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Abstract: This study presents a new method for measuring the propagation constant of transmission
lines using a single line standard and without prior calibration of a two-port vector network analyzer
(VNA). The method provides accurate results by emulating multiple line standards of the multiline
calibration method. Each line standard was realized by sweeping an unknown network along
a transmission line. The network need not be symmetric or reciprocal, but must exhibit both
transmission and reflection. We performed measurements using a slab coaxial airline and repeated
the measurements on three different VNAs. The measured propagation constant of the slab coaxial
airline from all VNAs was nearly identical. By avoiding disconnecting or moving the cables, the
proposed method eliminates errors related to the repeatability of connectors, resulting in improved
broadband traceability to SI units.

Keywords: microwave measurement; network analyzers; propagation constant; traceability

1. Introduction

The propagation constant is a critical parameter in transmission line analysis, provid-
ing valuable information about the electrical properties of materials at different frequencies.
The need for accurate measurement of the propagation constant arises in various ap-
plications, such as material characterization [1–4] or the estimation of the characteristic
impedance of transmission lines, which allows impedance renormalization in various
vector network analyzer (VNA) calibration methods [5]. Furthermore, knowledge of the
propagation constant allows the analysis of losses along a transmission line, which is a
critical aspect in signal integrity applications [6,7]. In general, there are many reasons to
measure the propagation constant of guided wave structures such as transmission lines.

There are several methods to measure the propagation constant using a two-port
VNA, but the most-versatile method because of its broadband applicability is the multiline
technique [8]. In this method, multiple lines of different lengths are measured to sample the
traveling wave along the line standards in a broadband scheme. However, this approach
has several drawbacks, including the need for multiple lines, the possibility of uncertainties
in their geometry, and the requirement for accurate repeated connection or probing, all of
which contribute to measurement uncertainties [9–11].

To address some of the problems of the multiline method, some techniques have
been introduced, such as the multireflect method [12,13] and the line–network–network
method [14–17]. The multireflect method uses multiple identical reflect standards with
different offsets to provide broadband measurement of the propagation constant. However,
because it requires multiple identical independent standards, it is susceptible to repeata-
bility errors due to repeated connection or probing. In addition, the propagation constant
must be solved using optimization techniques that could diverge if not well conditioned.
The line–network–network method involves moving an unknown symmetric and recip-
rocal network along a transmission line and solving for the propagation constant using
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the derived similarity equations. This method has limitations, such as the restriction to
three offsets, which limits the frequency range, and the requirement to use symmetric
and reciprocal offset networks. The results of relative effective permittivity measurements
using this method were presented in [18], highlighting the sensitivity and limitations of
this solution.

It is noteworthy that there is a significant amount of literature discussing the broad-
band measurement of the propagation constant using only two line standards of varying
lengths, commonly known as the line–line method [19–22]. Despite the different mathemat-
ical formulations used, all these methods are based on solving the characteristic polynomial
of the eigenvalue problem associated with the thru–reflect–line (TRL) calibration [23]. How-
ever, because of the use of only two lines, which often have a significant length difference to
cover lower frequencies, the result of the propagation constant exhibits multiple resonance
peaks, caused by integer multiples of half-wavelength occurrences in the electrical length of
the transmission lines. To mitigate this issue, some authors have proposed post-processing
techniques to filter the resonance peaks [24,25].

There are several indirect techniques for determining the propagation constant of
transmission lines, which involve evaluating the permittivity of materials separately. These
methods can be broadly classified into two categories: the resonant method and the
transmission/reflection method. The resonant method, described in [26,27], estimates the
permittivity from the S-parameters at the resonant frequencies, resulting in measurements
only at specific frequencies. In contrast, the transmission/reflection method estimates the
permittivity of a sample placed between two waveguides from the measured transmission
and reflection coefficients. This method can be implemented using various configurations
such as free space, rectangular waveguide, and coaxial line, as discussed in [28–32].

This paper aimed to introduce a novel method for measuring the propagation constant
using a single transmission line standard without the need for prior calibration of a two-port
VNA. The proposed approach builds on the general idea presented in [14], where an
unknown network is shifted along a transmission line. Unlike the previous solutions,
our method is not limited by the number of offsets and can handle asymmetric and
non-reciprocal networks. A weighted 4× 4 eigenvalue problem is proposed to combine
all offset measurements, inspired by the modified multiline method introduced in [33].
One of the key advantages of our approach is that it requires only one transmission
line, which enables equations similar to those of the multiline method. The proposed
method eliminates cable reconnection, ensuring high repeatability, with uncertainties
mainly due to the dimensional motion of the unknown network and the intrinsic noise
of the VNA. The effectiveness of the proposed method is demonstrated on a commercial
slab coaxial airline with measurements conducted using three different VNA brands. This
paper presents the mathematical derivation of the proposed method and experimental
measurements, demonstrating its accuracy and high repeatability, even when different
VNAs are used. The proposed method offers a promising alternative to existing methods
for measuring the propagation constant.

The remainder of this paper is structured as follows. In Section 2, we provide a detailed
explanation of the mathematical derivation of the eigenvalue problem formulation that
allows for the adaptation of the multiline method. Subsequently, in Section 3, we discuss
the use of normalized eigenvectors to extract the complex exponential terms, which contain
the propagation constant, and the utilization of least squares to derive an accurate estimate
of the propagation constant. In Section 4, we describe the experimental setup, where
we perform measurements using various VNAs and present the measured propagation
constant of the slab coaxial airline, as well as a comparison with EM simulation. Finally,
a conclusion is given in Section 5.

2. Formulating the Eigenvalue Problem

The general idea of the measurement setup is to move an unknown network along a
transmission line. For each movement of the network, either to the left or to the right, we
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created two offset elements that are complementary to each other. When the offset length is
zero, the offset elements are reduced to a thru connection, which we refer to as the reference
plane. An illustration of this concept is shown in Figure 1.

Left error box Right error box

Network

reference plane
(zero offset)

transmission line

Figure 1. Illustration of network offset on a transmission line.

Before proceeding with the mathematical derivation, we need to define the sign
convention for the offset shift. In our analysis, we define that moving the network to the
right results in a positive offset, while moving the network to the left results in a negative
offset. This convention is shown in Figure 2 as modeled by the error box model of a
two-port VNA [34].

Network

Measurement plane

offsetError box Complementary offset Error box

Figure 2. VNA two-port error box model of a network offset by a length li (positive or negative).
Each offset results in two complementary offset boxes. All blocks are given by their T-parameters.

With the definition of the offsets in Figure 2, the measured T-parameters of the offset
network by the length li are given as follows:

Mi = kakb︸︷︷︸
k

[
a11 a12
a21 1

]
︸ ︷︷ ︸

A

Li NL−1
i

[
b11 b12
b21 1

]
︸ ︷︷ ︸

B

, (1)

where k, A, and B are the error terms of an uncalibrated two-port VNA. The matrices Li
and N are given as follows:

Li =

[
e−γli 0

0 eγli

]
, N =

−S11S22+S12S21
S21

S11
S21

−S22
S21

1
S21

. (2)

Here, γ represents the propagation constant of the transmission line and {S11, S12, S21, S22}
are the S-parameters of the network N. The S-parameters of the offset network are generally
unknown, and the network can be asymmetric or non-reciprocal. However, the network must
satisfy some basic criteria, which are listed below:

1. All S-parameters must be non-zero within the considered frequency range (|Sij| > 0).
2. The S-parameters of the network should not change as the network is moved.
3. The network should not lead to the generation of additional modes along the trans-

mission line.

Although the first condition is unique to our method’s formulation, the remaining
two conditions are also similar to the multiline method [8,33], which requires single-mode
propagation and repeated error boxes. Fortunately, it is not difficult to design a system
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that satisfies these requirements. We will show this later in a Section 4, where we used a
commercial sliding tuner that was not designed for our application, but met our conditions.

We now define the T-parameters of a new network by taking the difference in the
T-parameters of two offset networks of different lengths li and lj, which is given by

N i,j = Li NL−1
i − LjNL−1

j

= νi,j

 0 S11
S21

e−γ(li+lj)

S22
S21

eγ(li+lj) 0

,
(3)

where
νi,j = e−γ(li−lj) − eγ(li−lj). (4)

The expression in (3) is very similar to a line standard in multiline calibration, but now,
the line standard is described by an antidiagonal matrix and with additional multiplication
factors. We define an equivalent measurement of a line standard by

Mi,j = Mi −M j = kAN i,jB. (5)

Similar to the multiline calibration, we also need an equation that describes the inverse
of the measurements. This is given by

M̂i,j = M−1
i −M−1

j =
1
k

B−1N̂ i,j A−1, (6)

where the matrix N̂ i,j is given by

N̂ i,j = L−1
i N−1Li − L−1

j N−1Lj

= −νi,j

 0 S11
S12

e−γ(li+lj)

S22
S12

eγ(li+lj) 0

.
(7)

Given the expressions in (5) and (6), we can construct an eigenvalue problem in terms
of A as follows:

Mi,j M̂n,m = AN i,jN̂n,m A−1, (8)

where the matrix product N i,jN̂n,m is given by

N i,jN̂n,m = −κνi,jνn,m

[
e−γ(l+i,j−l+n,m) 0

0 eγ(l+i,j−l+n,m)

]
, (9)

with
κ =

S11S22

S21S12
, l+i,j = li + lj, l+n,m = ln + lm. (10)

To have a valid eigenvalue problem, we need at least three unique offsets, where one of the
offsets ln or lm can be equal to li or lj, but li 6= lj, or vice versa. However, with three offsets,
we have three possible pairs of the eigenvalue problems. In fact, for N ≥ 3 offsets, we have
N(N − 2)(N2 − 1)/8 possible pairs of eigenvalue problems. This is because, for a set of N
offsets, we have N(N − 1)/2 pairs, and when we create pairs from N(N − 1)/2 pairs, we
substitute the equation into itself, resulting in N(N − 2)(N2 − 1)/8 pairs of pairs.

To address the issue of multiple eigenvalue problems, we refer to our previous work
in [33,35], where a similar problem was presented in the context of multiline calibration.
This problem was solved by combining all measurements using a weighting matrix, reduc-
ing the problem to solving a single 4× 4 eigenvalue problem, regardless of the number of
lines. This method not only reduced the size of the problem, but also allowed us to express
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both error boxes A and B simultaneously in a single matrix using Kronecker product
notation. By applying the techniques described in [33,35], we obtain the following set
of equations:

M = kXN, (11a)

M̂
T

P =
1
k

N̂
T

PX−1, (11b)

with

X = BT ⊗ A, (12a)

M =
[
vec
(

M1,2
)
· · · vec

(
Mi,j

)]
, (12b)

N =
[
vec
(

N1,2
)
· · · vec

(
N i,j

)]
, (12c)

M̂ =
[
vec
(

M̂1,2

)
· · · vec

(
M̂i,j

)]
, (12d)

N̂ =
[
vec
(

N̂1,2

)
· · · vec

(
N̂ i,j

)]
, (12e)

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, where, P = P−1 = PT . (12f)

The details of the definition and properties of the Kronecker product (⊗) and the
matrix vectorization (vec()) can be found in [36].

We now formulate the main eigenvalue problem by defining a new matrix W , which
we multiply on the right side of (11a). We call this matrix the weighting matrix. In the next
step, we constructed the weighted eigenvalue problem by multiplying the new equation
on the left side of (11b). This results in

MW M̂
T

P︸ ︷︷ ︸
F

= X NW N̂
T

P︸ ︷︷ ︸
H

X−1. (13)

The expression presented in (13) represents a similarity problem between the matrices
F and H, with X as the transformation matrix. The purpose of introducing the weighting
matrix W is to transform this similarity problem into an eigenvalue problem by forcing H
into a diagonal form. It turns out that if W is any non-zero skew-symmetric matrix, then H
takes a diagonal form [33]. However, we do not only want to diagonalize H, but also want
to maximize the distance between the eigenvalues, which in turn minimizes the sensitivity
in the eigenvectors [37]. For multiline calibration, the optimal form of W was derived
in [33], and since the formulation in (13) is similar to that discussed in [33], we used the
same choice of W with some scaling modifications. The optimal weighting matrix W can
be written as follows, taking into account the scaling factors:

W H = −κ(zyT − yzT), (14)

where

yT =
[
ν1,2eγl+1,2 . . . νi,je

γl+i,j
]
, (15a)

zT =
[
ν1,2e−γl+1,2 . . . νi,je

−γl+i,j
]
. (15b)
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As a result of choosing W as defined in (14), the expression in (13) takes an eigende-
composition form, as given below.

F = X


0 0 0 0
0 λ 0 0
0 0 −λ 0
0 0 0 0

X−1, (16)

where λ is real-valued and proportional to the square Frobenius norm of the matrix W ,
given by

λ =
1
2
‖W‖2

F =
1
2 ∑

i,j
|wi,j|2. (17)

There are two ways to compute W : The first is the direct method, where we already
know the propagation constant γ and the factor κ, which describes the unknown network.
Naturally, the first option is not practical since both γ and κ are unknown. The better
option is to apply a rank-2 Takagi decomposition to the left side of the following equation,
as described in [35] for multiline calibration.

M̂
T

PM︸ ︷︷ ︸
measurement

= N̂
T

PN︸ ︷︷ ︸
model

. (18)

Note that the left side of (18) contains only the measurement data, while the right side
describes the model. Furthermore, the error boxes are not present in (18). To determine W ,
we need to calculate the rank-2 Takagi decomposition. This was performed in two steps.
First, we computed the rank-2 of (18) via singular-value decomposition (SVD), and then,
we applied the Takagi decomposition to decompose the matrix into its symmetric basis [38].
This looks as follows:

N̂
T

PN = s1u1vH
1 + s2u2vH

2︸ ︷︷ ︸
rank-2 SVD from measurement

= GGT︸ ︷︷ ︸
Takagi

(19)

Then, the weighting matrix is given by

W H = ±G
[

0 j
−j 0

]
GT (20)

The derivation process of the matrix W is described in more detail in [35]. To resolve
the sign ambiguity, one approach is to select the answer that has the smallest Euclidean dis-
tance to a known estimate. Such an estimate can be obtained from approximate knowledge
of the material properties of the transmission line.

The last step is the solution of the eigenvectors described by X in (16). The solution of
the eigenvectors was discussed in [33]. It is worth noting that we cannot solve the matrix X
uniquely, but only up to a diagonal matrix multiplication. Therefore, to define a unique
solution for X, we normalized its columns so that the diagonal elements are equal to one.
This is written as follows:

X̃ = Xdiag(a11b11, b11, a11, 1)−1, (21)

where a11 and b11 are part of the error boxes A and B (see (1) and (12a)).

3. Least-Squares Solution for the Propagation Constant

Knowing X̃ from the eigenvector solutions, we can extract the complex exponential
terms that contain the propagation constant. To do this, we first multiplied the inverse of
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the normalized error terms to all vectorized measurements of the offset network. This is
given by

E = X̃
−1

M = diag(ka11b11, kb11, ka11, 1)N ′, (22)

where

M =
[
vec(M1) · · · vec(MN)

]
, (23a)

N ′ =
[
vec
(

L1NL−1
1

)
· · · vec

(
LN NL−1

N

)]
. (23b)

Since we do not know the remaining error terms k, a11, b11, as well as the S-parameters
of the network N, we need to choose a reference offset to eliminate these unknown factors.
For simplicity, we chose the first offset, which we define as zero, i.e., l1 = 0 (any other
choice is also valid). As a result, the positive and negative complex exponential terms are
given as follows, using the indexing notation based on Python.

E[1, 1 :]/E[1, 0] =
[
e2γl2 e2γl3 . . . e2γlN

]
, (24a)

E[2, 1 :]/E[2, 0] =
[
e−2γl2 e−2γl3 . . . e−2γlN

]
. (24b)

Now that we have the complex exponential terms, we can extract the exponents
using the complex logarithm function and determine γ using the least-squares method,
while taking care of any phase unwrapping. First, since we have both the positive and
negative complex exponential terms, we can account for both by averaging them. This was
performed by defining a new vector τ:

τ =
[

e2γl2+1/e−2γl2
2 · · · e2γlN+1/e−2γlN

2

]T
. (25)

The next step is to calculate the logarithm to extract the exponents, which is given by

φ = log(τ) + j2πn, where, n ∈ ZN−1. (26)

The phase unwrapping factor n can be estimated by rounding the difference between
φ and an estimated value. This is given by

n = round
(

Im(φ)− 2γestl
2π

)
, (27)

where γest is a known approximation for γ and l is a vector containing all length offsets
except the reference zero offset. The initial estimate for γest can be derived from the material
properties of the transmission line.

Finally, we can determine γ through the weighted least-squares [39]:

γ =
lTV−1φ

lTV−1l
, (28)

where V−1 is given by

V−1 = I(N−1)×(N−1) −
1
N

1N−11T
N−1, (29)

The matrix I is the identity matrix, and 1 is a vector of ones. The weighting matrix
V−1 is necessary because each measurement has a common reference, which is l1.
Therefore, the correlation between the measurements had to be taken into account by
the matrix V−1 [39].
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Figure 3 summarizes the mathematical derivation presented in this and the previous
sections and provides a visual representation of the steps taken to compute the propaga-
tion constant.

Determine W via 
Takagi decomposition

Solve weighted 
eigenvalue problem

Solve γ via 
least squaresBuild 

measurement
pair differences

Figure 3. Block diagram summary of the proposed propagation constant measurement method.
The matrix M contains the T-parameter measurements of all offsets. The vector l contains the relative
length of the offsets with respect to the reference offset (i.e., the zero offset).

4. Experiment and Discussion
4.1. Measurement Setup

For demonstration purposes, we used the slide screw tuner 8045P from Maury Mi-
crowave as an implementation of the offset network, where the transmission line was a slab
coaxial airline that supported frequencies up to 18 GHz. The tuner is depicted in Figure 4.

Figure 4. Maury Microwave 8045P tuner. The cross-section dimensions of the airline are given as
follows: w = 9.398 mm, h = 40.691 mm, d = 3.040 mm, and p = 2.778 mm.

For our method to work, we required that the unknown network (i.e., the tuner
element) be both reflective and transmissive, as the factor κ in (9) can explode to infinity if
the network is only reflective and can be zero if the network is only transmissive. Ideally,
we wanted κ = 1 to minimize its effect on the eigenvalue problem. However, we also
wanted to avoid scenarios where the network causes the generation of additional modes
or resonances. Therefore, we adjusted the tuner with an already calibrated VNA to tune
the network to a desired response, as shown in Figure 5. It should be noted that this
step of tuning the tuner with an existing calibrated VNA was only necessary because the
tuner was a commercial product designed for circuit matching applications and not for our
purposes. If we were designing the network ourselves, we would not need to measure it
with a calibrated VNA because we would have already designed it to meet our frequency
specifications. Furthermore, the S-parameters of the network were never explicitly used in
the derivation of the propagation constant.
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Figure 5. Calibrated measurement of the tuner after tuning. The highlighted frequency range below
3 GHz is not usable due to small reflection and resonance.

As shown in Figure 5, we set the lower frequency to 3 GHz to avoid very low return
loss and resonances. We then measured the airline using different uncalibrated VNAs.
This was performed to demonstrate that, even if we changed the measurement system,
we would still obtain consistent results because the error boxes would not be affected by
uncertainties caused by connector and cable movement. For the offset lengths, we chose
{0, 21, 66, 81, 84, 93, 117, 123, 171, 192}mm, which ensured that the eigenvalue λ in (16) does
not reach zero in the target frequency range.

The VNAs used for the measurements were: Anritsu VectorStar, R&S ZNA, and
Keysight ENA. The ENA is limited to 14 GHz. All VNAs were placed in the same room
to provide the same room conditions. The power level and IF bandwidth for all VNAs
were set to 0 dBm and 100 Hz, respectively. Due to the low loss of the airline, an average
measurement of 50 frequency sweeps was calculated to reduce noise. Pictures of the
three instruments are shown in Figure 6.

(a) (b) (c)

Figure 6. The VNAs used for the measurements. (a) Rohde & Schwarz ZNA, (b) Anritsu VectorStar,
and (c) Keysight ENA.

4.2. Results and Discussion

All measurements of the different offsets were taken without prior calibration of the
VNAs. The collected data were then read in Python using the scikit-rf package [40]. In
Figure 7, we show the measured magnitude response of S11 and S21 from all three VNAs for
the offset 123 mm. From the figure, we can see that all three VNAs give different responses
because the error boxes are different for each VNA.
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Figure 7. Raw measurements from the three VNAs of the magnitude response of S11 and S21 of the
8045P tuner, at an offset location of 123 mm.

After collecting all raw measurements for all the offsets and from all the VNAs,
the data were processed to extract the propagation constant according to the discussion
in Sections 2 and 3. For an easier and better interpretation of the extracted propagation
constant, we plotted in Figure 8 the real part of the relative effective permittivity and the
loss per unit length of the slab coaxial airline from all three VNA measurements. The real
part of the relative effective permittivity and the loss per unit length are calculated from
the propagation constant as follows:

ε′r,eff = −Re

((
c0γ

2π f

)2
)

(Unitless), loss =
20× 10−2

ln 10
Re(γ) (dB/cm), (30)

where c0 is the speed of light in vacuum and f is the frequency.
The relative effective permittivity and loss per unit length results presented in Figure 8

showed clear agreement between all VNA measurements, demonstrating the high repeata-
bility of the proposed method even when using different VNA setups.
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Figure 8. Extracted measurement of relative effective permittivity and loss per unit length of the
slab coaxial airline, as well as an EM-simulated results for an anodic coating of 15µm and an inner
conductor conductivity of 35% IACS.

We also performed an EM simulation with the dimensional parameters of the airline
given in Figure 4. Unfortunately, we did not have information on the metal types of the
inner and outer conductors. From the appearance of the inner conductor, we believe it
was made of some kind of brass. For the ground plates, we believe they were made of
aluminum because they had a black anodized coating, which is typical for aluminum
components. The anodized layer is often based on aluminum oxide and typically has
a relative permittivity of 8.3 [41]. Since the thickness of the oxide layer and the exact
conductivity of brass were unknown, we ran some values for the thickness of the anodic
layer and the conductivity of brass. We found that a coating thickness of 15µm and a
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relative conductivity of 35% International Annealed Copper Standard (IACS) overlapped
with the measurement shown in Figure 8. The value obtained for the thickness of the anodic
layer is quite typical to obtain a dark black coating [42]. The conductivity of the inner
conductor of 35% IACS (=20.3 MS/m) was within the range of common brass types [43].

The purpose of the simulation was to show that the results obtained from the proposed
method of measuring the propagation constant do indeed translate into the realistic prop-
erties of the transmission line. In fact, with the proposed method, one could characterize
materials in reverse, as in our case the conductivity of the metal.

Another aspect that may be of interest is the quality of the extracted propagation
constant by varying the length and number of offsets. In the results shown in Figure 8, we
used 10 offsets ranging from 0 to 192 mm. Now, we consider different cases. These cases
are listed in Table 1.

Table 1. Considered cases of different offset lengths.

Cases Offset Lengths (mm)

Case 1 0, 21, 81
Case 2 0, 21, 192
Case 3 0, 21, 66, 117, 192
Case 4 0, 21, 81, 93, 117, 123, 192

All offsets 0, 21, 66, 81, 84, 93, 117, 123, 171, 192

In Figure 9, we show the results of the relative effective permittivity and the loss per
unit length of the slab coaxial airline from the VectorStar VNA measurements for all the
cases mentioned in Table 1. Cases 1 and 2 show the results when only three offsets were
considered. Case 2 differs from Case 1 in that we replaced the last offset with a much
longer offset. The results of both Cases 1 and 2 were poor and showed multiple resonances.
For Case 2, we saw more resonances than for Case 1. This was the result of the eigenvalue
crossing zero at multiple frequencies (see Figure 10). In Case 3, we spread the offsets further
to include five offsets. We can see a clear improvement over Cases 1 and 2. We could further
improve the accuracy of the extracted relative effective permittivity and loss per unit length
by further spreading the offsets as in Case 4, where we used seven offsets. In Case 4, we
obtained results of similar accuracy to the case of using all 10 offset lengths.
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Figure 9. Extracted measurement of relative effective permittivity and loss per unit length of the slab
coaxial airline for various combinations of offsets from the VectorStar VNA measurements.

The quality of the extracted propagation constant depends on the eigenvalue λ as
defined in (16). As the eigenvalue approached zero, the eigenvectors became more sensitive,
which in turn affects the calculation of the extracted propagation constant. To visualize
the differences between different scenarios, we present a scaled representation of the
eigenvalue λ for each case. This scaled representation excludes the influence of the network
through the common factor κ, which was invariant over all offset lengths. Since κ > 0 was
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established earlier, variations in the eigenvalues can only be induced by the choice of offset
lengths. Accordingly, we define the normalized version of the eigenvalue by dividing it by
the absolute value of κ, as shown below:

λ =
1
2
‖W‖2

F =
|κ|2

2

∥∥∥zyT − yzT
∥∥∥2

F
=⇒ λ′ =

λ

|κ|2 =
1
2

∥∥∥zyT − yzT
∥∥∥2

F
(31)

In Figure 10, we present a plot of the scaled eigenvalue normalized to its maximum
value, which facilitates a consistent comparison as the number of offsets varies. As illus-
trated in the figure, for Cases 1 and 2, the eigenvalue exhibited multiple zero crossings
at various frequencies. Similarly, in Case 3, the eigenvalue approached zero at several
instances, although to a lesser extent than in Cases 1 and 2. In contrast, in Case 4, the eigen-
value never reached zero, but attained values closer to zero at specific frequencies than
when all 10 offsets were utilized. Ideally, a flat eigenvalue over frequency would be pre-
ferred, but this would necessitate employing even more offsets. This is not different from
the multiline calibration approach proposed in [33], where a finer spacing between lines
resulted in a flatter eigenvalue over the frequency. Therefore, utilizing a broader range of
offset lengths was highly advantageous for enhancing the accuracy of the results across the
frequency. It is also noteworthy that the eigenvalue possessed a bandpass characteristic,
whereby the lowest and highest frequency limits were bound by the largest and smallest
relative offset, respectively.
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Figure 10. The scaled eigenvalue normalized to its maximum for the investigated offset length cases.

For comparison, it is worth noting that the multiline method necessitates the mea-
surement of multiple line standards of different lengths, a process that can introduce
errors due to connector repeatability. Achieving high repeatability in this context poses a
significant mechanical challenge, especially concerning connectors, and automating this
process represents an even greater hurdle. In contrast, our proposed method eliminates
the need for physical contact between the sliding element and the transmission line. Fur-
thermore, although the sliding process was performed manually in the example presented,
it could be automated by employing a linear actuator, thus eliminating the need for any
user interaction with the measurement system. In Table 2, we summarize the comparison
between the proposed method and existing works in measuring the propagation constant
of transmission lines.
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Table 2. Comparison between the proposed method against previous published work on extracting
the propagation constant of transmission lines.

Method Frequency
Range

Solution
Method

Measured
Standards

Repeatability
Accuracy

Multinetwork
(this paper). Broadband. Matrix decomposition

and linear least squares.
Single line with

sweepable network. Very high.

Multiline
[8,33,39]. Broadband. Matrix decomposition

and linear least squares.
Multiple lines

of different lengths. Good.

Two lines
[19–23]. Limited. Quadratic equation. Two lines

of different lengths. High.

LNN method
[14–18]. Limited. Quadratic equation.

Single line with
sweepable symmetric

and reciprocal network.
Good.

Multireflect
[12,13]. Broadband. Non-linear optimization. Multiple symmetric

reflect at different offsets. Good.

5. Conclusions

We presented a new broadband method for measuring the propagation constant of
transmission lines that does not require the prior calibration of a two-port VNA or the use
of multiple line standards. This method provides accurate results by emulating the use of
multiple line standards through sweeping an unknown network along a transmission line.
The shifted network does not have to be symmetric or reciprocal, but it must exhibit both
transmission and reflection properties and remain invariant when moved along the line.
The experimental results obtained using different VNAs on a slab coaxial airline with a
slider tuner showed consistent agreement with each other and with the EM simulation.

One of the significant advantages of the proposed method is that it uses the same
eigenvalue formulation as multiline calibration, but without the need for disconnecting
or moving the cables. As a result, it eliminates errors related to connector repeatability
and provides improved broadband traceability to the SI units. Moreover, since the offsets
are implemented by simply moving the unknown network laterally, the process can be
easily automated using an automated linear actuator. Therefore, the proposed method can
accurately measure the propagation constant without requiring any physical interaction
from the user on the measurement system.
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