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Abstract: The work carried out in this paper consists of the classification of the physiological signal
generated by eye movement called Electrooculography (EOG). The human eye performs simultaneous
movements, when focusing on an object, generating a potential change in origin between the retinal
epithelium and the cornea and modeling the eyeball as a dipole with a positive and negative
hemisphere. Supervised learning algorithms were implemented to classify five eye movements; left,
right, down, up and blink. Wavelet Transform was used to obtain information in the frequency
domain characterizing the EOG signal with a bandwidth of 0.5 to 50 Hz; training results were
obtained with the implementation of K-Nearest Neighbor (KNN) 69.4%, a Support Vector Machine
(SVM) of 76.9% and Decision Tree (DT) 60.5%, checking the accuracy through the Jaccard index and
other metrics such as the confusion matrix and ROC (Receiver Operating Characteristic) curve. As a
result, the best classifier for this application was the SVM with Jaccard Index.

Keywords: EOG; wavelet transform; classifier algorithms

1. Introduction

The ocular muscles produce an electrical potential difference with an origin between
the corneal pigment epithelium and the retina [1]. This differential is known in [2] as
the Electrooculography (EOG) signal. EOG is obtained using silver electrodes placed
superficially on the face, registering the horizontal channel (left-right movements) and the
vertical channel (up and down movements).

The use of EOG in [3–7] the literature reviewed shows mostly its application by users
with motor disabilities, turning their eyes to communicate. Therefore, the monitoring of
biological signals such as EOG allows the integration of everyday objects, as mentioned
in [8], where writing is performed by selecting a group of limited words for the response
of short sentences; another application handled in [9] has is the electrical control of a
wheelchair by eye movements; as well as in [10], the recognition of eye movement by
different parameters detected in the signal, when visualizing different abstract images;
the movement of the mouse cursor when receiving a signal from both eyes is described
in [11], and the directional control of a robot in [12] were designed by a method based on
saccadic movements and eye reflexes that were obtained as the average speed, maximum
speed and voltage range in the developed model and did not include the fixed gaze and
blinking movement.

EOG signal parameters are mostly detected at low frequencies, in a bandwidth of
0.5 to 50 Hz. The eye movement classification is based on algorithms that implement the
calculation of the signal derivative; each algorithm targets different parameters (average
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velocity, maximum velocity, average acceleration, maximum acceleration, amplitude range,
average velocity, maximum velocity, filtered average acceleration, filtered maximum accel-
eration, amplitude range, signal coefficients, four order of the polynomial, fit and slope
of the signal) of the EOG signal amplitude for class classification; these parameters can be
obtained in the time domain.

Many classification algorithms have been used to identify eye movements in EOG
signals, including fixations and muscle denoising. Due to their relevant results presented,
K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Decision Tree (DT) are
reported as simpler and more efficient algorithms for EOG classification. In [13], the
classification of an EOG signal using power spectral density (PSD) is described, these
features are the neural network input and support vector machine (SVM) algorithm, and
the performance of the combination of these methods achieves a classification accuracy
of 69.75%.

There has been research on the combination of KNN and SVM algorithms; for exam-
ple, [14] used image classification, relying on a spectral feature parameter input, to reduce
the time of classification and data selection.

In [15], the authors classified 23 feature emotions such as anger, fear, happiness and
sadness, obtaining an accuracy of 75.15% for KNN and 80% for SVM, comparing two
algorithms to find the classifier with the highest result.

In the implementation of physiological signals in the time domain addressed in [16],
the efficiency of the classification accuracy with the confusion matrix was tested. Comparing
the results obtained from both classifiers, it was concluded that the SVM algorithm obtained
60% classification with the handling of six parameters.

In the case of [17], the extraction of 16 parameters of the EOG movement signal in the
time domain was applied, taking 12 test subjects as a sample; the authors were classified
with DT (95.4), KNN (99.6%) and SVM (99.1%) algorithms, and it was reported that by using
the ROC curve, it was shown that the best result could be obtained by the KNN algorithm.

The following sections describe the EOG signal acquisition protocol, data preprocess-
ing using Wavelet Transform [18,19], selecting of the Mother Wavelet using entropy and
statistical parameters such as variance, peak magnitude ratio (RMS) and peak amplitude
(AMP), the average and median frequency of the total samples, and the classification of five
eye movements (left, right, up, down and blink) is described using the supervised learning
algorithms KNN, DT and SVM, to validate the efficiency of each classifier metrics such as
the ROC curve [20], confusion matrix [21] and Jaccard Index [22], which were implemented.

2. Materials and Methods
2.1. EOG Acquisition

The EOG signal was acquired using a recording protocol with 5 surface mount
Ag/AgCl electrodes, as shown in Figure 1; the recording had a bandwidth between 0.5
and 50 Hz with a gain amplitude of 100, which expressed the ratio between the amplitude
of an output signal with respect to the input signal, and a resolution of 11 bits using the
Biopac Student Lab® system. The protocol consisted of performing 10-s movement periods
following a direction indicator; the user followed different positions (up, down, right, and
left) and returned to the resting position; this was described as looking straight ahead. A
fixation and blink record was also obtained to classify and identify noise signals in the EOG
signal acquisition. The resulting file extension was .mat, and this acquisition process is
presented in Figure 2 with the signal expressing an amplitude range of −0.3 to 0.3 Volts.
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Figure 1. The electrodes were placed superficially on the participant’s face. The GND electrodes had 
the function of being the reference of the horizontal and vertical lead (placed on the forehead or 
earlobe). A and B are the electrodes of the horizontal channel, C and D are the electrodes of the 
vertical channel. 

 
Figure 2. Signal recording process that was saved in a file with extension .mat that served as an 
input to the classification algorithms; the process started with the placement of electrodes next to 
the acquisition system, followed by calibration tests, obtaining the signal and ending with the stor-
age of a data file. 

To validate the performance of each classifier, the EOG signal was divided into Hor-
izontal and Vertical, positive action potentials corresponding to the Right/Horizontal 
movement (Figure 3a) and Up/Vertical movement (Figure 3b), while negative action po-
tentials corresponded to the Left/Horizontal (Figure 3c) and Down/Vertical movement 
(Figure 3d); the database contained a fixation and blink record (Figure 4). 

Figure 1. The electrodes were placed superficially on the participant’s face. The GND electrodes
had the function of being the reference of the horizontal and vertical lead (placed on the forehead
or earlobe). A and B are the electrodes of the horizontal channel, C and D are the electrodes of the
vertical channel.
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Figure 2. Signal recording process that was saved in a file with extension .mat that served as an
input to the classification algorithms; the process started with the placement of electrodes next to the
acquisition system, followed by calibration tests, obtaining the signal and ending with the storage of
a data file.

To validate the performance of each classifier, the EOG signal was divided into Hor-
izontal and Vertical, positive action potentials corresponding to the Right/Horizontal
movement (Figure 3a) and Up/Vertical movement (Figure 3b), while negative action po-
tentials corresponded to the Left/Horizontal (Figure 3c) and Down/Vertical movement
(Figure 3d); the database contained a fixation and blink record (Figure 4).
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Figure 3. (a) Graphic representation of the Electrooculography acquisition of the movement looking 
to the right, with a threshold ranging from −0.1 to 0.25 volts. (b) Signal of eye movement looking to 
the left, with a threshold of −0.3 to 0.2 volts. Both movements were acquired by the Horizontal EOG 
channel. (c) Eye movement looking up, with a threshold of −0.1 to 0.2 volts. (d) Figure representing 
the downward gaze signal, with a threshold of −0.1 to 0.1 volts. Both movements were acquired by 
the Vertical EOG channel. All movements acquired within a range of 10 s. 

 
Figure 4. Graphical representation of the Electrooculography acquisition during blinking movement 
acquisition process; both Vertical and Horizontal EOG channels can be seen in a period of 10 s with 
a voltage range of −0.4 to 0.5 volts in the vertical EOG channel and a voltage range in the Horizontal 
channel of −0.1 to 0.2 volts. The Vertical channel shows the greatest amount of change in the signal 
at the time of flashing. 

Figure 5 graphically represents the EOG data set, with a total of 32,500 samples. This 
is the input used in the processing with the Wavelet Transform. 

Figure 3. (a) Graphic representation of the Electrooculography acquisition of the movement looking
to the right, with a threshold ranging from −0.1 to 0.25 volts. (b) Signal of eye movement looking to
the left, with a threshold of −0.3 to 0.2 volts. Both movements were acquired by the Horizontal EOG
channel. (c) Eye movement looking up, with a threshold of −0.1 to 0.2 volts. (d) Figure representing
the downward gaze signal, with a threshold of −0.1 to 0.1 volts. Both movements were acquired by
the Vertical EOG channel. All movements acquired within a range of 10 s.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 3. (a) Graphic representation of the Electrooculography acquisition of the movement looking 
to the right, with a threshold ranging from −0.1 to 0.25 volts. (b) Signal of eye movement looking to 
the left, with a threshold of −0.3 to 0.2 volts. Both movements were acquired by the Horizontal EOG 
channel. (c) Eye movement looking up, with a threshold of −0.1 to 0.2 volts. (d) Figure representing 
the downward gaze signal, with a threshold of −0.1 to 0.1 volts. Both movements were acquired by 
the Vertical EOG channel. All movements acquired within a range of 10 s. 

 
Figure 4. Graphical representation of the Electrooculography acquisition during blinking movement 
acquisition process; both Vertical and Horizontal EOG channels can be seen in a period of 10 s with 
a voltage range of −0.4 to 0.5 volts in the vertical EOG channel and a voltage range in the Horizontal 
channel of −0.1 to 0.2 volts. The Vertical channel shows the greatest amount of change in the signal 
at the time of flashing. 

Figure 5 graphically represents the EOG data set, with a total of 32,500 samples. This 
is the input used in the processing with the Wavelet Transform. 

Figure 4. Graphical representation of the Electrooculography acquisition during blinking movement
acquisition process; both Vertical and Horizontal EOG channels can be seen in a period of 10 s with a
voltage range of −0.4 to 0.5 volts in the vertical EOG channel and a voltage range in the Horizontal
channel of −0.1 to 0.2 volts. The Vertical channel shows the greatest amount of change in the signal
at the time of flashing.

Figure 5 graphically represents the EOG data set, with a total of 32,500 samples. This
is the input used in the processing with the Wavelet Transform.
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This is followed by Section 2.3, starting with the metrics that were calculated from the 
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The frequency spectrum of the EOG signal was analyzed, the mathematical tools im-

plemented were Fourier and Wavelet, and the EOG signal had a dynamic behavior, i.e., it 
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stationary phenomena. In the implemented algorithm, data are processed at different 

Figure 5. Graphical representation of EOG data set with both Vertical and Horizontal channels, with
a total of 32,500 samples for each. Each eye movement (down, up, blink, left and right) is indicated in
each of the sample ranges. Each of them was acquired in a 10-s period, keeping the signal in a general
range of −0.3 to 0.5 volts.

Table 1 shows the range from the beginning to the end of each eye movement, starting
with data 0 to 32.500 of the total samples.

Table 1. Details of reference EOG signal.

Reference EOG Signal Details Samples Range

Eye movements down direction 0–6500

Eye movements up direction 6001–13,000

Eye blinks 13,001–19,500

Eye movements in the left direction 19,501–26,000

Eye movements in the right direction 26,001–32,500

Once a range of eye movements was obtained, the processing was performed with
the use of the Wavelet transform, which is explained in Section 2.2, where dimensionality
reduction with the transform is explained, as well as its selection with the entropy method.
This is followed by Section 2.3, starting with the metrics that were calculated from the
general signal for the input to the classifier.

2.2. Wavelet

The frequency spectrum of the EOG signal was analyzed, the mathematical tools
implemented were Fourier and Wavelet, and the EOG signal had a dynamic behavior, i.e.,
it varied in time and frequency. By implementing Fourier, the harmonics of the energy
spectrum of the signal reduced the information; thus, Wavelet Transform [23,24] was
implemented to analyze the different levels of signal frequency obtained in tests of the
different movements of eyeballs.

Wavelets are functions used to approximate data with variations, transient and non-
stationary phenomena. In the implemented algorithm, data are processed at different
resolutions if a signal or function is observed using a wide “data window”. Waveforms
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are not observed, and such windows are automatically adjusted when changing resolution.
Wavelet analysis consists of three steps: decomposition, thresholding and reconstruction.

The continuous wavelet transform (CWT) can be defined as the sum of all scaled and
shifted components of the Mother Wavelet’s overall time, as shown in Equation (1).

CWT (a, b) =
1
√a

∫ ∞

−∞
x(t)ψ(

t− b
a

)dt, (1)

where a is the scale, t is time, b is the displacement and x(t) is the input function and ψ
indicates the wavelet function.

The above equation is scaled by ‘a’ and then translated to a second scalar as ‘b’; x
represents the EOG signal as a function of time t. Wavelet has a set of families which have
members with different parameters for its calculation, and there are two ways to select a
Wavelet. The first is to search among the different wavelet families, which have a similar
shape to the signal; the second is based on testing with the different wavelets to obtain a
smoothing in the signal without losing the points of interest in the original. When a wavelet
is selected, it is called the Mother Wavelet, which is represented by Equation (1).

The wavelet detail coefficients indicate the relationship between the signal and the
Mother Wavelet, and this ratio allows us to know the frequency components of the signal.

Mother Wavelet was determined using the entropy method; it provides levels [25]
that define the amount of disorder of a data set, i.e., the result after its application on the
signal, which indicates that the farther it is from the original state, the greater the amount
of disorder; therefore, this alters the correlation between the processed signal and the
original one.

Thus, this demonstrated that the levels of detail coefficients lost a significant amount
of information, indicating that it had a higher level of entropy. The calculation is presented
in Equation (2). In [26], methods for obtaining optimization through the Bayesian method
of hyperparameters for the classification of stationary signals are presented; however, in
this work, it was indicated that with entropy, it was feasible to obtain optimal results of the
hyperparameters for classification with supervised algorithms.

Entropy (S) = −∑(p(c)∗ log2(p(c))), (2)

where S represents the data set in which the entropy is calculated, p(c) is the portion of
data points that belong to class c, and to the total number of data points in the set.

The application of the Mother Wavelet of the EOG signal is shown in Figure 6, where
the signal has a different shape from the original; this is given by the detailed coefficients
that were applied and allowed important data to be obtained without loss of information.
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By obtaining the Wavelet detail level data, we obtain a new signal with the most
relevant information of the original one. The results obtained in the frequency spectrum
were confirmed in windows of four data; obtaining 508 windows of each EOG channel, the
calculation of nine metrics was performed, as shown in Table 2.

Table 2. Frequency domain EOG signal metrics.

Metric Definition

Root Mean Square (RMS) Continuous power without distorting the original signal.

AMP Amplifies when creating an amplifier object with default
property value.

Maximum Maximum data of the frequency group.

Variance A measure of dispersion that represents the variability of a
data series with respect to its mean.

Covariance Value reflecting the amount by which any variables vary
jointly with respect to their arithmetic means.

Median Central variable of a data set.

Average Result obtained by adding several quantities of the
amount of data.

Pspectrum Returns the scale of the frequency spectrum.

Power Sum of the absolute squares of its time domain samples
divided by the length of the signal.

Descriptions of each metric that were applied to the signal to obtain data for the
classification algorithm.

2.3. Classification Algorithms

The implementation of a classification algorithm is one of the requirements to iden-
tify offline classes whose membership is known based on training. In this study, offline
classification was implemented using three supervised learning algorithms: SVM, KNN
and DT.

To compare the best classification results, the classes were labeled (Table 3) to input
them into the different algorithms.

Table 3. Labeling of eye movements with their assigned class for input into the classification algorithm.

Movement Class

Down 0
Blink 1
Up 2
Left 3

Rigth 4

Each movement was assigned a class starting from 0 to class 4.

2.4. K-Nearest Neighbors Algorithm (KNN)

K-Nearest Neighbor (KNN) is a supervised learning algorithm that uses the proximity
of distances for classification by a majority vote, assigning the case to the most common
class among its nearest neighbors (K), which is measured by a distance function that then
uses the Euclidean equation, as shown in Equation (3).

d(x, y) =
√

∑n
i=1(yi− xi)2 (3)

where x corresponds to the query point (K) and y to the nearest neighbor to determine
which neighbor is the nearest. Application of equation in Algorithm 1 KNN.
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Algorithm 1 KNN

Requiere: Determine the sample of set data (80% training and 20% testing)
Select the value of K
for each new sample do
Calculate the distance for simples

Determine the set of K neighbors with the closest distance d(x, y) =
√

∑n
i=1 (yi− xi)2

The label with the most representative in the set of K neighbors is chosen
end for
Ensure: Determine the accuracy and the best neighbor

2.5. Support Vector Machine Algorithm (SVM)

Support Vector Machines are a supervised learning classifier that works by correlating
data in a feature space so that data points can be categorized, even if they are not linearly
separated. The features of the new data can be used to define the group to which the new
record belongs. To allow some flexibility, the algorithm handles a parameter, C, which
controls the trade-off between training errors and rigid margins, thus creating a margin
that allows for some errors in the classification, i.e., gives control over the classification
errors. The mathematical function used for the transformation is known as a kernel. The
polynomial equation shown in Equation (4) was used.

K(xi, xj) = (yxT
i xj + r)

d
, y > 0 (4)

where K(xi,xj) corresponds to the matrix of n × n kernel elements, xi,xj corresponds to the
feature hyperplane, {(yx}_iˆTx_j+r)d support vectors act as a separation between classes
and represents the data for the measurement and r is the parameter that is being adjusted
or calibrated. Application of equation in Algorithm 2 SVM.

Algorithm 2 SVM

Require: Determine the sample of set data (80% training and 20% testing)
Ensure: Determine the accuracy
Select kernel
Select the optimal value of the cost and gamma for SVM

while (topping condition is not met) K(xi, xj) = (yxT
i xj + r)d, y > 0

do
Implement SVM train step for each data point
Implement SVM classification for testing data points
end while
accuracy

2.6. Decision Tree Algorithm (DT)

The decision tree algorithm is a machine learning-based algorithm for classification,
where an internal node represents a feature, the branch represents a decision rule, and
each leaf node represents the result. The top node in a decision tree is known as the root
node. It performs a partitioning from the attribute value function and splits the tree in
a recursive manner called recursive partitioning. Its structure helps to make decisions
from each training set containing labels of each class and predictor variables that can be
inspected for a decision or split, which results in a left node and a right node. This starts
from the root of the tree and ends at the endpoint in the form of a leaf node giving an
output class. Each partition is performed with the clustering of the Gini index, which is
presented in Equation (5). Application of equation in Algorithm 3 DT.

gdi = 1−∑i p
2(i) (5)
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where 1−∑i p2(i) corresponds to the subnode calculation, p2 to the sum of the probability
squares and i to the data.

Algorithm 3 DT

Require: Determine the sample of set data (80% training and 20% testing).
Each data are analyzed as the root node of the decision tree is assigned.
Each member is assigned a child node.

Each of the members of the tree is analyzed and a label is assigned gdi = 1−∑i p2(i)
Predictions are made based on the result of each child with the labeling of each member.
accuracy

2.7. Jaccard Index

The well-known Jaccard similarity algorithm is an algorithm designed to measure
similarities between sample sets. There is function-based analysis, which is typically used
to study the resemblance of small numbers of sets and, additionally, the analysis of large
data sets, calculated by Equation (6).

simj(A, B) =
|A ∩ B|
|A ∪ B| (6)

where a is the data in group A, b is the data in group B and c is the number of elements
present in both groups A and B.

2.8. Methodology

The simulations and results were run on a laptop computer with the following com-
puter characteristics: AMD Ryzen 5 3450U with Radeon Vega Mobile Gfx processor with a
processor speed of 2.10 to 3.5 GHz and 4 MB processor cache, (2 × 8 dual channel) 16 GB
of DDR4 memory at 3000 MHz, a 256 GB Crucial SSD and a video card AMD Radeon 73
graphics card, and the operating system Windows 11 Home Single Language version 22H2
64-bit.

Matlab 2022 was used for signal processing; Python language was used for coding
the algorithms as well as the metrics in an online environment. This was implemented
on Google Research’s Colaboratory, which allows the execution of different programming
languages.

The Train-Test Split method of the Cross-Validation technique was used, which consists
of randomly decomposing the data series; this method was very accurate since we evaluated
the combinations of training and test data, and the number of iterations depended on the
size of the data set; usually, 80% of the data were reserved to be used for training the
Machine Learning model. The remaining 20% of the data allowed for testing the algorithm
for validation, as applied in this research.

A diagram in Figure 7 shows the process followed by the EOG signal with the imple-
mented techniques.
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with the application of the wavelet transform.
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3. Results and Discussion

The results obtained from the eye movements in different classification algorithms
were analyzed to be defined based on sensitivity and specificity. This, by using the metrics,
represented the percentage that corresponded to the most classified values.

We applied the Entropy method to the data obtained from the transform to determine
the Wavelet to apply or mother, as shown in the Vertical EOG in Table 4 and Horizontal
EOG in Table 5. We analyzed the family wavelet Haar(haar), Coiflets (coif), Symelets
(sym), Fejer Korovkin Filters (fk), Discrete Meyer (meyr), Biorthogonal (bio) and Reverse
Biorthogonal (rbio), which were the ones that showed similarity with the original signal.

Table 4. Results of the Wavelet application on the vertical EOG channel.

Vertical EOG—Entropy

Wavelets Families

Level haar coif sym fk meyr bio rbio

1 0.6238 0.353 0.6238 0.6894 0.6238 0.6238 0.6238
2 1.4351 0.8195 1.4351 1.2439 1.4351 1.4351 1.4351
3 2.2416 1.9332 2.2416 2.1586 2.2416 2.2416 2.2416
4 2.8955 2.6637 2.8955 2.937 2.8955 2.8955 2.8955
5 3.2258 3.1634 3.2258 3.4161 3.2258 3.2258 3.2258

Table 5. Wavelet application results on the Horizontal EOG channel.

Horizontal EOG—Entropy

Wavelet Families

Level haar coif sym fk meyr bio rbio

1 0.2244 0.9021 0.2244 0.2685 0.2244 0.2244 0.1685

2 0.8362 0.2863 0.8362 0.9736 0.8362 0.8362 0.6736

3 1.5658 1.2524 1.5658 1.4808 1.5658 1.5658 1.4808

4 2.1716 1.9901 2.1716 2.1288 2.1716 2.1716 2.1288

5 2.7221 2.6009 2.7221 2.6985 2.7221 2.7221 2.6985

Table 4 shows the results in the rbio family of the Wavelets families.
With the data obtained, it was determined that Wavelet Reverse Biorthogonal would

be used in the signal, becoming the Wavelet Mother. Derived from the fact that after the
application of entropy, it showed results with lower amounts of information disorder,
this family contained members with characteristics that allowed a signal with a level of
smoothing to be obtained after its application without losing important data of the original
signal. Entropy was applied to each of the 14 members of the Reverse Biorthogonal (rbio)
family, showing that member 3.1 was one of those with the least amount of entropy; it this
selected as the Wavelet Mother by visual comparison with the other members, showing
its five levels of detail coefficient in both EOG channels, which allowed significant data to
be obtained from the original signal. Each result is shown in Table 6 for the Vertical EOG
channel and in Table 7 for the Horizontal EOG.
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Table 6. Results of the Entropy method on the Reverse Biorthogonal family members of the Vertical
EOG channel.

Biorthogonal Wavelet Entropy
Vertical

Reverse Biorthogonal Family Members

Level 1.3 2.2 2.6 3.1 3.5 3.9 5.5 1.5 2.4 2.8 3.3 3.7 4.4 6.8

1 0.6241 0.0038 0.0038 0.0014 0.0014 0.0014 0.004 0.624 0.0038 0.0038 0.0014 0.0014 0.0033 0.0039
2 1.4513 0.5295 0.5369 0.1826 0.1988 0.2057 0.1663 1.4502 0.5436 0.55 0.1742 0.185 0.2597 0.1443
3 2.3274 1.7774 1.8579 1.6201 1.6899 1.7066 1.6897 2.3452 1.8273 1.8452 1.6731 1.6862 1.7156 1.756
4 2.9393 2.7557 2.7503 2.9252 2.9603 2.9517 2.3844 2.9831 2.7682 2.8042 2.9561 2.9222 2.5359 2.6123
5 3.2659 3.2066 3.1913 3.1462 3.1081 3.1952 2.6238 3.2532 3.1716 3.1734 3.1525 3.1568 2.8598 2.867

Table 7. Results of Entropy application to different members of the Reverse Biorthogonal family of
the Horizontal EOG channel.

Biorthogonal Wavelet Entropy
Horizontal

Reverse Biorthogonal Family Members

Level 1.3 2.2 2.6 3.1 3.5 3.9 5.5 1.5 2.4 2.8 3.3 3.7 4.4 6.8

1 0.2244 6.92 ×
10

6.92 ×
10−04

6.92 ×
10−04

6.92 ×
10−04

6.92
×10−04

4.50 ×
10−03

2.24 ×
10−01

6.9 ×
10−04

6.92 ×
10−04

6.92 ×
10−04

6.92 ×
10−04 0.0028 0.0028

2 0.8495 0.1445 0.1493 0.0315 0.0387 0.0434 0.0302 0.8437 0.1402 0.1485 0.0469 0.0535 0.0486 0.0346
3 1.6324 1.1173 1.1747 0.9913 1.0652 1.0674 1.0088 1.6506 1.1558 1.1926 1.043 1.058 1.0587 1.1081
4 2.2723 2.0297 2.101 2.2961 2.2272 2.2652 1.764 2.3231 2.0704 2.1408 2.2949 2.2094 1.8714 1.966
5 2.7988 2.6147 2.6459 2.8491 2.8998 2.8339 2.3469 2.8246 2.6103 2.6527 2.8693 2.8712 2.4207 2.4695

Entropy was applied to each of the 14 members of the Reverse Biorthogonal family,
and the result with the least amount of entropy was shown in member 3.1. Each result is
displayed in Table 6 for the Vertical EOG channel and Table 7 for Horizontal EOG.

The Bior 3.1 family member in the Vertical channel is shown as marked.
Each level of detail coefficient allows the signal to be viewed by segments, finding

characteristic points in the parameters. Five levels were analyzed, of which level 4 showed
a level of smoothing in the signal, allowing the beginning and end of each of the EOG
movements to be found.

3.1. Confusion Matrix

The confusion matrix was applied to the results of both EOG channels, and the results
are shown visually in Figure 8 below.

In the Table 8 shows each of the positive values for the Horizontal EOG channel;
negative values, false positives and false negatives for each of the characteristics, these data
are important for the calculation of the confusion matrix terms.

Table 8. Parameters and characteristics of the EOG signal Horizontal channel.

Characteristic Horizontal TP TN FP FN

Root Mean Square (RMS) RMSH (0) 1 36.78 0 1.8841
AMP AMPH (1) 1 83.5 0.36 3.423

Variance VarianceH (2) 1 76.66 1.22 2.30405
Average AverageV (3) 1 79.72 0.051 1.966
Medium MedianaH (4) 1 79.39 1.151 0.8329

Covariance CovarianzaH (5) 1 16.05 2.5 0.6645
Maximum MaxH (6) 1 76.30 2.93 0.1949
Pspectrum PspectrumH (7) 1 80.36 0.0062 1.09084

Power PowerH (8) 1 82.80 1.937 0.0296
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Table 9 shows each of the positive values for the Vertical EOG channel, including
negative values, false positives, and false negatives for each of the characteristics; these
data were important for the calculation of the confusion matrix terms.
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Table 9. Parameters and characteristics of the EOG Signal Vertical channel.

Characteristic Vertical VP VN FP FN

Root Mean Square (RMS) RMSV (9) 1 81.87 0.3183 0.9022
AMP AMPV (10) 1 75.76 0.103 2.7607

Variance VarianzaV (11) 1 77.28 0.95497 1.65257
Average PromedioV (12) 1 82.59 0.7812 1.166
Medium MedianaV (13) 1 79.43 0.0759 0.468

Covariance CovarianzaV (14) 1 77.77 1.89397 0.71257
Maximum MaxV(15) 1 73.95 2.9454 0.071
Pspectrum PspectrumV(16) 1 83.03 0.952127 0.033

Power PotenciaV(17) 1 81.72 1.1841 0

VP indicates True Positive, VN indicates True Negative, FN expresses False Negative
and FP indicates False Positive.

The results of the aforementioned calculations are shown in Table 10 for the Horizontal
EOG channel and Table 11 for the Vertical EOG channel, each corresponding to the result
of the characteristic applied to the signal.

The calculation of the data of the confusion matrix in the Horizontal channel is shown.
The results of the calculation for sensitivity, specificity, accuracy, and precision in the

Vertical EOG channel are given.
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Table 10. Calculation of confusion matrix channel EOG Horizontal EOG.

Characteristic Horizontal SensitivitySpecificity Accuracy Precision

Root Mean Square (RMS) RMSH (0) 34.72 100 93.73 100
AMP AMPH (1) 22.60 99.57 95.42 73.52

Variance VarianzaH (2) 30.26 98.43 95.43 45.04
Average PromedioV (3) 33.78 99.93 97.35 95.14
Medium MedianaH (4) 54.64 98.57 97.38 39.84

Covariance CovarianzaH (5) 60.24 86.52 80.41 28.57
Maximum MaxH (6) 83.68 96.30 95.87 25.44
Pspectrum PspectrumH (7) 47.84 99.99 98.45 34.12

Power PotenciaH (8) 98.03 97.72 97.55 34.12

Table 11. Calculation of confusion matrix channel EOG Vertical EOG.

Characteristic Vertical SensitivitySpecificity Accuracy Precision

Root Mean Square (RMS) RMSV (9) 52.63 99.62 98.37 45.87
AMP AMPV (10) 26.59 99.86 96.14 90.66

Variance VarianzaV (11) 37.73 98.78 96.54 51.28
Average PromedioV (12) 46.16 99.06 97.55 56.14
Medium MedianaV (13) 68.11 99.90 97.26 34.55

Covariance CovarianzaV (14) 58.47 97.62 96.57 34.60
Maximum MaxV (15) 93.37 96.16 95.87 25.34
Pspectrum PspectrumV (16) 96.8054 98.86 98.67 51.28

Power PotenciaV (17) 45.87 98.57 98.39 45.87

3.2. ROC Curve

The results obtained from the ROC curve in the KNN algorithm are presented in
Table 12, SVM in Table 13, and DT in Table 14; they show the obtained results of sensitivity
and specificity after the input of the complete signal to the classifier to indicate the difference
between each term with each result obtained indicating a higher sensitivity index in SVM,
checking with the calibration given in this algorithm.

Table 12. Sensitivity and specificity of algorithm KNN.

Cutting Point Sensitivity Specificity

0.5 50% 50%

Table 13. Sensitivity and specificity of SVM algorithm of the best classification.

Cutting Point Sensitivity Specificity

0.5 50% 50%

Table 14. Sensitivity and specificity of algorithm DT.

Cutting Point Sensitivity Specificity

0.43 57% 43%

These results obtained from the ROC Curve application of KNN, SVM and DT algo-
rithms were obtained and are explained below in Figures 9–11 respectively.
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Figure 9. KNN algorithm. Two combinations of neighbors (K) were used, with K = 4 and K = 10, and
the nearest neighbor was K = 1. The algorithm training percentage of 80% and 20% testing and with
seed = 4. As the signal changed, the ROC curve took a sudden change; this was derived from the fact
that the first two movements presented similarities in the voltage amplitude (look up and look down).
The eye movement transition was noticed when the blinking movement was performed followed
by the left and right movements, derived from the fact that the voltage had a significant range of
change at the first movements; this was noticed in the graph when resuming the classification of true
positives. For the KNN algorithm it is problematic to have a classification when the signal presents
similar data and when it is a large volume. It was also seen that the higher the volume of data, the
further away the correct classification due to the number of calculations between distances.
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Figure 11. DT algorithm. Implementation of 10 nodes. With a training percentage of 80% and 20% of
test data with a seed or random state equal to 4.

(a) KNN

The cutoff point was obtained, and it was visualized as the ROC line changed direction,
derived from the variation in the signal data; however, the ROC curve is shown with no
success in its classification in the first half of the data, resuming an improvement in the
classification in the rest of the signal.

(b) SVM

By changing the value of C, the hyperplane of the Kernel was modified. A calibration
process was performed (Figure 12), where the value was adjusted, and by choosing a value
close to 0, it became closer to some points than others; basically, there was no restriction,
and we ended up with a hyperplane that did not classify anything. Since the data were
linearly separable, a large C could be used, but this may have been an outlier, and that
is why we used a hyperplane very close to the margin with no outlier. We tried several
values, and we can say that the selected one provided the freedom to our classifier.
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Cross-validation was used with the total data, where 80% was used for training and
the remaining 20% for testing; in this graph, from the calibration in C, the qualification
improved.

The sensitivity and specificity (Table 14) of the SVM algorithm were calculated with
the results obtained with the classification.

The data show a change in the cutoff point; throughout the signal, they were shown
above the diagonal that divides the ROC space. The points above the diagonal represent
good classification results; they became better as the signal classification progressed.

(c) DT

Table 14 shows the cut-off point sensitivity and specificity of the ROC curve result of
the DT algorithm.

Inconsistency was shown in the classification, where no improvement was evident at
any point in the signal, indicating that this was an inefficient algorithm for classification.

3.3. Jaccard Index

In the Table 15 shows the results of the signal classified with the three classification
algorithms with the application of the Jaccard metric, as explained above.

Table 15. Comparative results of the DT Algorithm, SVM and KNN in the Jaccard Index.

Algorithm Train Test

DT 0.5 0.60526
SVM 0.66666 0.76949
KNN 0.41176 0.69458

In the analysis of the classification results, SVM obtained the best result compared to
the other algorithms in the test column, with 76.9%.

The selection of the KNN, SVM and DT algorithms was derived from issues of ex-
plainability since the article focused on the health area.

4. Conclusions

Performing routine activities for people with motor disabilities is a problem that
impacts their quality of life. For this reason, the research presented in this paper is about
the acquisition of two EOG channels that allows data to be acquired from different eye
movements, with the help of the implementation of the Wavelet Reverse Biorthogonal
3. 1 to identify the different waveforms of the signal through acquisition windows; this
process improved the responses of supervised classifiers KNN, SVM and DT and through
the Jaccard index metric the efficiency level of each algorithm was checked. The best
result, with a value of 76.9%, was obtained for the SVM classifier in the Jaccard Index
metric; according to the state-of-the-art reported, it exceeded the percentage of response
in the efficiency of supervised classifiers with values of 69.75% reported in [13]. This
translated into better data classification. The program codes and methods implemented in
this research are provided at: https://acortar.link/nW8l0s (accessed on 4 May 2023).

For future work, we propose the use of these classifiers by implementing them in
different tools, such as a human–machine interface to support assistance and interaction
with different users to apply it in the medical area, reducing the response time and the
learning curve of inexperienced users.
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