
Citation: Cicceri, G.; Tricomi, G.;

D’Agati, L.; Longo, F.; Merlino, G.;

Puliafito, A. A Deep Learning-

Driven Self-Conscious Distributed

Cyber-Physical System for

Renewable Energy Communities.

Sensors 2023, 23, 4549. https://

doi.org/10.3390/s23094549

Academic Editors: Michela Robba,

Enrique Personal and Antonio Parejo

Received: 31 March 2023

Revised: 3 May 2023

Accepted: 4 May 2023

Published: 7 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Deep Learning-Driven Self-Conscious Distributed
Cyber-Physical System for Renewable Energy Communities
Giovanni Cicceri 1,2,† , Giuseppe Tricomi 1,*,† , Luca D’Agati 1,3,† , Francesco Longo 1,† ,
Giovanni Merlino 1,† and Antonio Puliafito 1,*,†

1 Department of Engineering (DI), University of Messina, 98122 Messina, Italy; gcicceri@unime.it (G.C.);
luca.dagati@studenti.unime.it (L.D.); flongo@unime.it (F.L.); gmerlino@unime.it (G.M.)

2 Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo,
90127 Palermo, Italy; giovanni.cicceri@unipa.it

3 Department of Biomedical and Dental Sciences, Morphological and Functional Images (BIOMORF),
University of Messina, 98122 Messina, Italy

* Correspondence: gtricomi@unime.it (G.T.); apuliafito@unime.it (A.P.)
† These authors belong to CINI: National Interuniversity Consortium for Informatics, 00185 Rome, Italy.

Abstract: The Internet of Things (IoT) is transforming various domains, including smart energy
management, by enabling the integration of complex digital and physical components in distributed
cyber-physical systems (DCPSs). The design of DCPSs has so far been focused on performance-related,
non-functional requirements. However, with the growing power consumption and computation
expenses, sustainability is becoming an important aspect to consider. This has led to the concept of
energy-aware DCPSs, which integrate conventional non-functional requirements with additional
attributes for sustainability, such as energy consumption. This research activity aimed to investigate
and develop energy-aware architectural models and edge/cloud computing technologies to design
next-generation, AI-enabled (and, specifically, deep-learning-enhanced), self-conscious IoT-extended
DCPSs. Our key contributions include energy-aware edge-to-cloud architectural models and tech-
nologies, the orchestration of a (possibly federated) edge-to-cloud infrastructure, abstractions and
unified models for distributed heterogeneous virtualized resources, innovative machine learning
algorithms for the dynamic reallocation and reconfiguration of energy resources, and the management
of energy communities. The proposed solution was validated through case studies on optimizing
renewable energy communities (RECs), or energy-aware DCPSs, which are particularly challenging
due to their unique requirements and constraints; in more detail, in this work, we aim to define the
optimal implementation of an energy-aware DCPS. Moreover, smart grids play a crucial role in devel-
oping energy-aware DCPSs, providing a flexible and efficient power system integrating renewable
energy sources, microgrids, and other distributed energy resources. The proposed energy-aware
DCPSs contribute to the development of smart grids by providing a sustainable, self-consistent, and
efficient way to manage energy distribution and consumption. The performance demonstrates our
approach’s effectiveness for consumption and production (based on RMSE and MAE metrics). Our
research supports the transition towards a more sustainable future, where communities adopting
REC principles become key players in the energy landscape.

Keywords: renewable energy communities (RECs); energy-aware DCPS; edge-to-cloud infrastructure;
smart grids; Internet of Things; deep learning; energy management

1. Introduction

The Internet of Things (IoT) has become increasingly prevalent across various applica-
tion domains, such as smart cities and Industry 4.0, leading to a heightened emphasis on
the design and development of distributed cyber-physical systems (DCPSs). These systems’
behavior is significantly influenced by their context, encompassing the external physical
environment and the internal states of the IT components and networked infrastructure. In
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recent years, DCPSs have been proposed to facilitate renewable energy communities (RECs),
which promote sustainable development within local communities by adopting renewable
energy sources. RECs consist of individuals, organizations, and businesses collaborating to
produce and consume renewable energy, such as solar or wind power. Integrating DCPSs
in RECs can enhance energy usage efficiency by monitoring and controlling energy flow
within the community. DCPSs provide the essential infrastructure for RECs to supervise
and regulate the production and consumption of renewable energy sources. In this context,
IoT devices collect energy production and consumption data, which is then analyzed by
cloud-based platforms to optimize the energy management system. By harnessing these
technologies, RECs can establish a more decentralized and democratized energy system,
empowering local communities to manage their energy resources actively. Numerous
global initiatives have successfully integrated DCPSs and RECs. For example, in Germany,
the “EnergieWendeBauen” project (energiewendebauen.de, accessed on 1 March 2023) has
implemented a DCPS-based platform for energy management in residential communi-
ties. This platform enables residents to monitor and control their energy usage and share
excess renewable energy within the community. Similarly, the “Solar Share” project in
Italy (lifegate.it, accessed on 1 March 2023)has introduced a DCPS-based platform that
allows individuals and small businesses to share surplus solar energy with their neigh-
bors. Integrating DCPSs and RECs offers a promising opportunity to promote sustainable
development and transform the energy landscape. By leveraging the power of IoT and
cloud computing technologies, these systems can enable more efficient, sustainable, and
decentralized energy management. Future research in this area should focus on devel-
oping scalable and secure DCPS-based platforms to support the widespread adoption of
renewable energy sources in local communities worldwide.

To enable the creation of DCPSs, an overlay-based distinction between the physical
environment and the digital infrastructure is considered a cornerstone of the whole sce-
nario. IoT devices’ sensing and actuation capabilities facilitate this interaction between
the two layers, which collect data to send to the cloud for processing according to various
scopes, such as latency reduction, privacy-preserving, or security purposes. Data process-
ing in the cloud typically involves logic units adapting their models based on observed data
and providing dynamic and queryable run time models for a pipeline of services. Until
now, the design of DCPSs has primarily focused on performance-related, non-functional
requirements. However, sustainability has become critical due to the growing power con-
sumption and associated computing expenses at different levels in these systems. The
increasing sophistication of DCPSs requires more computational resources, which leads to
increased energy costs. To address the sustainability challenge, integrating energy-aware
digital components in DCPSs is an essential activity to create sustainable systems where IoT
devices and server-based infrastructures can make autonomous decisions based on the out-
comes of self-learning algorithms. DCPSs are becoming increasingly complex and consist of
multiple interacting subsystems and environments. The aggregation of subsystems occurs
at different levels, from edge devices to large systems. The proposed solution envisions
a future where DCPSs are treated as conscious systems that can respond to internal and
external triggers and adapt their operations to achieve predefined goals. These systems will
be able to learn from experience through self-learning mechanisms and carry out planned
actions and predictive strategies at the overall system level to optimize resources, maximize
efficiency, and reduce energy costs.

A renewable energy community realized upon a DCPS is an environment in which
two aspects must be combined and orchestrated: energy production and energy consump-
tion. The trade-off has to be realized not only in terms of online orchestration but also by
considering historical data related to the two aspects mentioned above. From this perspec-
tive, IoT devices are essential to observe physical parameters, such as current consumption
and voltage. A distributed infrastructure collects and processes these samples through
optimizing self-learning algorithms.

energiewendebauen.de
lifegate.it
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The goal of the envisioned environment is to ensure the optimal behavior of the
entire REC by maximizing self-consumed energy and minimizing the delta between the
community’s produced and its consumed energy profiles. This way, the presented solution
is tailored to a scenario in which the renewable energy community is composed of real
estate units agreeing to create a DCPS in which they cooperate with each other through
a central entity appointed to act as an energy manager and broker toward the grid. The
broker, running on the DCPS server facilities, has three main duties:

• Distributing the energy produced among the whole community, avoiding purchasing
energy from the grid as much as possible;

• Continuously monitoring the energy market to purchase and sell the energy at the
best price;

• Notifying the REC’s end users, suggesting disconnecting specific submetering or
lightening the energy load to comply with the consumption parameters defined by the
REC to obtain a better monetary reward. The reward (obtained by the REC concerning
the energy available for sale) is shared proportionally to the correct user behavior. The
proposed methodology incentivizes efficient energy use and contributes to a more
sustainable energy ecosystem.

Of course, these aspects and considerations are not the only elements relevant to cope
with this goal. Indeed, REC designers also have to consider other factors, such as:

• The placement of the computation entities inside the infrastructure;
• IoT and infrastructure management;
• Environmental energy predictions: production and consumption;
• User data privacy.

In this work, we present a self-conscious system designed to constantly monitor
and forecast energy consumption in real estate units under the purview of the REC. This
groundbreaking approach facilitates energy management and reduces dependency on
external power grids. To highlight the contributions:

(i) Our system uses advanced deep learning algorithms to accurately predict energy
production and consumption patterns, paving the way for more efficient and eco-
friendly energy distribution.

(ii) When energy consumption exceeds production, the system proactively dispatches
notifications to real estate units, indicating high consumption levels to those estates
with elevated projected consumption. This timely communication encourages resi-
dents to shorten their energy usage, ultimately reducing the necessity of procuring
supplementary energy from the grid.

(iii) The system meticulously records and examines the responses to these reduction requests
to support community involvement and commitment. These data are later shared
with the community, which can then deliberate a reward-based incentive program to
recognize those who consistently exhibit responsible energy consumption practices.

This approach favors energy efficiency and sustainable living within the REC by
fostering a cooperative atmosphere, providing mutual benefits for all community members.

This paper is organized as follows. In Section 2, we provide a comprehensive literature
review of the existing methods and technologies used in energy management and discuss
the advantages and limitations of each. Section 3 provides the background information
necessary to understand the presented work. In Section 4, we describe the system architec-
ture and the role of each component in detail. Section 5 presents a case study illustrating
the practical application of the proposed solution, while Section 6 discusses the results
and validation of our approach. Finally, in Section 7, we conclude with our findings and
suggest future enhancements to improve the effectiveness and applicability of our solution.

2. Related Works

Distributed cyber-physical systems (DCPSs) can significantly benefit from recent ad-
vancements in distributed computing, including architectural elements, algorithms, and
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models. In [1], the authors highlight key challenges associated with DCPSs, such as latency,
energy consumption, security/privacy, and reliability. Designing a reliable IoT commu-
nication infrastructure for DCPSs remains an open challenge, as other researchers in [2,3]
emphasized. Meanwhile, ref. [4] formulates the scheduling computation on the cloud
continuum as a mixed-integer linear programming problem and proposes an energy-aware
deployment and replication scheduling model, considering the capability of edge/fog
nodes to harvest “green” energy.

The increased adoption of DCPSs, combined with the need to address emerging cli-
mate change issues, has led to renewable energy communities (RECs). In recent years,
energy delivery and consumption in DCPSs have gained particular attention due to the
increasing number of users (producers and consumers) involved in generating and shar-
ing renewable energy [5,6]. Research on energy management and optimization through
energy exchange, sharing, and storage mechanisms, along with the characterization of user
behaviors, is crucial for achieving sustainability in RECs [7–9]. In this context, ref. [10]
proposes a distributed energy management system (EMS) for optimal microgrid operation,
considering power distribution constraints. The EMS demonstrates effectiveness in both is-
landed and grid-connected modes, with future work focusing on its implementation in real
systems and performance analysis. Cloud computing has emerged as a popular solution
for managing, storing, and processing data in energy systems. As outlined by [11], it offers
a scalable, on-demand, and cost-effective model for delivering IT resources via the Internet.
Numerous researchers have investigated the application of cloud computing for energy
management and optimization. In [12], the authors explore the new challenges that smart
grid technology introduces for comprehensive data management and examine how cloud
computing can address these issues. Their survey encompasses smart grid and energy
management methods, investigating the use of cloud computing in various domains, such
as energy management, demand-side management, building energy management, energy
hubs, and power dispatching systems.

Smart grids represent a modernized electrical grid infrastructure that employs cutting-
edge technologies to monitor, control, and optimize electrical power generation, distribu-
tion, and consumption. The authors in [13] present a detailed overview of smart grid tech-
nologies, including advanced metering infrastructure, demand response, and distributed
energy resources. Furthermore, ref. [14] reviews demand-side management techniques
in smart grids, emphasizing the importance of load forecasting, demand response, and
energy storage systems in achieving energy efficiency and grid reliability. Integrating the
Internet of Things (IoT) and cloud computing has shown immense potential in enhancing
the efficiency of energy management systems. IoT provides a platform for connecting
and collecting data from various devices and sensors, while cloud computing enables
the processing and analysis of these data. In [15], the authors discuss how incorporat-
ing IoT technologies into smart grids can improve monitoring, communication, and data
processing across various devices. They propose a layered approach for classifying IoT
applications in smart grids and explore recent research efforts along with future direc-
tions. On the other hand, the authors in [16] investigate the benefits of combining IoT
and cloud computing for smart grid applications, particularly in demand response, fault
detection, and renewable energy integration. This synergistic approach holds promise for
further energy management and optimization advancements, paving the way for more
sustainable and efficient energy systems. Ref. [17] investigates the correlation between solar
irradiance and harmonic distortion in grid-tied photovoltaic distributed energy resource
(PV-DERs) systems. Understanding this relationship can help develop effective grid-to-
grid power-sharing arrangements and mitigate harmonics in bidirectional power-transfer
community-grid structures.

The self-management processes that govern the operation of RECs are based on ma-
chine learning (ML) techniques to improve their effectiveness, autonomy, and efficiency.
Energy demand and supply forecasting, self-consumption, characterization of power con-



Sensors 2023, 23, 4549 5 of 25

sumption behaviors, efficient scheduling of energy resources, and appliance obsolescence
are some tasks involving ML and deep learning (DL) techniques [18–21].

Some studies have been conducted using both statistical approaches [22–24] and ML
models for predicting individual household loads, predominantly the latter, due to their
ability to capture complex patterns in the data and provide accurate predictions [25–28].
On the other hand, despite other works that have been conducted to improve the accuracy
of household load forecasting using the advantages of DL models, and thus of the use of the
neural network (NN)-based algorithms [29–31], other investigations have focused on im-
proving the accuracy of household load forecasting by taking advantage of DL architectures
for time series prediction, including the highly effective long short-term memory neural net-
works (LSTMs) [32,33]. The latter have demonstrated remarkable advancements in recent
times, despite the volatility of predictions caused by the heterogeneity and randomness
of household behavior; however, they are out-performed by the more accurate Bi-LSTM
networks [34–36]. In this context, modeling user profiles to meet energy demand while
optimizing overall consumption is crucial [37]. Thus, DL models are a must to identify
users’ lifestyles based on their daily energy consumption. In addition, the meteorological
forecast data must also be considered when modeling energy profiles, as renewable energy
sources are often intermittent. Research on developing planning strategies for smart load
distribution and integrating renewable energy resources is ongoing, and federated learning
(FL) approaches are being investigated for this purpose [38,39].

Energy awareness must be incorporated at every layer (models, data, algorithms,
hardware components, etc.) and tier (cloud, edge/fog, IoT) of the IT infrastructure of
DCPSs, and in every phase (design, deployment, execution, etc.). To address this problem,
the scientific community has begun to define methodologies and approaches to evaluate
the energy consumption of models and algorithms based on structural and behavioral
parameters [40]. For example, ref. [41] proposes an energy-efficient IoT data compression
algorithm to optimize the execution of ML algorithms at the edge. At the same time,
ref. [42,43] focuses on the energy optimization of the deployment and distributed training of
ML models at the edge, respectively. The processing capabilities of IoT devices represent both
a resource and a constraint. Thus, designing a suitable infrastructure is both a requirement
and a challenge. The trend towards offloading data analytics tasks from edge devices to the
cloud has been increasing. However, existing offloading approaches face the challenge of
being static and needing help to adjust to changing workloads and network conditions.

Moreover, in [44], an energy-aware workload allocation framework for distributed
deep neural networks (DNNs) in the edge-cloud continuum was presented to minimize
energy cost for inference. This framework considers energy consumption and compu-
tation performance to optimize the allocation of workloads in a distributed computing
environment. Offloading data analytics tasks from edge devices to the cloud has great
potential for improving the efficiency and performance of DCPSs. However, existing of-
floading approaches have limitations, and researchers continue to develop more dynamic
and energy-efficient solutions to overcome these challenges.

The advancements in DCPS research make significant progress on latency, energy
consumption, security/privacy, reliability, and computation allocation challenges, improv-
ing their effectiveness, autonomy, and efficiency while contributing to sustainability and
addressing emerging problems related to climate change. For these reasons, the solution
proposed in this study aims to define an optimal implementation/architecture of an energy-
aware DCPS, providing a smart and flexible power system while enabling the integration
of renewable energy sources and facilitating the integration of microgrids and other dis-
tributed energy resources. Ref. [45] presents an asymmetrical single-phase eleven-level
inverter for the grid integration of distributed power generation sources, contributing
to improved power quality and cost effectiveness in grid-connected systems. Moreover,
ref. [46] introduces a distributed-variable flow-variable temperature (VF-VT) approach for
integrated energy and heating systems, offering privacy preservation, feasibility, and scala-
bility. The study identifies future research directions, including global optimization, model
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development, and improved thermal dynamics modeling, which can further enhance the
performance and efficiency of energy-aware DCPSs.

Our proposed solution employs a combined approach for managing both the pro-
duction and consumption aspects of RECs, which sets it apart from other systems. In
addition to this comprehensive approach, our solution provides three key contributions
that, although present in some existing solutions, are not typically found together in a single
framework. Specifically, our approach integrates all three contributions, enhancing the
overall effectiveness and efficiency of the system. In comparison, the papers from refer-
ences [18–37] primarily focus on applying AI techniques to individual households rather
than entire communities. While these studies offer valuable insights into AI-based energy
management, they may not fully capture the complexity and interconnectednessof energy
production and consumption in broader communities. By addressing energy management
at the community level, our solution aims to achieve a more comprehensive understanding
and optimization of energy distribution and utilization in RECs. Moreover, the works
from references [5–9] do not explicitly mention the use of AI techniques in their proposed
solutions. Although these studies contribute to advancing energy-aware DCPSs, they may
not fully leverage the potential of AI and ML in improving energy management, forecasting,
and optimization in RECs. By incorporating AI and, more specifically, DL techniques in
our solution, we seek to further enhance the performance, efficiency, and adaptability of
our proposed energy-aware DCPS architecture.

3. Background
3.1. Stack4Things: Integrating IoT Resources into OpenStack as I/Ocloud

Stack4Things (S4T) [47] is an open source research project and innovative platform
designed to extend the widely used cloud management system, OpenStack, into the Inter-
net of Things (IoT) realm. S4T aims to facilitate the management of IoT and edge device
deployments within the OpenStack ecosystem, implementing appropriate features to
seamlessly integrate IoT infrastructures into the edge-extended Infrastructure-as-a-Service
(IaaS) and Platform-as-a-Service (PaaS) clouds. Furthermore, the Input/Output (I/O)
cloud [48] approach leverages S4T functionalities to provide standardized and generic
programming capabilities on top of IoT resources, independently of the underlying infras-
tructure configurations.

3.1.1. S4T Architecture and IoT Management

The S4T architecture primarily consists of a cloud-side component, IoTronic, and one
or more edge-side components called Lightning-Rod (LR). These components enable users
to utilize IoT devices and their I/O resources, such as sensors and actuators, through
well-defined APIs similar to those available for standard cloud resources. This I/O cloud
concept offers IoT virtualization features alongside traditional IaaS (computing and storage)
virtualization. On the other hand, virtual nodes (VNs) host the business logic and use the
attached I/O resources, emulating real IoT devices. S4T’s IoT management involves various
OpenStack subsystems, with IoTronic as a central component responsible for provisioning
and configuring IoT nodes with embedded sensing and actuation resources. Neutron’s
OpenStack networking service has been enhanced to ensure seamless connectivity for IoT
nodes deployed at the network edge. Additionally, the platform leverages the integration of
Zun and Qinling to enable Function-as-a-Service (FaaS) capabilities. Zun provides container
management, while Qinling is the FaaS subsystem, streamlining container deployment
and orchestration. Together, these subsystems create a comprehensive and efficient IoT
management solution.
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3.1.2. IoTronic Cloud-Side Service

The IoTronic cloud-side service is a crucial component of the S4T architecture, designed
with modularity, scalability, and robustness. As illustrated in Figure 1, IoTronic’s primary
function is to manage and orchestrate seamless connectivity between edge devices and the
cloud, providing users with a comprehensive interface for managing IoT devices remotely.
It extends the OpenStack architecture toward managing sensing and actuation resources,
aligning with the Sensing-and-Actuation-as-a-Service (SAaaS) paradigm. IoTronic interacts
with the LR device-side agent to establish and maintain a reliable connection between
the cloud and the edge devices, even in the presence of network address translations
(NATs) or strict firewalls. This connection is facilitated through WebSocket technology,
which employs the Web Application Messaging Protocol (WAMP) to create a full-duplex
messaging channel.

Figure 1. IoTronic’s architectural schema.

The cloud-side architecture comprises several components, including the IoTronic
Conductor, which manages the IoTronic database that stores essential information, such
as unique device identifiers, user and tenant associations, device properties, and hard-
ware/software characteristics. The IoTronic APIs expose a REST interface for end users,
allowing interaction with the service via a custom client or a web browser. The OpenStack
Horizon dashboard has been extended with a Stack4Things dashboard, offering access
to all functionalities provided by the IoTronic service and other software components.
IoTronic also features a WAMP agent that bridges other components and edge devices,
translating Advanced Message Queuing Protocol (AMQP) messages into WAMP messages
and vice versa. This design makes the architecture highly scalable, as components can be
deployed on different machines without impacting service functionalities. Additionally, it
ensures redundancy and high availability for IoT systems by allowing multiple IoTronic
WAMP agents and WebSocket tunnel agents to be instantiated, each managing a subset of
IoT devices.

3.1.3. Lightning-Rod Device-Side Agent

The LR device-side agent is an essential component of the S4T architecture, character-
ized by its modularity, fault tolerance, and streamlined design. The architectural structure
of the LR agent is depicted in Figure 2. Its primary function is to facilitate seamless connec-
tivity between edge devices and the S4T IoTronic service, even when deployed behind NATs
or under the constraints of stringent firewalls. This connectivity is achieved through Web-
Socket technology, which employs the WAMP to establish a reliable, full-duplex messaging
channel between the cloud and the devices.
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Figure 2. Lightning-Rod’s architectural schema.

3.1.4. S4T Features

S4T offers support for a variety of features, including:

• Authorization and Authentication: S4T manages user authentication using OpenStack’s
identity service, Keystone, and grants authorization for accessing and controlling
remote IoT devices.

• Remote Access and Management: Users can access their IoT devices without concern
about location or networking configurations, thanks to S4T’s WebSocket-based reverse-
tunneling mechanism.

• Remote Customization and Contextualization: S4T allows users to define the application
logic to be executed on devices, which is then distributed as functions and deployed
on IoT devices under authorization and privacy policies, even during runtime. Finally,
S4T supports Python and Node.js runtime environments.

3.1.5. I/O Cloud: Seamless Integration of IoT and Cloud Resources

As mentioned, the I/O cloud approach, leveraging S4T functionalities, aims to provide
standardized and generic programming capabilities on top of IoT resources, independently
of the underlying infrastructure configurations. This approach maintains the ability to
employ the unique characteristics of an IoT-enhanced distributed data center, such as
the availability of edge nodes, which can now be used as computing infrastructure for
data (pre)processing. Consequently, I/O cloud aims to achieve seamless integration be-
tween the cloud and IoT by offering distributed IoT resources (i.e., sensors and actuators)
hosted on edge nodes as virtualized cloud resources. A crucial aspect of the I/O cloud
approach is ensuring that IoT deployments function as active components within the cloud
infrastructure while maintaining their unique characteristics. It must provide efficient I/O
virtualization (virtIO) to achieve this. By extending the concept of virtualization to the
IoT domain, I/O cloud abstracts IoT resources, presenting them as virtual entities. These
virtual resources can be accessed through a user-friendly interface that reflects the I/O
primitives of their physical counterparts. This highly customizable abstraction process
allows users to encompass the entire I/O resources of an IoT node or only a specific subset
of these resources. Additionally, it enables the logical consolidation of IoT resources from
various nodes within a single (logical) entity. This flexibility allows developers to manage
and integrate IoT resources within the cloud infrastructure efficiently, simplifying the
process and enhancing the overall system’s usability. I/O Virtualization is based on file
system virtualization to provide a virtual representation of pins of a physical IoT node
while hosting user-defined logic and facilitating interactions with remote physical IoT
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resources simultaneously. Technically, an I/O cloud instance is a self-contained, isolated
environment with a user-space-defined file system, sysfs. This is realized using FUSE
technology over remote procedure calls (RPCs) to ensure remote interactions with the
physical IoT resources.

3.2. Environment 4.0: Smart and Self-Conscious Environment by Design

On the way to a self-conscious environment by design, the research conducted by our
group is exploring and paving the way for the realization of a self-managed environment,
with a high degree of decoupling thanks to adherence to software-defined principles. This
approach, named Software-Defined CPS Function Virtualization (SDCPS-FV), introduced
in [49] as an underneath approach defining a software-defined city infrastructure, aims to
distribute the CPS operations (such as control procedures, actions, and reactions to envi-
ronmental inputs) along the whole CPS infrastructure. The SDCPS-FV is an enabler for the
definition of CPSs, self-(re)configurable due to its ability to deploy IoT/Edge node control
logic to specific devices in the CPS. These principles match perfectly with the definition of
distributed cyber-physical systems described in Section 2, representing a suitable bedrock
for setting up a self-conscious environment. An example of this is presented in [50], where
the CPS autonomously re-configured the logical device connection to preserve the fire
protection system functionalities (an example of a self-conscious environment realized on
SDCPS is shown in Figure 3).
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Figure 3. Example of a software-defined CPS acting as a self-conscious environment [50].

Nevertheless, in the previous example, the self-awareness of the environment is pre-
sented in terms of system resiliency obtained by hierarchical management controls dis-
tributed on the CPS that spans from the data-center/cloud systems to the edge devices
through the fog devices by intermediation, and the resulting CPS monitors its behavior
and reacts to the (negative) events identified. The ability to react to events or situations is
a key point for self-conscious environments. In this context, an event could be a predefined
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situation, such as people moving from one building to another as in [51,52], or unexpected
issues that a system has to face (as described in [50]); the events are perceived and managed
by the environment autonomously, which hosts specific algorithms, specialized controllers,
or AI modules.

4. Architecture

The REC envisioned is a DCPS in which it is possible to consider an architecture
composed of three parts by design: (i) the REC production sites, (ii) the REC real estate
units, and (iii) the centralized computation facilities.

The “REC production sites” may be realized in several ways, spanning from a dedi-
cated community’s solar panel field to a distributed production system in which the panels
are installed on the properties belonging to the REC. Indeed, the ownership of energy
production systems is not a key point in the scenario; this is because the only essential
element is that all the sources are connected together and are able to deliver some operative
information enabling the DL model to predict and monitor the energy production.

The “REC real estate units”, considered one by one, are no more than a sub-CPS com-
posed of several IoT devices (smart meters or powerful devices with metering capability).
This way, a building in this category is continuously monitored by a DL model running
on site (essential to preserve the owner’s privacy, e.g., the owner’s habits), producing
aggregated data to the central coordinator (referring to the whole building). The data
monitored in a real estate unit may refer to a section or simply to a particular device (i.e.,
the washing machine). Furthermore, the data gathered are stored locally and processed by
the DL model to predict consumption, considering the seasonality.

The centralized computing facilities can run the DCPS orchestration modules man-
aging the whole REC. The data coming from the DCPS to the orchestrator arrive in the
form of real-time and predicted data; these contributions are processed to compute the
amount of energy available to the community at the computation time and in the following
time window. This way, the orchestrator can evaluate the community energy needs and,
if needed, notifies to REC members that have, both real-time and predicted, higher con-
sumption, to reduce the energy request in their real estate units. The acceptance or lack
thereof of community members receiving a notification is stored for administrative duties
(e.g., to reward deserving members with discounts or benefits). Centralized computing
facilities also have computed DL-based monitoring and prediction estimation related to
“REC production sites”.

The REC’s energy orchestrator, as shown in Figure 4, is composed of three main
modules. The first two (respectively, named ECEM, Energy Consumption Estimation
Module, and EPREM, Energy Production Estimation Module) are meant to evaluate both
real-time data and predicted data to produce an approximated value of consumption (or
production); the third (called TEANS, Threshold Evaluator and Notification System) uses
the previous approximation to understand if the energy requests are greater than available
energy in the community, and tries to find a solution pattern to avoid it (i.e., in the case of
unexpected consumption, one or more notifications may be delivered to the community
members with higher consumption).

4.1. REC Subsystems at the Edge: Real Estate Units and Production Sites

Both the real estate units elements and the production sites, as stated above, may be
considered as sub-DCPSs composed of a series of IoT devices configured and managed by
the exploitation of the principles (and the IoT platform S4T) described in Sections 3 and 3.1,
which enable the system owner (and, of course, the manager) to inject portions of code in
the form of plugins to customize the IoT’s behavior. Furthermore, thanks to the software-
defined approach (as described in [49]), it is possible to orchestrate the environments as
configurable DCPS contained inside the community’s DCPS. The two edge elements of the
REC are monitored (in terms of energy consumption and energy production) by a DL model
trained on the historical data collected on the system itself (indeed, the model is trained
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on the historical data year by year to increase its accuracy in prediction, also in relation
to the environmental modification such as the increment or replacing of devices). The
monitoring DL model can predict the system behavior (energy consumption or production)
by advancing a time slot ∆t. According to Figure 4, the real estate units and the production
sites present a different management approach: the former runs its monitoring model in
each estate unit, providing data (real-time and prediction) to the opportune orchestrator sub-
module (ECEM). Conversely, the latter runs only one model on cloud computing facilities
that can process and gather the data coming from each production site and predict the
energy produced. Data obtained from the aggregation and prediction duties are sent to the
orchestrator sub-module (EPREM). Furthermore, this approach avoids privacy disclosure
by processing the data about energy consumption directly on the real estate units and
pushing only the aggregated data towards the REC energy orchestrator. From the security
point of view, the architecture also increases the security degree by decoupling the home
energy management system and REC energy management system.

DCPS

Energy production 
site

Energy 
consumption site

SM

panel

inverter SM

?

DCPS

EP
R

EM

ECEM

TEANS

ENERGY 
PRODUCTION 
EVALUATION 
MODULE

threshold 
EVALUATOR AND 
NOTIFICATION 
SYSTEM

ENERGY 
CONSUMPTION 
EVALUATION 
MODULE

REC’s real estate units REC’s production sites

data real-time predicted data notification

REC Energy 
Orchestrator

 

REC’s computation facilities

Figure 4. REC architecture. ECEM stands for Energy Consumption Estimation Module, EPREM
stands for Energy Production Estimation Module, and TEANS stands for Threshold Evaluator and
Notification System.
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4.2. The REC Energy Orchestrator

The energy orchestrator is a system meant to compare energy consumption and
production, aiming to avoid the necessity to buy energy from the grid. To reach this goal,
the contributions related to real-time data and predicted data are computed by specific sub-
modules (e.g., ECEM and EPREM) to produce an estimated value of both energy requests
and energy available for the community. The EPREM (Energy Production Estimation
Module) and the ECEM (Energy Consumption Estimation Module) deliver their estimation
to the TEANS (Threshold Evaluator and Notification System) which, if needed, sends
notifications to the members of the community with higher consumption.

The estimations are based on an assumption of linear behavior among data from the
monitoring and prediction, both for consumption and production. This assumption is
supported in [53], where a linear model based on electricity consumption data was sufficient
to forecast industrial production. The investigation mainly focused on forecasting Italian
industrial production, where results implied that linear behavior is a valid assumption for
short-term forecasting, 50 min forecasts in this case (see Section 5.1 related to the datasets).
Based on the previous assumption, the estimation modules use Equation (1) to compute
the x(est) as a point on a straight line passing through two points, real-time data (t0) and
predicted data (t∆), computed at time test, as reported in Figure 5. The test is configurable
by the orchestrator value narrow to the real-time data.

x(est) = x(t0)
+

(
x(t0)
− xt∆

)
(t0 − t∆)

∗ test −

(
x(t0)
− xt∆

)
(t0 − t∆)

(1)

The two modules, ECEM and EPREM, have a dual behavior because the estima-
tion process is used only in cases with positive (see Equation (2)) and negative (see
Equation (3)) slopes. This way, the estimated values may not underestimate the con-
sumption or overestimate the production.
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Figure 5. View of energy estimation value for consumption and production.
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The job performed by ECEM and EPREM is essential to enable the orchestration
process so that we can consider their job as a pre-processing of the inputs from the edge
part of the DPCS.

x(estC) =

{
x(est) : (x(t0)

− xt∆) ≥ 0
x(t0)

: (x(t0)
− xt∆) < 0

(2)

x(estP) =

{
x(est) : (x(t0)

− xt∆) ≤ 0
x(t0)

: (x(t0)
− xt∆) > 0

(3)

The estimated values become inputs of the TEANS (Threshold Evaluator and Notifica-
tion System) module which, after evaluation of the inputs received, is able to:

1. Identify when consumption is exceeding production;
2. Identify which community members exhibit higher consumption; and
3. Send notifications to the owner of a real estate unit and, at the same time, to the

environment itself, that suggest which internal line is requesting more energy.

The function shown in Algorithm 1 is used in the first and third tasks listed above.
Indeed, the function EvaluateInput is used by TEANS firstly to evaluate the inputs coming
from ECEM and EPREM to understand if an intervention is necessary (the intervention
procedure is contained in the else condition). When a reduction in energy requests is
identified, the energy consumption that exceeds the energy available in the REC is com-
puted (the δ value), and it is used to select the REC members who will be the recipients of
notifications of power reduction. The quantity of requested power reduction notifications
is split equally among the selected members, corresponding to the γ value. The second
function to consider is shown in Algorithm 2. It is invoked by Algorithm 1 to obtain
a list of members requesting high energy. To this aim, the input of this function is the δ
mentioned above; the ECEM module uses it to understand how many members to select;
the higher the value of δ, the lower the threshold used to mark and add a member to
the list becomes. In any case, the ECEM also identifies a list of unusual consumers who
generally do not request much power from the REC. In that case, they are excluded from
the “powerAbsorbingConsumer” list. Furthermore, the REC energy orchestrator considers
each time a reduction in energy consumption request is satisfied, which may be used for
rewarding purposes in administrative processes.

Algorithm 1: Pseudocodeof the function used to evaluate inputs from estimation
modules aiming to identify the necessity of reducing the REC’s energy requests.

1 int EvaluateInput(float e_prod, float e_cons):
2 if e_prod > e_cons then
3 return 0 ;
4 else
5 δ=e_cons-e_prod ;

; /* δ represents the quantity of energy exceeding the energy
available in REC */

6 membersList=IdentifyMembers(δ);
; /* The function IdentifyMembers returns the list of members to
be recipients of the notification send by TEANS */

7 γ=δ / len(membersList) ;
; /* γ represents the quantity of energy a member has to reduce */

8 foreach member in membersList do
9 sendNotify(member,γ) ;

10 return 0 ;
11 end
12 end
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Algorithm 2: Pseudocode of the function used to identify the list of REC
members that will receive the request for power reduction.

1 List IdentifyMembers(float δ):
; /* First Section: retrieve ordered lists of members: function
needs to identify the members that are consuming power and the
members that may be excluded because they are not used to make high
request of power. */

2 unusualConsumers=getListUnPredictedConsumers() ;
3 powerAbsorbingConsumers=getListPowerAbsorbingConsumers(δ) ;
4 membersListToNotify= [] ;
5 foreach member in powerAbsorbingConsumers do
6 if member in unusualConsumers then
7 continue ;
8 else
9 membersListToNotify.append(member) ;

10 end
11 end

; /* Second Section: After a preliminary selection aiming to exclude
the members that are not used to request high power, if the list
obtained is null, all the members identified by function
getListPowerAbsorbingConsumers are returned to invoking function.
*/

12 if len(membersListToNotify) == 0 then
13 return powerAbsorbingConsumers ;
14 else
15 return membersListToNotify ;
16 end

5. Use Case/Reference Scenario

This section describes the use case and a detailed analysis of the dataset, followed by
an explanation of the preprocessing methods employed and, finally, an overview of the DL
models used in the implementation of the system.

The use case and experiments conducted to analyze the behavior and feasibility of
a REC implemented as described above are presented in the following. The REC community
consists of numerous real estate units, enough to justify the production line realized in the
REC. Each unit is equipped with a general smart meter, and the electrical systems within
these buildings are intentionally designed to be divided into multiple subsections. These
subsections are connected to specific sub-meters, allowing for more granular monitoring
and management of energy consumption. The smart meters operate alongside IoT devices,
such as Raspberry Pi 3, Arancino, and other CPU- and MCU-based edge devices, which are
powerful enough to manage the edge component of S4T (Lightning-Rod, see Section 3.1.3).
The DL models are deployed as plugins injected via S4T on these edge devices. Another
aspect of the REC community involves the production sites, which consist of solar panels
connected to an inverter to establish a production line. Generally, each production line may
be located on a real estate unit (e.g., on a building’s roof) or in a designated area within
the REC reserved for energy production. In this use case, we consider a few powerful
production lines set up in specific areas of the REC. Each line has its dedicated inverter,
which measures the produced DC and other parameters, as discussed in more detail in
Sections 5.1 and 6. These measurements are then transmitted to the DL model running in
centralized computing facilities directly managed by the community. This setup allows for
efficient monitoring and management of energy production within the REC community.
A comprehensive understanding of the entire architecture, including the interconnections
and interactions among all its components, can be obtained by referring to Figure 6. This
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chart offers a high-level overview of the relationships between the various elements within
the system.
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Figure 6. Technologies relationship chart.

5.1. Dataset Description

For the use case, we used two different public datasets: (i) The household electricity
load diagrams 2011–2014 dataset, designed by the University of California, School of Infor-
mation and Computer Science, and shared in the UCI ML repository [54], and (ii) The solar
power generation dataset [55]. The first dataset comprises 2,075,259 instances of electricity
consumption samples (KW) of a household in Paris from December 2006 to November 2010
that were captured at 1 min intervals. It contains observations on household global active
power (GAP) (in kilowatt), global reactive power (in kilowatt), voltage (in volts), global current
intensity (in ampere), and information on three sub-rooms (in kilowatt/h) on global energy
consumption (in kilowatt/h). Specifically, Sub metering 1 monitors the active electricity
usage of the kitchen appliances, including the dishwasher, oven, and microwave. Sub
metering 2 measures the active energy consumption of laundry room appliances such as
washing machines, tumble dryers, and lights. Sub metering 3 records the active power of
the electric water heater and air conditioner.

The second dataset describes data gathered from two solar power plants in India over
a 34-day period and includes power generation data and weather sensor readings data
gathered every 15 min. For power generation plants, it provides readings on the amount of
DC power (in kilowatt), the amount of AC power (kilowatt), and the daily yield and total yield
for the inverter until that point. The weather sensor plants provide data on the plant, the sen-
sor panel id, the ambient temperature, the temperature reading for that solar panel module, and
finally, the irradiation. The power generation data are collected at the inverter level, where
each inverter is connected to multiple lines of solar panels, while the weather sensor data
are collected at the plant level, with a single array of sensors optimally placed at the plant.
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Figure 7 highlights the seasonality of the GAP feature, used as the output value for
the BiLSTM model’s predictions. Upon examining the data, it becomes evident that higher
GAP values are concentrated in particular periods. The plot underscores the cyclical
nature of the consumption patterns, facilitating the identification of intervals marked by
increased energy usage. Data points in the graph display a color gradient from light to
dark, representing a 24 h time frame arranged by the color intensity and organized into
hourly, monthly, and weekly segments throughout the year. The hourly analysis indicates
that consumption peaks predominantly occur during the afternoon, specifically from 17:00
to midnight. Conversely, the monthly overview offers insights into the distribution of
consumption hours across the year, revealing a significant decrease in energy use during
the summer months due to longer daylight hours. Additionally, a strong correlation
between the monthly and weekly charts can be observed, as both show reduced average
consumption in their central regions, corresponding to the summer period. This seasonality
chart allows for the prediction of consumption patterns across various time frames during
the year, assisting in the optimal configuration of the proposed system, aiming to predict the
appropriate periods or hours to send notifications to users requesting a reduction in energy
consumption. This approach aligns with RECs’ energy efficiency and sustainability policies.

Figure 7. Gap seasonality of a real estate unit by hour, month, and week of the year.

Generally, a REC community consists of numerous real estate units, and they are
commonly supported by energy generation sites to support the REC consumption. Accord-
ing to the data from the two datasets used for the experiments, we defined a reasonable
scenario with 250 real estate units (as an assumption, we considered buildings with similar
behavior and structure). This way, the energy produced by the three production lines from
the datasets [55] used as our REC production site data is justified.

Data Preprocessing

Data preprocessing involved preparing the raw data for our analysis and using it
as input for the recurrent models. This process consisted of several tasks, including data
interpolation, reduction, normalization, and integration.

• Data interpolation: We performed linear interpolation on the data by estimating missing
or NaN (Not a Number) values in the consumption dataset and computing the value at
each missing point as a linear combination of its neighbors;

• Data reduction: We aggregated time-series data into more manageable intervals by
using the mean of every 15 min interval. This method facilitated the visualization and
analysis of the patterns in the data and association with the production dataset;

• Data normalization: We normalized the data so that they fell within a range (0,1), so as
to improve the performance of the DL models;

• Data integration: We aggregated the data from the production dataset by integrating the
power generation and sensor readings data by feeding them as multivariate sequence
inputs to the LSTM model.

Finally, we prepared entire time series data for use in a supervised learning approach
by scaling the data and transforming them into a format suitable for training and testing
the recurrent models. We divided the data into training, validation, and testing datasets to
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train the model, optimize hyperparameters, prevent overfitting, and test the final models’
performance. We split both datasets to use 70% of the data for training, 10% for validation,
and 20% for testing.

5.2. Deep Learning Models

In our use case, we developed two types of DL models, and we tested them on the two
datasets described above: long short-term memory (LSTM) and bidirectional long short-
term memory (BiLSTM) neural network-based models, useful for processing sequential
data and capable of learning long-term dependencies. Specifically, LSTM networks are
specialized recurrent neural networks (RNNs) initially designed to overcome the vanishing
gradient problem [56]. LSTM networks can preserve past information in sequential data,
which results in precise forecasting for time-series datasets [57]. The BiLSTM networks,
an extension of the LSTM networks, were applied twice to the input data to improve the
long-term dependency learning and model accuracy [58]. The first LSTM was applied to
the input data in their original order, while the second LSTM was applied to the input data
in reverse order. In this way, the model can better retain information from both the past
and future of the input sequence, resulting in improved accuracy. The main task of these
networks is to learn potential rules from many samples of time-series data and perform
analysis and predictions by constantly correcting the network weights. Both networks
have significantly improved in recent years, especially for time series prediction and in
analyzing power grid data [59,60], where the predictions perform well with both data
generated from routine user behavior that exhibits some regularity and data generated
from emergent user behavior, such as sudden incidents and anomalies, that show some
randomness and variability.

The BiLSTM with an “attention mechanism” (BiLSTM-Attention) is particularly well
suited for the analysis of long time series, due to a memory function that allows important
feature information to be retained for load prediction [61,62]. The “attention mechanism”
is used to further explore the relationship between the features of the predicted time points
processed by the BiLSTM layer. This way, BiLSTM dynamically weighs the importance of
different parts of an input sequence when making predictions, essentially by using a sepa-
rate neural network to compute a set of weights representing each element’s importance
in the input sequence. This is particularly useful in a household electricity consumption
prediction at different times, as in cases where some parts of the input sequence are more
important than others for making accurate predictions, e.g., in our use case, where the
consumption during weekdays is lower than holiday periods, or consumption during
spring is lower than summer, and so on. Thus, studying the consumption patterns at
different time points can improve the accuracy of predictions. In the presented context, the
BiLSTM-Attention networks were used as the proof of concept for the electricity consump-
tion prediction for a REC community. In contrast, we used a simple LSTM network for
plant generation data prediction (production), where it was assumed that the production
data had constant behavior over time.

To evaluate the effectiveness of our models, we employed classical evaluation metrics,
the root mean square error (RMSE), and the mean absolute error (MAE), where lower
values represent better forecasting results. The equations for these metrics are given by
Formulas (4) and (5), respectively.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (4)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (5)

where yi is the true value, ŷi represents the prediction value, n is the predicted time step,
and i is the current time step.
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In Section 6, we describe the implementation and training steps of two networks;
finally, we show the performance of the proposed DL models.

6. Experimental Results
6.1. Models Training and Optimization

The LSTM and BiLSTM models were trained on production and consumption datasets,
respectively. Specifically, LSTM was trained to predict both the DC Power and efficiency of
an inverter, computed adequately by the following equation:

η =
PAC
PDC
× 100% (6)

where η is the efficiency of the inverter, expressed as a percentage, PAC is the AC power
output of the inverter, measured in watts, and PDC is the DC power input of the inverter,
measured in watts. AC power was retrieved to understand the actual energy production
of the REC (Figure 8 shows the AC computed for a line of panels, each dot represents the
value computed by the DL module from the data perceived). The BiLSTM was trained to
predict GAP power by using all other consumption features.

Figure 8. AC of a computed panel line.

For both models’ training, we used different and best hyperparameters. Table 1
presents the best hyperparameter settings used for the two DL networks. Each model had
different settings, indicating that there is no one-size-fits-all solution when it comes to
optimizing DL networks. Specifically, both networks were trained and optimized using
the mean squared error (MSE) loss function and the Adam optimizer. We set the maximum
number of epochs to 200 (with an early stopping technique set with a patience = 10) to
prevent model overfitting, and the batch size to 72. We set the number of timesteps to 1 to
capture short-term dependencies in the data. The learning rate α was set to 0.001, and the
decay rate β was set to 0.00001 to ensure the effective optimization of the model.

For the LSTM model, we built a simpler architecture as a good starting point for our
prediction tasks. Specifically, the better model architecture was based on one LSTM layer,
two dense layers (one with 32 hidden units and a ReLU (rectified linear unit) activation
function), and another dense layer with a single output unit and a sigmoid activation
function. The BiLSTM with attention was implemented using a custom layer named
Attention, which computes the attention weights and applies them to the input sequence.
This layer takes the output of the previous layer (which is the output of the bidirectional
LSTM layer) and computes a set of attention weights using a neural network with a single
hidden layer. Specifically, the model consists of a bidirectional LSTM layer with 64 units,
a dropout layer with a 0.2 dropout rate for regularization, and a batch normalization layer
for training stability. Then, it includes an attention layer with 64 units to focus on relevant
parts of the sequence, a dense layer with 32 units and ReLU activation, a dropout layer
with a 0.3 dropout rate, and another batch normalization layer. Finally, there is a dense
layer with 1 unit and sigmoid activation for predictions.
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The learning curves depicted in Figure 9 show the DC and efficiency of the LSTM
model over the course of training. As can be seen, as the number of epochs increases, the
training and validation loss both trend towards zero, indicating that the LSTM model is
able to capture the input–output relationship of the production dataset accurately.

Table 1. Hyperparameter settings.

Model Hyperparameter Best Value

LSTM

Learning rate 0.001
Optimizer “Adam”
Decay rate 0.00001

Loss function “mean_squared_error”
Number of layers 3 (LSTM, Dense, Dense)

Units [64, 32, 1]
Activation function “relu”,“sigmoid”

Timesteps 1
Maximum training epochs 200

Early Stopping Patience = 10, Monitor = loss
Batch size 72

BiLSTM with Attention

Learning rate 0.001
Optimizer “Adam”
Decay rate 0.00001

Loss function “mean_squared_error”
Dropout [0.2, 0.3]

Number of layers 4 (Bidirectional LSTM, Attention, Dense, Dense)
Units [64, 64, 32, 1]

Batch normalization Present
Activation function “relu”,“sigmoid”

Batch size 72

(a) (b) (c)

(d) (e) (f)

Figure 9. DC and efficiency training and validation loss curves of the LSTM model. (a) DC training
and validation loss for the line of panels 1; (b) DC training and validation loss for the line of panels 2;
(c) DC training and validation loss for the line of panels 3; (d) Efficiency training and validation loss
for the line of panels 1; (e) Efficiency training and validation loss for the line of panels 2; (f) Efficiency
training and validation loss for the line of panels 3.
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Implementation Details

For the implementation of the two networks, we used Python program language
version 3.8.12, Keras API version 2.4.3, to build and train our models, and Colab’s GPU to
accelerate the training process. The data were preprocessed using Python libraries such as
NumPy, Pandas, and Scikit-learn. The MinMaxScaler data normalization techniques were
applied to the input features.

6.2. Testing on Consumption and Production Prediction

In our experiments, after the consumption dataset resampling to result in a 15 min
steps GAP, the total number of samples was 138,352. The GAP behavior predicted with the
BiLSTM-Attention model follows the real-time data, as shown in Figure 10.

Figure 10. GAP predictions after dataset resampling of a real estate unit from 17 June at 17:00.

Concerning energy production data elaboration, the LSTM acts on data related to DC
and efficiency in reference to the lines of the panel. Figure 11 reports the data predicted by
the LSTM for the DC and the efficiency η of each line. The graph analysis shows how the
prediction follows the real behavior of the panel lines. The only significant anomaly is the
absence of a second peak in the prediction when the real behavior presents two consecutive,
very close peaks.

(a) (b) (c)

Figure 11. Cont.
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(d) (e) (f)

Figure 11. LSTM prediction graphs. (a) DC predicted by the model for the line of panels 1; (b) DC
predicted by the model for the line of panels 2; (c) DC predicted by the model for the line of panels 3;
(d) Efficiency predicted by the model for the line of panels 1; (e) Efficiency predicted by the model for
the line of panels 2; (f) Efficiency predicted by the model for the line of panels 3.

Table 2 reports the results obtained from LSTM (on production) to predict DC and
η, and from BiLSTM-Attention (on consumption) to predict GAP features. The results
show significant performances based on the RMSE and MAE metrics, suggesting that the
two networks have a good predictive performance in predicting the associated features.

Table 2. Performance metrics on consumption (1EU) and production (3P).

Model Feature RMSE MAE

BiLSTM-Attention (consumption) GAP 0.457 0.299

LSTM(production(3P)) DC 909.19 509.53

LSTM(production(3P)) η 0.011 0.002

Table 3 reports an overview of which decision the TEANS module takes regarding the
necessity of sending a request to reduce energy consumption to the REC members. The
table reports some of the most meaningful time steps evaluated, with the estimated AC
values, representing the sum of the three lines of panels and also the value of the whole
REC GAP consumption computed (as explained in Section 5.1) from the hypothesis of
250 real estate units with the same energy requests. As it is clearly shown, the δ value is
the discriminating factor in the decision; when δ is ≤ 0, a notification is delivered to the
higher-consuming REC members (as described in functions (1) and (2)).

Table 3. Notification forwarded by TEANS according to δ computed.

Data Time AC Produced 1 GAP: All Real Estate Units 2 δ Notification Sent

17 June 17:00 777.92 240.332816 537.587184 No

17 June 17:15 659.27 239.1358279 420.1341721 No

17 June 18:30 323.98 235.1232957 88.85670433 No

17 June 18:45 258.11 309.2678135 −51.1578135 Yes

17 June 19:00 36.8 411.623647 −374.823647 Yes

17 June 20:00 0.05 261.9870608 −261.9370608 Yes

17 June 21:00 0.01 233.4935617 −233.4835617 Yes

17 June 22:00 0 235.791142 −235.791142 Yes

17 June 23:00 0 234.9777611 −234.9777611 Yes

1 This value is the estimated value from the ECEM module; 2 This value is the estimated value from the EPREM module.
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7. Conclusions

Our proposal enables better energy management and promotes efficient energy use.
The solution discussed is meant to manage a renewable energy community by exploit-
ing the energy produced without storing it. The proposed system can be applied to any
such scenario without significant architectural modifications. Moreover, the reward sys-
tem based on user behavior further incentivizes adopting sustainable energy practices,
contributing to a more eco-friendly energy ecosystem. In conclusion, our research has
successfully demonstrated the effectiveness of the proposed methodology in managing
the energy produced among the community while minimizing reliance on the grid. This
way, a REC aiming to minimize the fees due to energy obtained from the grid can adopt
a complementary tool continuously monitoring the energy market for optimal buying and
selling opportunities.

The current implementation of the orchestrator, a kind of complex event processing
(CEP) system, has proven its value in sending notifications to users based on data collected
and processed by AI models, guiding them to make informed decisions. Using AI in
our research, primarily recurrent models, has been effective for short-term forecasting,
yielding good energy consumption and production forecasting with the metrics employed,
as shown and described in Section 6. Nevertheless, the system is strongly based on the
assumption that users, or at least most of the REC’s members, cooperate and follow the
notification received. Some other potential limitations of the proposed solution include the
complexities of implementing the method in various RECs, computational requirements,
and adaptability to changes in the energy landscape.

We envision several enhancements to our existing methodology for future work.
First, we plan to integrate CEP capabilities into IoT devices, enabling more localized
and automated decision making based on complex event patterns. Second, we aim to
explore the potential of CEPs in automatically reducing power consumption in buildings by
managing sub-meters as devices within a software-defined I/O framework, thus extending
its capabilities beyond merely sending notifications.

Finally, we intend to investigate other deep learning techniques, such as convolutional
neural networks or transformers, to improve anomaly detection in energy consumption
patterns, complementing the DL models currently in use. By addressing these areas, we
aim to build upon the foundational results laid out in this research, contributing to the
ongoing development of sustainable and efficient energy management solutions.
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ML Machine Learning
BiLSTM Bidirectional Long Short-Term Memory
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REC Renewable Energy Community
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