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Abstract: Deep learning technology has advanced rapidly and has started to be applied for the
detection of welding defects. In the manufacturing process of power batteries for new energy
vehicles, welding defects may occur due to the high directivity, convergence, and penetration of the
laser beam. The accuracy of deep learning prediction relies heavily on big data, but balanced big data
of welding defects is hard to acquire at the battery production site. In this paper, the authors construct
a dataset named RIAM, which consists of images captured from an industrial environment for laser
welding of power battery modules. RIAM contains four types of images: Normality, Lack of fusion,
Surface porosity, and Scaled surface. The characteristics of RIAM are carefully considered in the
application scenarios. Moreover, this paper proposes a gradient-based unsupervised model named
Grad-MobileNet, which can be trained with only a few normal images and can extract the feature
gradients of the input images. Welding defects can then be classified by the gradient distribution.
This model is based on MobileNetV3, which is a lightweight convolutional neural network (CNN),
and achieves 99% accuracy, which is higher than the accuracy expected from supervised learning.

Keywords: manufacture of power batteries; welding defect detection; unsupervised learning;
gradient-based model

1. Introduction

In the process of manufacturing power battery modules of new energy vehicles,
generally a high-power laser oscillator welding process is used to weld the battery lugs,
which are made of copper and aluminum. In the welding process, there are many causes
of welding defects, such as fluctuations in welding parameters, oxidation on the surface
of the aluminum pole column, inadequate gas protection, large busbar gaps, etc. Due to
changes in welding conditions, many welding defects inevitably arise, such as porosity,
slag, broken welding, blackening, etc. These defects have a serious impact on the safety of
the battery and are very likely to cause battery pack fires. For the above welding defects,
achieving “early diagnosis, early detection, early treatment” from the source of the process
has become an urgent quality problem to be solved.

In recent years, defect detection methods based on computer vision and deep learning
have received widespread attention, but there are still three challenges for researchers:
Firstly, the lack of datasets is a common problem for the majority of researchers. The
GDXray-weld dataset proposed by Mery D. et al. [1] dataset is widely used in the field
of weld defect detection, but this dataset mainly collects internal weld defects and is in
small quantities. No authoritative public dataset for new energy vehicle power battery
welding surface defects has been published. In the actual production scenario, there are
many inconvenient and time-consuming ways to collect and obtain a full range of datasets.
Defect detection based on a small and unbalanced dataset has become a difficult and
hot research point. Secondly, welding defect classification is mainly based on supervised
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methods. With the development of deep learning, supervised learning methods dominate in
computer vision. As a member of the traditional manufacturing industry, researchers in the
field of welding focus more on the types of defects to improve the process. Thus, supervised
learning methods have a greater advantage. Last but not least, most unsupervised learning
methods can only do binary classification. In the field of defect detection, the lack of
defective samples has led researchers to explore methods that only use positive samples.
Thus, the method can reconstruct and discriminate normal samples and is less capable in
multi-categorization.

To address the aforementioned problems, this paper proposes a gradient-based un-
supervised learning algorithm named Grad-MobileNet. This model has achieved good
results in the classification of laser welding surface defects. In the course of the study,
only positive samples are used for training; this algorithm can also identify positive and
negative samples. Then, the negative samples can be classified as different defects.

Unsupervised learning accomplishes the classification task by describing the distribu-
tion of the input data. It requires many complex features to be designed manually, which
traditional unsupervised learning algorithms apply to welding defect classification tasks.
Further, a gradient-based method is mainly used in explaining the black-box model. In this
paper, we apply it to the classification task. The region of interest of the input image can be
obtained by observing the gradient of the input image while training the model. By means
of gradients, this algorithm can get the features needed for unsupervised learning. Thus, it
makes the unsupervised learning classification task easier and more efficient.

The contributions of this paper are as follows:

1. This paper introduces a laser welding surface defect dataset named RIAM, which
was collected from plants. The differences in features between this dataset and other
publicly available datasets are analyzed. The photos were taken by vision sensors.
According to ISO 6520, there are four categories in the dataset: Normality, Lack of
fusion, Surface porosity, and Scaled surface.

2. In order to cope with problems such as lack of datasets and poor model interpretabil-
ity, this paper proposes a laser welding surface defect classification method, namely
Grad-MobileNet, which is an unsupervised learning algorithm based on MobilenetV3.
The algorithm not only shows high recognition accuracy, outperforming supervised-
learning-based methods, but is simple and efficient to train. It is sufficient for auto-
matic detection and classification of cell welding defects in production.

3. In this article, we compare and analyze the differences between the industrial defects
datasets and other publicly available datasets. A new unsupervised industrial defect
classification method is provided for subsequent researchers.

The rest of the paper is organized as follows. Section 2 covers a review on the gradient-
based method and unsupervised learning. Section 3 describes the dataset captured by
visual sensors. Additionally, it analyzes the differences between the welding dataset and
other publicly available datasets. The idea behind the algorithm’s design and the algorithm
flowchart are presented in Section 4. Section 5 describes the experimental design and its
results. Finally, Section 6 presents the conclusions of the paper and suggests some directions
for future research.

2. Related Work

The idea behind this paper draws on recent work in CNN welding defect classification,
gradient-based methods, and unsupervised learning algorithms.

CNN welding defect classification: As one of the most effective algorithms for clas-
sification tasks, convolutional neural networks are widely used for welding defect classi-
fication. Many previous studies [2–6] have achieved good results in the field of welding
defects. Liu et al. [2] proposed a model based on VGG16 that enables high-precision
identification of both porosity and cracks with a small dataset. Hou et al. [3] proposed a
DCNN model and compared the effectiveness of three resampling methods to solve the
defective-sample-imbalance problem. Agus Khumaidi et al. [5] used a CNN and Gaussian
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kernel to identify four different types of welding defects. Daniel Bacioiu et al. [6] used
an HDR camera to capture weld images and constructed a classification model based on
CNN and FCN. In addition to the changes in model structure, the researchers also used
a number of other methods to improve model performance. Specifically Huang et al. [7]
and Gu et al. [8] enhanced the unbalanced dataset and improved model accuracy by using
generative adversarial networks (GANs). Further, Wang et al. [9] used edge computing to
deploy a model on embedded devices and improved the detection speed while keeping the
accuracy constant. V.A. Golodov et al. [10] used a digital detector array (DDA) method
to preprocess features of the welding images and achieved 82.73% top1 and 96.76% top2
categorical accuracy. The above studies are all supervised learning approaches and were
trained with a full range of labeled datasets.

Gradient-based methods: Gradient-based methods are generally used to explain
black-box models due to the fact that CNNs are optimized using gradient descent. Con-
sequently, there is no one using gradient-based methods in the field of welding defect
classification. D. Smilkov et al. [11] proposed SmoothGrad to reduce the effect of noise until
a clearer feature map is obtained. R. R. Selvaraju et al. [12] proposed Grad-CAM, which uses
gradients to enhance CAM (Class Activation Mapping). It improves interpretability and
allows gradients to be used for classification tasks. D. Omeiza et al. [13] proposed smooth
grad-CAM++ which combines the methods from the two above techniques and produces
more visually sharp maps with better localization of objects in the given input images.

Unsupervised learning algorithms: The main idea of unsupervised learning algo-
rithms is to learn the data distribution. Further, they are trained without labels. Unsuper-
vised learning algorithms for defect detection mainly use AE (Autoencoder) and GAN
(Generative Adversarial Network). The following algorithms cover surface defects in
fabrics, plastics, welds, etc. AE [14–16] can reconstruct the corresponding normal image
based on the abnormal input. Further, abnormal images can be identified by the difference
between the input and its reconstruction. Mei et al. [14] reconstructed image blocks using
convolutional denoising autoencoder networks at different levels of Gaussian pyramid and
integrated the detection results from these different resolution channels. The reconstruction
residual of the training blocks was used as a direct pixel-level defect prediction indicator,
and the residual maps generated by each channel were combined to produce the final
detection result. This unsupervised, multimodal strategy can improve the robustness and
accuracy of the model without human intervention.. Haselmann et al. [15] designed a
deep convolutional neural network to perform anomaly detection on surface images in
a block-wise manner. The method can generate a defect-free version of the completion
region. By computing the pixel-level reconstruction error between the completion region
and the query region, an anomaly score map is obtained, which can reveal surface defects.
Kang et al. [16] proposed a method based on a deep denoising encoder, which can extract
features from noisy images and reconstruct noise-free images. By comparing the original
image and the reconstructed image, defect classification can be achieved. GAN [17–19]
can learn the feature distribution of normal samples, so it can also be used to distinguish
images with different distributions. Schlegl et al. [17] optimized AnoGAN and proposed
f-AnoGAN to learn the manifold of normal anatomical variability, and they proposed an
anomaly scoring scheme based on mapping from the image space to the latent space. The
model can label anomalies and score image blocks, indicating their degree of matching with
the learned distribution. Lai et al. [18] used a variational autoencoder (VAE) and generative
adversarial network (GAN) to construct a surface texture pattern generator method, which
can detect novelty according to the learned distribution. The experimental results on real
industrial datasets show that the method can successfully generate surface texture patterns
and effectively separate defects from normal regions by transforming images through the
generator to the corresponding latent space. Hu et al. [19] proposed a novel fabric defect
detection method based on a deep convolutional generative adversarial network (DCGAN).
The authors added an encoder component to the standard DCGAN, which can reconstruct
a given image so that the reconstructed image only retains normal texture without defects.
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The above two methods can only distinguish between normal and abnormal images and
cannot do finer classification.

The fact that most existing welding defect detection methods need complete datasets
does not match the real situation. The authors propose a new approach for defect classifica-
tion based on production realities and dataset characteristics.

3. Welding Defect Dataset

In this section, we propose a novel welding defect dataset named RIAM. The dataset
was collected from a power-cell production line. Afterwards, differences between different
datasets are analyzed.

3.1. Introduction

The images in this paper were captured in an automotive power battery production
plant. There are four classes of welding defects with resolution 256 × 256 pixels according
to GB 6417 and ISO 6520. The whole dataset can be divided into four types: Normality,
Lack of fusion, Surface porosity, and Scaled surface. Further, in this dataset, normality
is a normal sample, and the other categories are abnormal samples. Figure 1 shows the
schematic of laser welding surface defects.

(a) Normality. (b) Lack of penetration. (c) Surface porosity. (d) Scaled surface.

Figure 1. Laser welding defects.

3.2. Characterization

In the process of collecting defective datasets, normal images are more readily available
than abnormal images. It is difficult for an algorithm to obtain a complete and compre-
hensive dataset at the time of training due to the limitations of professionals and the
environment.

Industrial defect datasets differ from other publicly available datasets in terms of
feature complexity. In the weld defect dataset, the weld and the defect are whole versus
local and are low semantic versus high semantic. The coupling between them is relatively
simple. In other datasets, the hierarchical relationship between low semantics and high
semantics is complex and rich.

In the industrial defects datasets, defective areas are gradual and regular on the basis
of pixel dots. As a result, normal images can be used as a reference for abnormal images.
Theoretically, it is possible to classify normal and abnormal images as long as the difference
in their distribution can be measured. Our proposed Grad-MobileNet can well conduct
this task.

4. Algoritm and Structure

In this section, we detail the algorithm and architecture of our proposed Grad-MobileNet.
Further, we discuss the classification strategy of the proposed model in detail.

4.1. Grad-MobileNet

Previous work has chosen the gradients of the convolutional layers or the predicted
values. However, in order to better classify defects, this paper uses the gradient of the loss
function in the testing phase.
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Figure 2 shows the flowchart of the Grad-MobileNet. Grad-MobileNet is trained by
using normal samples to obtain an overfit model. Then all kinds of images are fed into the
overfit model to obtain ypre, which can be given as:

ypre = model(x). (1)

where x denotes the input of the model and model(·) represents the mapping function from
input to output. The gradient features can be calculated as:

Grad =
∂L(θ, y, ypre)

∂x
. (2)

where L(·) is the cross-entropy function used as a loss function and θ denotes the trainable
parameters. Since x consists of three features, which can be represented as x = (x1, x2, x3),
the L2 norm of gradients can be explicitly presented as:

‖Grad‖2 =
√

x2
1 + x2

2 + x2
3. (3)

Figure 2. Flowchart of the Grad-MobileNet.

As shown in Equation (2), y is a one-dimensional matrix in which the values are all
0. Because of the derivative for input x, the dimension of Grad is the same as x. After
obtaining the L2 norm of gradients by Equation (3), the gradient combines with the artificial
landmark in order to reduce the randomness of the model.

It should be emphasized again that during the training phase the model can only be
trained with normal samples until an overfit model is obtained. In the testing phase, after
inputting the test set into the model, we need to set the y of the loss function in Equation (2)
to 0. Finally, the gradient needed in this paper is obtained by deriving the loss function
according to Equation (2).

4.2. MobileNetV3 Backbone

In the current study, deeper and more complex convolutional neural networks have
better performance. However, this also brings the problem of slow operation with many
parameters. So in this paper, the authors choose the lightweight network MobileNetV3 as
the backbone.
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MobileNetV3 was proposed by Andrew Howard et al. [20] from Google as a validation
network, continuing the deep separable convolution of MobileNetV1 [21] and the inverse
residual structure with linear bottleneck of MobilenetV2 [22], adding the squeeze and
excitation based structure of MnasNet excitation structure, and also modifying the original
swish activation function to h-swish for reducing the computational effort.

4.3. Artificial Landmark

AL means artificial landmark. Based on our experiment results, Grad-MobileNet has
few errors randomly in the binary classification. As a result, this paper proposes a simple
artificial landmark based on positive samples.

Figure 3 shows the grayscale image of the dataset and its histogram. The x-axis of the
histogram represents the grayscale chart from dark to light. Because of the unsupervised
method, this paper only designs the artificial landmark based on normal images. According
to the normal histogram, the artificial landmark is designed from 0 to 50 in the x-axis of the
histogram. This artificial landmark is too simple to classify all images, but it can reduce the
randomness of the results.
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(a) Normality. (b) Lack of penetration. (c) Surface porosity. (d) Scaled surface.

Figure 3. Grayscale images and their histogram of welding defects.

4.4. Classification Rules

There are two situations for classification rules. From the perspective of images,
one is black for binary classification and the other is for multiple classification. Binary
classification uses one-class SVM to classify welding defects. Further, multiple classifi-
cation use K-means. Figure 4 shows the classification strategy after the gradient input
artificial landmark.

4.4.1. One-Class SVM for Binary Classification

In this section, because the authors only have normal images, we choose one-class
SVM for binary classification. One-class SVM is a variation of the SVM that can be used
in an unsupervised setting for anomaly detection. A regular SVM finds a max-margin
hyperplane that can differentiate normal images from abnormal images. Further, one-class
SVM tries to make the hyperplane as close to the normal points as possible.

4.4.2. K-Means for Multiple Classification

In the subsequent visualization experiment, high-dimensional images are easily sepa-
rated by projection on a two-dimensional map based on the Grad-MobileNet. As a result,
the authors use K-means to classify point clouds in a two-dimensional map.
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Figure 4. Classification rules of welding defects.

5. Experiment

To demonstrate the feasibility of the Grad-MobileNet, this section shows the results of
comparing the model with supervised learning model MobileNetV3 and InceptionNetV3.
Because of the overfit model trained by the positive samples, all kinds of images can be
regard as normal images and can be identified as the standard that can measure the type of
defects. As a result, the experiment is divided into two stages. The first one is the binary
classification that distinguishes between the positive and negative class. The second part is
defect classification that identifies all types of defects from the negative class.

5.1. Metrics

For classification models, the performance evaluation metrics are generally measured
by using four values of a confusion matrix, which are True Positive (TP), False Positive
(FP), False Negative (FN), and True Negative (TN). Based on these four values, the metrics
for evaluating the classification model can be calculated. In this paper, the authors choose
accuracy rate to evaluate the model performance.

The accuracy rate refers to the ratio of the number of correctly classified samples to
the total number of classifications, and it is the most commonly used evaluation index to
measure the performance of classification models in general; it is calculated as follows:

ACC =
TP + TN

TP + TN + FP + FN
. (4)

5.2. Experimental Results on RIAM
5.2.1. Binary Classification

Binary classification is the preliminary and validation step of the experiment. It aims
to demonstrate the feasibility of the experimental idea. Therefore, the authors only use
Grad-MobileNet and one-class SVM for classification. Table 1 shows a highly accurate
binary result. Due to the significant difference between positive and negative classes, the
authors achieved good results. This result confirms that an overfit model can perform well
for classification tasks. In the next chapter, it is applied to a finer classification task.

Table 1. Binary classification.

Image Type Grad-MobileNet Accuracy

Normal Images 0.98
Abnormal Images 0.98

5.2.2. Defect Classification

Table 2 compares the accuracy rates among Grad-MobileNet, MobileNetV3 and Incep-
tionNetV3. Grad-MobileNet is trained with only 50 normal images, while MobileNetV3
and InceptionNetV3 hlsplit the dataset into training and test sets at a ratio of 7:3. In the
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testing phase, our model classifies the defects based on the new distribution identified by
the gradient analysis since the types of defects are unknown beforehand. The new types
discovered are numbered in order.

Table 2 shows that the accuracy rates of Grad-MobileNet are higher than those of
MobileNetV3 and InceptionNetV3. And the bolded part represents the model with the
highest accuracy rate among the three types of models. This indicates that the unsupervised
learning model proposed in this paper has better performance on RIAM.

This section presents the result in the gray box. The number of classifications depends
on experience and the results of dimensionality reduction. Therefore, no labeling is required
for the images in the dataset.

Table 2. Accuracy Comparison.

Image Type Grad-MobileNet MobileNetV3 InceptionNetV3

Normal Images 1.000 0.992 0.990

Class 2 (surface porosity) 0.991 0.970 0.981

Abnormal Images Class 3 (lack of penetration) 0.991 0.964 0.940

Class 4 (scaled surface) 0.980 0.987 0.980

Sum 1.000 0.978 0.975

5.3. Analysis of Results

To gain deeper insight into the model and image features, the authors randomly
selected one hundred images of each defect type and fed them into the model to observe
their distribution. Figure 5 shows the histogram of the gradient L2 norm. The horizontal
axis of the graph represents the mean of the gradient L2 norm calculated from Equation (3).
The vertical axis of the graph represents the frequency. Table 3 shows the mean and
variance of the histogram. In Figure 5, the range of normal images is from 1.2 × 10−4 to
9.4 × 10−4; the range of surface-porosity images is from 6.2 × 10−5 to 5.3 × 10−4; the range
of lack-of-penetration images is from 5.7 × 10−5 to 1.0 × 10−3; the range of scaled-surface
images is from 7.0 × 10−5 to 3.2 × 10−4.

Figure 5. The histogram of gradient L2 norm.
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Table 3. The mean and variance of gradient features of all image types.

Image Type Average Value Variance

Normality 2.8 × 10−4 2.7 × 10−8

Surface Porosity 1.5 × 10−4 5.2 × 10−9

Lack of Penetration 1.8 × 10−4 1.4 × 10−8

Scaled Surface 1.4 × 10−4 3.2 × 10−9

Figure 6 shows the gradient point cloud of each pixel computed from Equation (2).
The three axes correspond to the three components of the gradient. The gradient only
indicates the direction and magnitude of the pixel value change and does not have any
physical meaning. Due to the overfitting of the model, the point clouds of different
categories are hard to distinguish in the original space. Therefore, we cannot classify
images based on Figures 5 and 6 alone.

(a) Normality. (b) Lack of penetration.

(c) Surface porosity. (d) Scaled surface.

Figure 6. The gradient point clouds.

Figure 7 shows the classification result in a two-dimensional plane. Figure 7a is
obtained by directly projecting Figure 6 onto a two-dimensional plane. Figure 7b,c are the
clear classification results after applying T-NES. Since different random seeds in T-NES
may lead to different outcomes, this paper presents two types of seed results. This also
demonstrates the good performance in the pre-experiment.



Sensors 2023, 23, 4563 10 of 12

(a) Direct projection without T-NES.

(b) Processed by random-seed42 T-NES. (c) Processed by random-seed30 T-NES.

Figure 7. The gradient point clouds in a 2-dimensional map.

6. Conclusions

This paper presents a novel method for the classification of welding defects without
a labeled dataset. It demonstrates that gradient-based methods can be used not only
to interpret black-box models but also to perform classification tasks. The criteria for
evaluating the ultra-accurate prediction of defects are the classification accuracy and the
consistency of the gradient distribution among the same defect type. Our method achieves
0.99 accuracy, which is higher than the accuracy of the supervised learning model. Analysis
of the experiment shows that the gradient distribution of the same defect type is similar,
while different defect types have distinct gradient distributions. Therefore, our method can
capture the essential features of different defect types and distinguish them effectively.

The validity of our method is supported by the strong correlation between positive
and negative samples in defect datasets. Our method uses this strong coupling relationship
to measure the distance between different defect types and positive samples. This distance
is represented by the gradient when optimizing the model.

The scientific novelty of our method lies in using gradient-based methods for unsuper-
vised defect classification, which has not been explored before. Our method can overcome
the limitations of pixel value methods and supervised learning methods, which require
labeled data or prior knowledge. Our method can also handle unbalanced datasets, which
are common in industrial scenarios.

The results of the experiment are based on a dataset named RIAM, which consists
of images captured from an industrial environment for laser welding of power battery
modules. RIAM contains four types of images: Normality, Lack of fusion, Surface porosity,
and Scaled surface. The diagnostic equipment used in the experiment is a high-resolution
camera mounted on a robotic arm.

The authors hope that our method can facilitate unsupervised learning research in
defect classification and provide a new way of thinking for industrial applications.
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