, conventional ACC systems have limitations in terms of energy efficiency,
driver comfort, and tracking stability. To address these challenges, researchers have pro-
posed various ACC extensions, including cooperative adaptive cruise control (CACC) [6–8],
personalized adaptive cruise control (PACC) [9–11], and energy-optimal adaptive cruise
control (EACC) [1,12–15]. CACC enables multi-vehicle cooperation through vehicle com-
munication systems, while PACC tailor sand simulates individual driving habits. EACC
focuses on energy consumption and aims to conserve energy while tracking the leading
vehicle. Several studies have applied model predictive control (MPC) to ACC problems,
yielding promising results [12,13].

EACC is a crucial aspect of ACC, but it faces challenges due to the uncertainty of
the leading vehicle’s state. One approach to this issue involves combining MPC and
dynamic programming (DP) algorithms. Weißmann A et al. use DP to plan the speed
and route from the cloud based on the starting position, while the host vehicle uses
the cloud information to estimate the leading vehicle’s speed in real time and applies
MPC for calculation and control [14]. Alternatively, Pan C et al. combine an economical
linearized energy consumption equation with MPC, proposing the use of a nonlinear auto-
regressive model with exogenous inputs (NARX) to predict the leading vehicle’s speed [15].
Similar methods employ the conditional linear Gauss (CLG) model to predict the leading
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vehicle’s speed and control the host vehicle using chance constraints, stochastic MPC, and
randomized MPC [7].

Some existing ACC studies only consider vehicle measurement noise [16], while most
others disregard noise altogether [1,7,12–14]. A few papers assume the use of filters for
preprocessing [17]. ACC algorithms for cars with ultrasonic sensors have been researched
and considered [18], but these sensors have limited range and accuracy and can only
measure vehicle distance. Noise is pervasive and can significantly impact ACC performance.
Inaccurate system process state estimation can lead to control system instability, resulting in
frequent acceleration and deceleration and wasting energy. Hence, it is essential to develop
EACC algorithms capable of handling noisy conditions.

Some recent studies have considered control systems with noise. Aubeck F et al.
addressed the plug-in hybrid vehicle energy management problem using a generalized
stochastic particle filtering algorithm for filtering, followed by a two-level MPC for coordi-
nated vehicle fuel use and charging management [19]. Another example is [20], where Yan
D et al. combined a Kalman-consistent filter and a fixed-time disturbance observer with a
multi-constraint MPC strategy to control the formation flight of unmanned aerial vehicles.
To solve the problem above, an EACC system algorithm is proposed for solving vehicle
systems with noise. The main contributions of this paper are as follows:

(1) In order to address the effects of process noise and measurement noise in vehicle non-
linear systems, a Sage-Husa adaptive cubature Kalman filter (SHACKF) is proposed.
By filtering, the leading vehicle’s speed prediction model is improved to tackle the
issue of diminished multi-step prediction accuracy.

(2) Secondly, a back-propagation neural network (BPNN) for trend prediction is incorpo-
rated, which can be combined with various leading vehicle speed prediction models.
Additionally, the energy consumption equation and kinetic energy recovery system
(KERS) are considered in order to address the problem of frequent deceleration due
to noise. The control is limited to a range that excludes mechanical braking, and
interpolation is used to fit the motor’s efficiency. This is combined with MPC to
calculate the most energy-efficient operating point.

Comparison experiments were conducted under two types of cycles, and the results
show that the proposed algorithm significantly improves energy savings, following dis-
tance, and following relative speed compared to previous studies.

The rest of this paper is organized as follows: the system model is presented in
Section 2; the filter and controller are designed in Section 3; the simulation results are
shown in Section 4; and the conclusions are given in Section 5.

2. Modeling

In this paper, we focus on a vehicle-following scenario on a single lane, aiming to
control the host vehicle to maintain an optimal distance from the front vehicle while
minimizing energy consumption. To implement the algorithm, the first step is to model the
vehicle cruise process equation, measurement equation, and energy consumption equation.

2.1. Vehicle Longitudinal Dynamics Model

Figure 1 depicts a schematic illustration of two consecutive vehicles in the traffic
flow, where k represents discrete time, Vf ,k represents the velocity of the front vehicle, dk
represents the distance difference between the two vehicles, Vh,k denotes the velocity of the
host vehicle, and ah,k denotes the acceleration of the host vehicle. The considered system
process vector xk can be modeled as follows:

xk =
[
Vf ,k dk Vh,k ah,k

]T (1)
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Figure 1. Schematic of two consecutive vehicles.

Firstly, the state of the host vehicle is considered. Numerous papers have proposed
models for the vehicle-following scenario [1,21]. Specifically, the relationship between the
velocity and control input of the host vehicle is as follows:

mah,k =
Tm(uk)iη

r
− Frolling − Fair(Vh,k)− Fgrade (2)

Vh,k+1 = Vh,k + Tsah,k (3)

where m denotes the vehicle mass, Ts is the sampling and control period, Tm(uk) is the
motor output torque affected by control input uk, which will be described in detail in
Section 2.3, i is the transmission ratio product of the gearbox and the main reducer, η
is the transmission system efficiency, and r is the wheel radius. The resistances Frolling,

Fair

(
Vh,k

)
, and Fgrade represent the rolling resistance, the air resistance function, and the

grade resistance, respectively [1,21]. They are calculated as follows:

Frolling = mg fr cos α (4)

Fair

(
Vh,k

)
=

CwρAwindowV2
h,k

2
(5)

Fgrade = mg sin α (6)

where fr is the rolling resistance coefficient, g is the gravitational acceleration, α is the
road slope angle, ρ is the air density, Cw is the drag coefficient, and Awindow is the vehicle’s
windward area.

Various solutions have been offered to predict the front vehicle’s velocity for model
predictive control (MPC), such as the Coordinated Leading Guidance (CLG) method [7]
and the Nonlinear Auto Regressive with Exogenous Inputs (NARX) method [15]. These
algorithms are constructive, but they have some limitations. Using these algorithms for
systems with noise may lead to noise accumulation in multi-step predictions, resulting in
inaccurate predictions.

The BPNN is combined with the forward vehicle speed prediction model proposed
in the current study. As an example, we improve the NARX model suggested in [15]. The
NARX and the BPNN are used for single-step and multi-step predictions, respectively. The
BPNN aims to fit the possible increments for each step. The BPNN’s input is the front
vehicle’s velocity from time k− pp to time k, defined as follows:

hpre ,
[
V̂f ,k−ph |k−ph

, · · · , V̂f ,k−1|k−1, V̂f ,k|k

]
(7)

where ph represents the setting historical horizon.
The structure of the model for front vehicle velocity prediction is shown in Figure 2,

where “Act” represents the activation layer.
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Figure 2. Structure diagram of the velocity of the front vehicle prediction model. 
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Using this approach, the l step at time k can be predicted as follows:

V̂f ,k+l|k = NARX
(

V̂f ,k|k

)
+ (l − 1)BPNN

(
hpre

)
(8)

where NARX
(

V̂f ,k|k

)
and BPNN

(
hpre

)
denote the predictions of the NARX and the BPNN,

respectively.NARX
(

V̂f ,k|k

)
and BPNN

(
hpre

)
are considered special functions. Equation (8)

can be converted into a recursion formula as follows:

V̂f ,k+l|k =

{
NARX

(
V̂f ,k|k

)
l = 1

V̂f ,k+l−1|k + BPNN
(
hpre

)
l > 1

(9)

Furthermore, the relative distance between the front vehicle and the host vehicle can
be calculated as follows:

dk+l+1 = Ts

(
V̂f ,k+l|k − V̂h,k+l

)
(10)

The approach used in the [7] algorithm of the CLG can also be applied here. These
sequences of traffic light signals and the historical speed sequence of the previous vehicle’s
velocity are combined and input into the BPNN. At the same time, the CLG is simplified to
perform Bayesian network operations, executing only one step of prediction.

The above Equations (1)–(9) are ideal, but the actual situation is much more compli-
cated. The primary sources of errors are:

Vehicle variation, which includes changes in the vehicle mass due to changes in the
weight of the passengers and changes in the rolling resistance coefficient due to changing
tires; environment variation, which includes changes in gravitational acceleration, wind
resistance coefficient, and air density; and modeling errors, which include the effect of
lateral direction control on velocity [8], the effect of state of charge (SOC) changes on battery
voltage [22], and the effect of tire pressure on grip during acceleration and braking. The
velocity of the front vehicle cannot be directly modeled, and the prediction of speed must
have errors. Although considering more variables results in less process noise, accounting
for too many factors will cause the matrix dimension to become too large.

Therefore, a balance between accuracy and complexity should be struck. The first
two points affect the parameters in Equations (2) and (4)–(6). There are specific patterns
of change over a short period of time. The last point causes random noise. These errors
are described using wk, thus wk is an additive noise with a non-zero mean that can be
considered to obey a Gaussian process. Section 3.1 will demonstrate that the filter is
statistically consistent between the Gaussian process assumption and the actual situation
through a series of tests [23,24].
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According to the series of derivations above, the EACC system process equation can
be written as follows:

xk+1 =


Vf ,k+1
dk+1

Vh,k+1
ah,k+1

 = f (xk, uk) + wk =


NARX

(
Vf ,k

)
TsVf ,k + dk − TsVh,k

Vh,k + Tsah,k
Tk(uk)iη

r −Frolling−Fair(Vh,k)−Fgrade
m

+ wk (11)

where BPNN
(
hpre

)
in Equation (9) is not used in (11) but is used to make predictions in the

controller, which will be described in detail in Section 3.2.

2.2. Vehicle Sensor Measurement Model

The goal of this section is to deduce the measurement equation by modeling sensors.
Typically, most vehicles are equipped with a comprehensive set of sensors. The FMCW
radar measures the relative velocity and distance between two vehicles, the wheel velocity
sensor provides the host vehicle’s velocity, and the inertial measurement unit supplies the
host vehicle’s acceleration.

Assuming that the measurement noise covariances vk for these sensors are Gaussian
white noise with known values, the values of the measurement noise covariances can be
obtained from sensor manuals or prior studies. The initial measurement noise covariance
diagonal matrix Qv0 is given by [16,25,26]:

Qv0 = diag(0.055, 0.28, 1, 0.005) (12)

However, this assumption may not hold in actual situations, where the measurement
noise covariances may vary over time and have a non-zero mean. For example, severe tire
slippage on wet roads can increase the wheel velocity sensor’s error [25]. Likewise, rain
and fog may cause increased noise, reducing the radar’s penetration effect [18,27,28]. This
situation is described in Section 3.1.

The EACC system measurement equation is written as follows:

zk = Hkxk + vk =


1 0 −1 0
0 1 0 0
0 0 30

πr 0
0 0 0 1

xk + vk (13)

where 30/πr is the conversion of velocity (unit: m/s) to wheel velocity (unit: rpm).

2.3. Energy Model

In this section, the equations for energy consumption and recovery are derived. The
efficiency of the motor at the working points is given by:

Pm =

{ Tm(uk)nk
9549ηm(Tm(uk),nk)

Tm(uk) ≥ 0
Tm(uk)nm,k

9549 ηm(Tm(uk), nk) Tm(uk) ≤ 0
(14)

where nk is the motor’s rotation speed, ηm(Tm(uk), nk) is the electrical energy conversion
efficiency, a quantity related to the motor speed and torque, and 9549 is the coefficient of
unit conversion. Equation (14) is adapted from [15].

The KERS can recover some of the vehicle’s kinetic energy during braking and convert
it into electrical energy. The braking process is divided into two stages based on braking
strength [1,29]:pure electric braking and electro-hydraulic hybrid braking. The hybrid
braking stage uses a combination of motor braking and hydraulic braking. The first stage
saves more energy than the second stage because hydraulic braking converts part of the
kinetic energy into thermal energy, resulting in energy waste.
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In this paper, when uk is positive, the motor performs energy output; when it is
negative, it signifies that the KERS performs energy recovery. Furthermore, uk = 1 and
uk = −1 represent the maximum throttle opening and the critical point between the two
stages of braking, respectively. In this paper, the output torque and the input control
quantity are considered linearly related, so the torque output function Tk(uk) and the
control input uk exhibit the following relationship:

Tm(uk) =

{
ukT(+)

m uk > 0
ukT(−)

m uk < 0
(15)

where T(+)
m and T(−)

m are the maximum torque for energy output and energy recovery input,
respectively. Since only one set of gears exists for electric vehicles, the relationship between
motor speed nk and vehicle velocity Vf ,k is as follows:

Vh,k =
nkπr
30i

(16)

Substituting (15) and (16) into (14) yields:

Pm(uk, Vh,k) =


10ukT(+)

m iVh,k
3183πrηm(uk ,Vh,k)

uk ≥ 0

10ukT(−)
m iVh,k

3183πr ηm(uk, Vh,k) uk ≤ 0
(17)

Since the efficiency function ηm(uk, Vh,k) is nonlinear, the equation is fitted using
Thin-plate spline interpolation, and the final result is shown in Figure 3a. The Pm(uk, Vh,k)
obtained by Equation (17) is shown in Figure 3b.
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Figure 3. (a) Interpolation fitting surface for the relationship between motor efficiency and control
input and motor speed; (b) The surface of the relationship between motor power and control input
and motor speed.

Similar fitting methods can be applied to hybrid vehicles, with special consideration
required for the product of the gearbox and main gearbox ratios.

3. Filter and Controller Algorithm
3.1. Filter Algorithm

Equations (11) and (13) present challenges for conventional nonlinear filtering methods,
such as the extended Kalman filter (EKF) and the cubature Kalman filter (CKF) [30], as
they assume that the noise is zero-mean Gaussian white noise with fixed covariance.
Additionally, linear adaptive filtering methods, including the Sage-Husa adaptive Kalman
filter (SHAKF) [31–33], cannot handle nonlinear functions. To address these limitations, we
propose the SHACKF, a combination of the CKF and the SHAKF. The CKF approximates
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nonlinear functions using cubature points. The SHAKF algorithm parameters are updated
as follows:

q̂w,k = (1− δk−1)q̂w,k−1 + δk−1

(
x̂k|k −Akx̂k−1|k−1

)
(18)

Q̂w,k = (1− δk−1)Q̂w,k−1 + δk−1

(
KkεkεT

k KT
k + Pk|k −AkPk|kAk

)
(19)

q̂v,k = (1− δk−1)q̂v,k−1 + δk−1

(
ẑk|k −Hkx̂k|k−1

)
(20)

Q̂v,k = (1− δk−1)Q̂v,k−1 + δk−1

(
εkεT

k −HkPk|k−1HT
k

)
(21)

where q̂w,k and Q̂w,k denote the estimated process noise mean and covariances, respectively;
q̂v,k and Q̂v,k denote the estimated measurement noise mean and covariances, respectively;

εk = zk − ẑk|k−1 − qv,k is the residual vector; δk−1 = (1− b)/
(

1− bk+1
)

and b represent
the amnestic factor and the forgetting factor, respectively; Ak and Hk are the state transition
matrix and measurement matrix, respectively; Kk and Pk|k−1 are the Kalman gain and
predicted error covariance matrix, respectively; and ẑk|k, x̂k|k−1, and x̂k|k are the predicted
measurement, predicted state, and posterior state, respectively.

To address this challenge, the SHACKF integrates the CKF and the SHAKF into a
unified framework. The update process for the SHACKF is given in the following steps:

q̂w,k = (1− δk−1)q̂w,k−1 + δk−1

(
x̂k|k −

1
2n

2n

∑
µ=1

Zµ, k|k−1

)
(22)

Q̂w,k = (1− δk−1)Q̂w,k−1 + δk−1

(
KkεkεT

k KT
k + Pk|k −

(
1

2n

2n

∑
µ=1

Xµ, k|k−1

(
Xµ, k|k−1

)T
− x̂k|k−1

(
x̂k|k−1

)T
))

(23)

q̂v,k = (1− δk−1)qv,k−1 + δk−1

(
ẑk|k −

1
2n

2n

∑
µ=1

Zµ, k|k−1

)
(24)

Q̂v,k = (1− δk−1)Qv,k−1 + δk−1

(
εkεT

k −
(

1
2n

2n

∑
µ=1

Zµ, k|k−1

(
Zµ, k|k−1

)T
− ẑk|k−1

(
ẑk|k−1

)T
))

(25)

where Zµ, k|k−1 and Xµ, k|k−1 indicate propagated cubature point sand cubature points,
respectively [30].

To enhance the stability of the SHACKF, the innovation sequence εk and its theoretical
statistical features are used to make judgments. If the filtering process is abnormal, the
noise parameters are reinitialized [31]. The judgment is shown below:

εkεT
k > γtr

(
E
[
εkεT

k

])
= γtr

(
Pzz,k|k−1

)
(26)

where γ is a coefficient, which is taken as 1 in this paper.
As mentioned in Section 2.1, the error of the EACC system is assumed to obey a

Gaussian process. The results are shown in Figure 4. Figure 4a–d show the autocorrelation
of the normalized innovation sequence in the simulation [23]. The yellow dashed line
represents the 95% confidence interval. All four components fall within the confidence
interval of approximately 95%, which indicates that they are uncorrelated. Figure 4e–h
represent the distribution histograms of the innovation sequence after the normalization
of the four state components of the EACC system. The green lines represent the standard
normal distribution. It can be seen that the four components are almost identical to the
normal distribution. Therefore, there is sufficient reason to believe that the process noise
obeys a Gaussian process.
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However, there is an exception to the experiment. When the front vehicle stops, the
vehicle velocity prediction at the next moment is also zero, which is almost correct and
meaningless. This situation is reflected in the noiseless region in Figure 4a. Therefore, this
situation is not considered in this paper.

3.2. MPC Controller Algorithm

In this section, the design of the control system is presented based on the previous
discussion. The system framework is shown in Figure 5,and it consists of three main
components: the front vehicle velocity prediction model, the filter, and the controller.
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The front vehicle velocity prediction model, described in Section 2.1, uses a queue to
store historical data and follows the FIFO (first-in, first-out) principle. When a new value
arrives, it deletes the earliest value in the queue. This queue is initialized to zero.

The filter is described in Section 3.1. To begin, the system state is estimated by the
CKF algorithm. Then, it determines whether the noise parameters need to be reinitialized
according to Equation (26). If not, it updates them according to Equations (22)–(25). The
values obtained after filtering are provided to the controller and the prediction model.

The controller uses an MPC algorithm and is designed based on the model in Section 2.
It solves the optimal control input according to the current state estimation and the desired
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state. Then, the control input is applied to the system to achieve EACC. The slack variables
are introduced into the MPC to reduce non-solutions, and the NMPC toolbox provided by
MATLAB has been used to solve the nonlinear model predictive control problem. The loss
function and constraints of the MPC problem are given by:

min
|uk+l |v1

pp

∑
l=1

TsPm

(
uk+l , V̂h,k+l|k

)
+ v2

pp

∑
l=1

∣∣∣V̂h,k+l|k − V̂f ,k+l|k

∣∣∣+ v3

pp

∑
l=1

∣∣∣âk+l|k

∣∣∣+ v4

pp

∑
l=1

(|εd|+ |εV |) (27)

x̂k+l+1|k = f
(

x̂k+l|k, uk+l

)
(27a)

u ≤ uk+l ≤ u (27b)

d + εd < d̂k+l|k ≤ d− εd (27c)

0 ≤ V̂h,k+l|k ≤ Vh + εV (27d)

0 ≤ εd ≤ εd (27e)

0 ≤ εV ≤ εV (27f)

where pp is the MPC prediction horizon; V̂h,k+l|k denotes the prediction of the speed of the
preceding vehicle for k + l time under the premise of k time, and the same for the other
similar subscripts; εd and εV represent the slack variables of relative distance and the host
vehicle’s velocity, respectively; d and d represent the upper and lower bounds of the relative
distance, respectively; u and u represent the upper and lower bounds of the control input,
respectively; and Vh represents the upper bounds of the host vehicle’s velocity.

The four terms in Equation (27) consider energy consumption, the distance difference
between the two vehicles, the velocity difference between the two vehicles, the host vehicle’s
acceleration magnitude, and the slack variable magnitude. Equation (27a) is the process
equation. The control input range is restricted by Equation (27b). The relative distance is
restricted and maintained between cars by Equation (27c). The maximum vehicle velocity is
limited by Equation (27d). The slack variable range is limited by Equations (27e) and (27f).

Although slack variables are introduced, there may be situations where no solution can
be found. In such cases, the algorithm first tries to find a suboptimal solution. If that fails,
the algorithm attempts to relax the energy, distance, or velocity constraint conditions. If that
still fails, the algorithm reinitializes the MPC. This is because there may be an inconsistency
between the control input and Equation (11) when the front vehicle completely stops. The
reinitialization clears the previous input data and solves the problem again.

In summary, the proposed MPC controller algorithm addresses the challenge of EACC
under noise uncertainty, and it effectively integrates the front vehicle velocity prediction
model and the filter to achieve tracking control. Additionally, the algorithm can also be
combined with studies [7,15].

4. Performance Analysis

The performance of the algorithm is analyzed in detail in this section using CarSim and
Simulink. To solve the MPC problem, the NLMPC toolbox is utilized, and all simulations
are conducted on a personal computer with an i5-8600 processor.

The host vehicle simulation model is based on the Tesla Model 3 Rear-Wheel Drive se-
ries with a single rear-mounted IPM-SynRM electric motor. Table 1 displays the simulation
parameters for the host vehicle and environment. The “Model Value” column represents
values used in the calculation, whereas the “Simulation Value” column denotes the values
configured in the software during the simulation. This approach is reasonable since the
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electronic control unit cannot accurately measure relevant environmental parameters in
real time. Table 2 shows the calculation parameters for the MPC.

Table 1. Vehicle and environmental parameters.

Parameter Symbol Model Value Simulation Value Unit

Maximum torque for energy output T+
m 340 Nm

Maximum torque for energy recovery input T−m 135 Nm
Tire specification - 235/55 R18 225/55 R18 -

Air resistance coefficient Cw 0.23 -
Transmission ratio i 7.2288 -

Vehicle and passenger mass m 1440 1580 kg
Windward area Awindow 0.7035 m2

Rolling resistance coefficient - 0.9 0.75 -

Table 2. The parameters of the MPC algorithm.

Parameter Symbol Value Unit

Historical horizon ph 10 -
Prediction horizon pp 10 -

Relative distance, upper bound d 25 + 0.7Vf ,k m
Relative distance, lower bound d 10 m

Sampling time Ts 0.5 s
Host vehicle’s velocity, upper bound Vh Vf ,k + 5 m/s

Upper bound on the relaxation variable of the distance εd 0.5 m
Upper bound on the relaxation variable of the velocity εV 0.3 m/s

Weights v1 v2 v3 v4
0.1 1 0.6 0.01

To predict the front vehicle’s velocity, two types of neural networks, the BPNN and
the NARX, are trained. The training data set is collected by Beamng.tech [34], a free
simulation software for the academic community. The data set consisted of seventeen
scenarios with various vehicles, weather, congestion, and road conditions, each with a
driving time ranging from 75 s to 5 min. Beamng.tech has been used in simulations in
previous studies [34,35].

In order to conduct a comprehensive evaluation of the algorithm’s performance,
comparative experiments are performed between the algorithms proposed in [7,15] and
the proposed algorithm under the same conditions. The algorithm is comprehensively
tested for energy consumption, tracking, velocity following, and filtering using two types
of cycles: the NEDC and the CLTC.

The NEDC is a driving cycle with four urban segments and one suburban segment,
lasting 1180 s and covering a distance of 11.022 km. The average velocity is 33.6 km/h. The
CLTC [36], short for China Light Vehicle Test Cycle, is composed of urban, suburban, and
expressway segments with a total duration of 1800 s and a total distance of 14.48 km, with
more random velocity variation than the NEDC.

4.1. Analysis of Energy Consumption

In this section, the energy consumption of the host vehicle is analyzed. The stochastic
model predictive control (SMPC) method proposed by Moser, D. et al. [7] and the MPC+ method
proposed by Zhou, H. et al. [15] are compared with the proposed algorithm under the same
conditions. The host vehicle has a total battery capacity of 60 kWh, with 36 kWh remaining
at the initial moment. Figure 6a,b show the energy consumption and recovery under the
NEDC and CLTC driving cycles, respectively.
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The energy consumption gap between the proposed algorithm and the algorithms
in [7,15] is mainly due to the inaccurate estimation. It is worth mentioning that the KERS
in this algorithm recovers less energy than that of the algorithm proposed in [15], as the
inaccurate prediction of the front vehicle’s velocity leads to frequent deceleration. Since the
efficiency of the vehicle is less than 100%, accelerating and then decelerating to the same
speed leads to a waste of energy. The study in [7] can be applied in the context of CACC or
when communication is absent. However, this paper does not take into account the kinetic
energy recovery system, which results in significantly lower energy recovery compared to
the algorithms proposed in this paper and [15]. Additionally, higher energy consumption
is observed due to the inaccuracies in the estimation.

The PID algorithm is used to simulate the vehicle’s driving under NEDC and CLTC
conditions. The simulation results are considered the standard energy consumption, and
the results are presented in Table 3.

Table 3. Comparison of energy consumption and recovery.

Circulation
Energy

Consumption
in This Paper

Energy
Consumption

in [15]

Energy
Consumption

in [7]

Energy
Recovery in
This Paper

Energy
Recovery

in [15]

Energy
Recovery

in [7]
Standard

Unit kWh kWh kWh kWh kWh kWh kWh
NEDC 1.6728 1.786 2.0923 0.1526 0.1682 0.1035 1.926
CLTC 2.505 2.6000 3.0070 0.2862 0.3087 0.1921 2.154

The CLTC driving cycle has more complex environmental conditions than the NEDC,
necessitating a more accurate front vehicle velocity prediction model. Inaccurate predictions
can degrade overall performance. Noise filtering is crucial for the EACC system, as an
accurate prediction of the dynamic system is a prerequisite for stable and efficient MPC
operation [37]. All EACC algorithms consume more energy than the standard under the
CLTC driving cycle due to the more complex and error-prone velocity prediction in the
tracking case. However, by filtering and improving the EACC system, more energy can
be saved by the algorithm proposed in this paper. Compared to the algorithm proposed
in [15], the algorithm proposed in this paper can achieve an energy saving of 0.095 kWh per
single CLTC. With a 60 kWh battery, the algorithm in [15] can run 347 km, the algorithm
in [7] can run 289 km, and the algorithm in this paper can run 334 km. Energy can
therefore be saved by 0.006 kWh/km and 0.03 kWh/km relative to the algorithms proposed
in [7,15], respectively.
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4.2. Analysis of Tracking Performance

The tracking performance of the vehicle is analyzed in this section. Figure 7a,b il-
lustrate the inter-vehicle distance tracking under the NEDC and CLTC driving cycles,
respectively. The green line represents the upper distance boundary, while the red line
represents the lower distance boundary. Similarly, Figure 8a,b show the velocity track-
ing curves.
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CLTC conditions.

Constraint violations are observed in Figure 7a,b, particularly during the leading
vehicle’s acceleration and deceleration phases, resulting from the inaccurate prediction
of the front vehicle’s velocity. A method is proposed for a condition that failed to solve
the MPC equation in this paper, allowing the vehicle to track or stop within acceptable
limits even in violation of constraints. In contrast, the algorithms proposed in [7,15] do
not consider this problem and noise, which led to over-near distance and even rear-end
collisions at the last moment (1160 s) during the NEDC simulation.

Figure 6a,b show that all three algorithms predicted that the velocity continued to
increase after almost all end-of-ascent time moments (e.g., 143 s, 338 s, and 533 s under
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NEDC conditions; 723 s, 998 s, and 1057sunderCLTC conditions). After a change occurred,
they rapidly decelerated to follow the front vehicle’s velocity. Compared with [15], a
variable distance limit is introduced, while a fixed one is used in [15]. The relative distances
are similar at relatively low velocities, but the developed algorithm has a farther distance
than [15] at faster velocities. Most of the relative distance differences between the two
algorithms are within 5 m, which is acceptable. However, fixed limits may have led to
prediction errors with noise, resulting in dangerous distances (e.g., 751 s, 1293 s, and 1774 s
in the CLTC; 1160sin the NEDC, as mentioned earlier). The dangerous distance situations
did not occur in [7], which can be attributed to the fact that the algorithm in [7] has no
limit on the KERS and applies significant braking when approaching dangerous distances,
leading to energy consumption.

By analyzing the tracking capabilities of all algorithms, it is evident that the proposed
method minimizes the occurrence of accidents and enhances system reliability. However,
this may introduce a computational burden. Each calculation time is recorded, with
an average calculation time of 0.1141 s. This is still sufficient for current mainstream
vehicle chips.

4.3. Analysis of Modeling and Filtering

In this section, the model developed in Section 2 and the SHACKF proposed in
Section 3.1 will be analyzed.

Figure 7a shows the estimation of the velocity of the host vehicle by filtering and
modeling algorithms. As can be seen from the Figure 9, several filtering algorithms are
effective, as almost all are the same as the true value. The modeling algorithm does not use
the observations to adjust the estimates, and this curve is always around the true value,
which also proves that the model proposed in Section 2 is valid.
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Figure 9. (a) Filtering and modeling algorithms for the host vehicle speed estimation curve; (b)AMSE
of the host vehicle speed estimation curve.

Figure 7b shows the accumulative mean square error (AMSE) of the SHAKF, SHACKF,
CKF, and EKF, where the AMSE is as follows:

AMSE(k) =
k

∑
t=0

∥∥∥x̂t|t − xt

∥∥∥2

2
(28)

In the figure, we can see that the SHACK algorithm has the best filtering performance,
the CKF and the SHAKF are almost the same, and the EKF algorithm is the worst. It is
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understandable that the CKF uses the nonlinear property of the model, the SHAKF com-
pensates for the error, and the SHACKF combines the advantages of these two algorithms.

5. Conclusions

In this paper, the design of anEACC system considering vehicle process and mea-
surement noise is studied, focusing on how to minimize the impact of noise on the EACC
system and save more energy. This study addresses non-zero mean noise in nonlinear
vehicle systems by employing the SHACKF algorithm, which integrates the CKF and the
SHAKF algorithms. To boost multi-step prediction accuracy, the vehicle speed prediction
model is augmented with a BPNN. The issue of frequent acceleration and deceleration is
tackled by considering vehicle kinetic energy recovery systems and interpolating motor
efficiency. Furthermore, slack variables are employed to manage the infeasibility of MPC.

The simulation results provided valuable insights into the performance of our pro-
posed algorithm. In terms of energy savings, the algorithm demonstrated significant
improvements compared to previous methods, with numerical results showing an energy
saving of 0.006–0.03 kWh/km. The proposed algorithm also outperformed previous algo-
rithms in terms of stability in distance tracking, maintaining a consistent and appropriate
distance from the leading vehicle. In velocity tracking, minor fluctuations were observed
only during the final stages of acceleration and deceleration, while the tracking remained
stable throughout other periods. It is worth mentioning that this algorithm is versatile and
can be integrated with various current MPC-based EACC studies.

Future research may explore incorporating this algorithm into CACC studies by using
information fusion algorithms to enhance traffic efficiency. Additionally, although the
SHACKF algorithm is effective, it has the drawback of estimating covariance and mean
inaccurately. To address this issue, more precise filters, such as robust adaptive filters and
H∞ filters, could be employed to eliminate noise.
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