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Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering,
Al. Mickiewicza 30, AGH University of Science and Technology, 30-059 Krakow, Poland; wch@agh.edu.pl (W.C.);
kmotyka@student.agh.edu.pl (K.M.)
* Correspondence: kwiecien@agh.edu.pl; Tel.: +48-12-617-2812

Abstract: The paper was devoted to the application of saliency analysis methods in the performance
analysis of deep neural networks used for the binary classification of brain tumours. We have
presented the basic issues related to deep learning techniques. A significant challenge in using deep
learning methods is the ability to explain the decision-making process of the network. To ensure
accurate results, the deep network being used must undergo extensive training to produce high-
quality predictions. There are various network architectures that differ in their properties and number
of parameters. Consequently, an intriguing question is how these different networks arrive at similar
or distinct decisions based on the same set of prerequisites. Therefore, three widely used deep
convolutional networks have been discussed, such as VGG16, ResNet50 and EfficientNetB7, which
were used as backbone models. We have customized the output layer of these pre-trained models
with a softmax layer. In addition, an additional network has been described that was used to assess
the saliency areas obtained. For each of the above networks, many tests have been performed using
key metrics, including statistical evaluation of the impact of class activation mapping (CAM) and
gradient-weighted class activation mapping (Grad-CAM) on network performance on a publicly
available dataset of brain tumour X-ray images.

Keywords: deep learning; convolutional neural networks; CAM; Grad-CAM; binary brain
tumour classification

1. Introduction

Classification and detection methods that rely on deep learning approaches learn to
predict classes or detect objects. These approaches have the ability to automatically extract
features from the data and can achieve good results. They often do not have difficulty
generalising different datasets whose characteristics may vary. The popularity of deep
learning has motivated researchers to search for methods that are useful for medical
applications. Some papers have focused on deep learning methods that use various images
of different diseases of the brain. In this paper, we suggest using convolutional neural
networks (CNNs) that can use images as input directly, combined with methods that
determine saliency areas, to make a more reliable classification of brain images with and
without tumours.

A brain tumour is the growth of cells within the brain in an abnormal way. The prog-
nosis of a brain tumour depends on many factors, for example its location, its histopotology,
and in general, a correct detection and diagnosis is crucial for successful treatment plan-
ning. Early detection of brain tumours is crucial and is a very important step of patient
diagnosis [1]. It is extensively investigated by many researchers and performed by using,
e.g., magnetic resonance image (MRI), or computed tomography. Naturally, manual inspec-
tion of such images aimed at detection of brain tumour cases is a time-consuming process,
so proper automatic brain tumour diagnosis receives great attention about research on
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medical image processing. It is worth mentioning that achieving better accuracy in brain
tumour image classification remains a challenge.

The saliency maps detect the dominant object and various parts of the background.
They should include low- and high-level factors, such as colour, contrast, suppressed
features, the possibility of existence of more centres of mass, etc. The idea of a saliency
map is based on the behaviour of living beings that guide attention and gaze to the most
conspicuous region in a visual scene. The saliency-map theory emerges and is implemented
in several domains of science such as psychology, neuroscience, machine vision, defence,
logistic, medical diagnosis, advertising, and diagnosis [2].

1.1. Related Work

Some papers have focused on different saliency methods and artificial intelligence (AI)
methods in various medical applications. For example, in [3] the authors quantitatively
evaluated several saliency methods (e.g., Grad-CAM) across multiple neural network
architectures in the context of aid in diagnostic decision making. The authors found that
in the case of chest X-ray interpretation, all saliency methods tested perform significantly
worse compared to the human benchmark. Wang in [4] examined gradient-based saliency
mapping on an artificial intelligence regression model to determine hand bone age from
X-ray radiographs. In the proposed approach, the partial derivative (PD) of the inferred
age with respect to the intensity of the input image at each pixel served as a saliency
marker to find sensitive areas contributing to the outcome. Ghosh et al. in [5] studied the
interaction of robots working in 3D space and proposed a bio-inspired bottom-up attention
model that takes advantage of event-driven sensing to generate depth-based saliency maps
that allow a robot to interact with complex visual input. Amorim et al. in [6] proposed
an approach to evaluate the faithfulness of the saliency maps by introducing natural
perturbations in the image, based on the substitution of the oppose class. The authors
studied their impact on evaluation metrics adapted from saliency models using a breast
cancer metastases detection dataset. The results presented showed that Grad-CAM, Guided-
GradCAM, and gradient-based saliency map methods are sensitive to natural perturbations
and correlate with the presence of tumour evidence in the image. Ayhan et al. [7] analysed
three different network architectures and developed ensembles of DNNs to detect diabetic
retinopathy and neovascular age-related macular degeneration from retinal fundus images
and optical coherence tomography scans. The results were validated on the basis of a direct
comparison of saliency maps with the expert annotations of disease-specific pathologies
and perturbation analyses using also expert annotations as saliency maps.

Some studies have focused on the applicability of methods based on the use of machine
learning and deep learning techniques for the classification of brain tumours. For example,
Saeedi et al. in [8] proposed AI methods to classify three types of brain tumours. They
developed a 2D CNN, a convolutional auto-encoder network, and six common machine
learning techniques. In [9], the pre-trained EfficientNetB0 architecture, for brain tumour
classification, was applied with transfer learning. The dilated U-Net-based CNN model
was introduced in [10]. Khan et al. [11] proposed an automated multimodal classification
method using two pre-trained convolutional neural network models (VGG16 and VGG19),
for the classification of types of brain tumours. In turn, Amin et al. [12] integrated a
convolutional neural network with a discrete wavelet transform used for the fusion process
to obtain more information about the tumour region compared to a single sequence of
MRI, to better differentiate tumour and non-tumour regions. Sajjad et al. in [13] proposed
multi-grade brain tumour classification system with a CNN, in which a pre-trained CNN
model was tuned with data augmentation. In [14], the basic inception residual network
(Inception-ResNet-v2) and the deep dense network were employed for three-class brain
tumour classification. This model had three dense layers before the softmax layer. In turn,
in [15], a hybrid approach based on convolutional neural network and long short-term
memory (CNN-LSTM) for classifying brain tumour was presented.
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1.2. Contribution

Our contribution addresses the demonstration of the usefulness of various CNNs with
saliency areas to detect brain tumours in images, and is an attempt to answer a question of
how these networks take similar or distinct decisions based on the same set of prerequisites.

The primary aim of this paper is to examine the reasoning behind the predictions made
by deep neural networks. Although a deep network may produce high-quality predictions,
it is not always an indication that the prediction was based on accurate assumptions.
In contrast to other machine learning methods, where knowledge is typically represented
in a human-readable format, deep learning knowledge is gathered in the form of neurone
weights, which are often challenging for humans to interpret.

With the wide array of neural network architectures available today, it is crucial to un-
derstand their decision-making processes. Furthermore, understanding the discrepancies
in knowledge processing between various networks is essential, such as where the network
concentrates its attention on the analysed image when making decisions. An additional
consideration is to elucidate the influence of knowledge transfer on saliency maps. A feasi-
ble approach to achieve this is to compare the resultant saliency maps in the two scenarios.
Another significant concern is the quality of the dataset used for training. If the dataset is
of low-quality, the resulting trained network may arrive at incorrect decisions or base its
decisions on flawed assumptions.

Therefore, we would like to provide an insight into the issues that occur while using
these methods. In this paper, we focus only on the binary brain tumour image classification
known as brain pathology detection, which classifies the brain image as normal or abnormal.
This approach is especially useful during population screening. Although there are papers
on the topics of saliency maps, deep learning methods, and the pathological brain, we
have found none that covers all three of these topics. For that reason, our experiments
consist of testing four CNNs on a publicly available dataset of X-ray images [16] for brain
tumour detection. We use three pre-trained VGG16, ResNet50, EfficientNetB7 networks
and our own convolutional network. For each of the above networks, to find regions of
an image that were influential to the classification task, we include the CAM and Grad-
CAM methods.

It should be mentioned, that the usage of various pre-trained CNNs for computer
vision tasks have been described in some papers. For example, in [17], deep learning
architecture based on the decision fusion of image quality coming from six types of CNNs
has been presented.

1.3. Framework of Research

Our methodology is shown in Figure 1, where the outcome represents the performance
of the model during binary brain tumour classification. An image was fed into the network
after normalisation. Furthermore, data augmentation was used before the training process,
to balance the image dataset by making image modifications. To compare the CAM and
Grad-CAM methods, the performance was calculated using the intersection over Union
(IoU) and the centre of mass (CoM). For the VGG16, ResNet50, EfficientNetB7 architectures,
the transfer learning technique was used, in which pre-trained models (with the last
modified layers) were again trained with new data to obtain a better performance of the
models to solve similar tasks.

1.4. Structure

The rest of the paper is given as follows: Section 2 is devoted to the discussion of
existing deep network architectures used as backbone models for image analysis, and the
analysis of saliency areas as methods of interpreting the results of deep neural networks.
Section 3 explains the popular indicators used to perform statistical comparisons of saliency
map analysis and describes the results obtained, including the impact of the CAM and
Grad-CAM methods. Concluding remarks and future work are given in Section 4.
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Figure 1. Evaluation framework of saliency methods.

2. Methods
2.1. Architectures of Deep Neural Networks

Intensive studies on deep learning methods have produced several neural network
models in recent years. The purpose of CNNs is to extract higher-order features from data
by convolution. These networks are great for recognising objects in images, which was one
of the main reasons why the world appreciated the power of deep learning. CNNs prove
to be most useful in problems where the input data have a specific structure (images or
sounds). Values in this type of data create spatial relationships.

There are many varieties of CNNs that differ in layer arrangement. There are generally
three main groups of layers:

• input layer, which processes the spatial data of the image;
• feature-extracting layers—they are arranged in a general sequence containing a con-

volutional layer that uses numerous filters to learn various features of data received
from the input layer (the obtained result is transformed using the ReLU activation
function), and a pooling layer (the task is to gradually reduce the spatial size of the
data representation);

• classification layers or output layer (in most cases, it is a fully connected layer) used to
compute class scores as a result of network operation.

There are many convolutional networks; it is impossible to discuss all of them. There-
fore, we will limit ourselves to a brief presentation of the VGG16, ResNET50, and Efficient-
NetB7 architectures used in our research as backbone models. For these three selected
ready-made network architectures, transfer learning was used to obtain high-precision
models for our problem. In addition, our simple convolutional neural network is used
for the evaluation of the network performance for the problem considered without using
transfer learning, as in previous architectures.

The first model considered, the VGG architecture, was defined by the Visual Geom-
etry Group, who demonstrated that network depth is a critical factor in network perfor-
mance [18]. It had, depending on the version, 16 to 19 weight layers and worked in such
a way that in subsequent layers the resolution of the input image was reduced, while
the number of filters used was increased. VGG16 has thirteen convolutional layers, five
maximum pooling layers, and three dense layers. It consists of 21 layers, but only has
16 layers with learnable parameters. Moreover, this model has convolution layers of a
3 × 3 filter with stride 1, max pooling layers of a 2 × 2 pool size with stride 2. It is worth
adding that in the case of convolutional layers, the only activation function used by the
authors was ReLU, and after all layers, three fully connected layers were used. The first
two layers consisted of 4096 neurones, and the last one, due to the problem being solved,
contained 1000 neurones and the softmax activation function.
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The Residual Network (ResNet) model [19] uses “skip connections” to solve the
vanishing gradient problem, allowing inputs to skip some convolutional layers. ResNet50
denotes the architecture that can work with 50 layers. An important part of the ResNet
architecture includes so-called residual blocks. They introduce the addition of the input
to the output of a series of convolution blocks. The ResNet network is built in such a way
that residual connections occur every few layers. Those networks become more effective
with each added layer (until they are over-trained), and the more layers the network has,
the more residual connections have a positive effect on its performance. For the ResNet
networks that have more than 34 layers, special structures (three-layer bottleneck blocks)
consisting of three layers are used: 1 × 1, 3 × 3, and 1 × 1 convolutions. Adding more
convolutional layers per block, widening the convolutional layers, or increasing their filter
sizes might increase the representational power of residual blocks.

The EffcientNet model proposed in [20] uses a method that uniformly scales all three
dimensions (depth, width, and resolution) using an effective compound coefficient. It was
proven that scaling in three dimensions simultaneously gives the best results of the overall
performance of the model considering the mutable available resources compared to scaling
in single dimensions. The network is fine-tuned to obtain maximum accuracy. Moreover,
the network is penalised for a slow inference time and if it is very computationally heavy.
In order to significantly improve network performance, the baseline architecture must
also be appropriate. When creating the EfficientNet network, their authors defined a
base architecture mainly consisting of a mobile inverted bottleneck. The EfficientNet
contains models from B0 to B7. In the presented experiments EfficientNetB7 is used as a
backbone model.

The last network, simply named CNN, is our model created. It is less complicated,
and it can be treated as an example that confirms the need to use transfer learning. This
network consists of four convolutional layers, where some of which are pooling layers
(with max pooling operations). The first convolutional layer has 16 filters of size 2 × 2,
all subsequent layers have filters of size 3 × 3. In addition, as the depth of the network
increases, the number of filters increases to allow more abstract features to be captured.
As mentioned, the first layer has 16 filters; the next ones have 32, 64, 128, respectively.
The ReLU ativation function was used. All these layers are followed by a global averaging
pooling. Moreover, the softmax activation function was added to the output layer (as a
classification layer).

2.2. Saliency Maps

Saliency maps give better insight into the decision making of neural networks. They
contain information on recognising objects from the background of images and might help
to understand what the individual convolutional layers focus on. Methods of determining
saliency areas can help you assess which networks have performed well. These areas can
show that some networks focused on the wrong parts of the image. Because ground truth
segmentations for medical imaging are time consuming, expensive to obtain, and generally
not accessible, we decide to make binary comparisons between different network models
and saliency maps.

2.2.1. Class Activation Mapping

Convolutional networks can act as object detectors. If the last fully connected layer of
neurones is replaced by a global average pooling (GAP), the quality of the achieved object
location will be very high. The class activation mapping (CAM) method [21] can be used
to create saliency areas, and is described as the summation of the dot product of the last
convolutional feature maps and the class-wise weights of the fully connected layer (applied
after global average pooling). This method is distinguished by the fact that localisation
objects can be obtained in a single forward propagation of the network, but the results are
very general. In order to use the CAM method, the neural network must mainly consist of
convolutional layers and just before the output layer it should perform the GAP operation
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on the feature maps, and use the result of this operation as the input to the fully connected
layer. With this linkage structure, we can identify the influence of given image regions on
a decision by backprojecting the output layer weights onto convolutional feature maps.
As a result, GAP returns the spatial average of the feature map of each neurone in the last
layer of the network, and the weighted sum of these values is used to calculate the network
performance. To calculate CAM we perform similar calculations. Therefore, in the case of
image classification, this process can be described as follows: Let fk(x, y) be the activation
value of the neurone k of the output layer for the value at position (x, y) in the feature map.
Then, for neurone k, the result of global joining averaging is as follows:

Fk = ∑
x,y

fk(x, y) (1)

For the class c, the input to the classifier softmax can be given as:

Sc = ∑
x,y

∑
k

wc
k fk(x, y) (2)

where wc
k denotes the weight of the Fk value for the class c. Therefore, the activity map Mc

for class c can be defined as follows:

Mc(x, y) = ∑
k

wc
k fk(x, y) (3)

As one can see Sc = ∑x,y Mc(x, y), so the class activation map directly indicates the
weight of a given activation in the spatial grid of pixels (x, y) leading to the classification of
the image into a given class. As with other methods, units should be activated by certain
visual shapes, so fk is a map of the occurrence of shapes in the image. In this case, the class
activation map is a weighted linear sum of the occurrence of successive shapes in different
places in the image space. This means that by extending the class activation map to the
size of the input image, we are able to identify which part of the image had the greatest
impact on decision making. Therefore, the above method could be used as a saliency map
to assess the performance of deep neural networks.

2.2.2. Grad-CAM Method

The Grad-CAM [22] method uses a gradient to combine feature maps, so it does not
require changes in the network architecture and can be used for a wide variety of CNN
models. This method uses the gradient information flowing into the last convolutional
layer to assign weight values to each neurone for a particular decision. According to [22],
Grad-CAM is a generalisation of the CAM method for more convolutional network ar-
chitectures. The CAM method creates a saliency map for a convolutional network for
image classification if we add a global average pooling layer before the softmax layer.
The Grad-CAM method obtains the location of important regions in the image during one
forward propagation and partial backpropagation for each image.

Given the input image and the category of interest as the output, we propagate forward
through the convolutional part of the network and then through the task-specific part of
the network to obtain the result for the category. The gradients of all other classes are set
to 0, and the classes of interest to 1. Then the gradient signal is backpropagated to the
convolutional feature maps that we are interested in and want to combine to compute the
resulting saliency map.

As shown in [22], to obtain a LC
Grad−CAM saliency map with width and height for class c,

we first calculate the gradient of the result of the last layer of the network before softmax yc

with respect to feature map activation Ak of the convolutional layer. In this way, we obtain
multidimensional gradients with the size of feature maps. These gradients flowing back are
global averaged pooled over two dimensions: width i and height j, to calculate the neurone
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weight αc
k, which represents a partial linearisation of the deep network downstream from A:

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(4)

Then, we multiply the weights αc
k with the corresponding feature maps Ak, we sum

up the components of the final saliency map, and follow this weighted combination by the
ReLU function to obtain:

LC
Grad−CAM = ReLU(∑

k
αc

k Ak) (5)

3. Results of Experiments and Discussion

To test the performance of saliency areas, we decided to choose one of the most
popular types of medical datasets available on the Kaggle community platform [16], which
contains 4600 X-ray images of brains with labels and separate features. Figure 2 shows brain
images samples for two classes (tumour and healthy). For quality analysis, we compare
the ability of state-of-the-art saliency maps in classifying images of brain tumours on three
deep learning networks, i.e., VGG16, ResNet50, EffcientNetB7, and own model CNN (see
Figure 3).

Figure 2. Brain image examples.

Pictures of sick people make up about 55% of the total images. The dataset had to be
divided into two sets: 80% of all images were included in the training set, and 20% in the
testing set. In the first stage, data preprocessing was performed. The images have been
scaled to size 150 × 150 × 3. It was also necessary to apply data augmentation consisting
of increasing the number of input images through appropriate rotations, zooming in,
and changing the sharpness.

The upper layers of the models were omitted in order to apply transfer learning.
The results obtained for the architectures in this way were compared with the results for
a fairly simple convolutional network consisting of a few layers. The parameters of all
layers of the base models (VGG16, ResNet50, EfficientNetB7) were treated as constant,
because research showed that such models were able to achieve much better accuracy.

Based on our preliminary research (aimed at determining various areas of input
images, e.g., cross-sectional brain, covering the neck and skull, covering the eye sockets,
normal brain) to compare the methods that determine the saliency areas, we decided to
limit our considerations on the tests of the CAM and Grad-CAM methods.

The statistical comparison of the saliency maps obtained using the CAM and Grad-
CAM methods involved the use of two metrics described below.
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Figure 3. Scheme of the architectures used in the research.

3.1. Metrics

There are various metrics that have been designed for saliency evaluation. Moreover,
it should be mentioned, there are some quality assessment models with saliency detection,
for example, the image quality evaluation metric based on saliency or the reduced-reference
of point clouds via content-orientated saliency projection. For example, Zhang et al. [23]
proposed a visual saliency-induced metric that assumes that the visual saliency map of
an image correlates with perceptual quality. In turn in [24], the image-based reduced-
reference point cloud quality assessment method via saliency projection was proposed.
In our manuscript, the performance comparison of the presented approaches was con-
ducted using popular indicators, including the intersection over union (IoU), and the
centre of mass (CoM).

IoU [25] is a metric (also known as the Jaccard index) used to assess the coverage of
two sets by dividing the overlap between the predicted (A) and ground truth (B) annotation
by their union as follows:

IoU =
|A ∩ B|
|A ∪ B| (6)

This metric was used to compare the similarity of the saliency areas determined by
different methods. In order to be limited to the area where the neural network was mainly
focused, binarization had to be performed first. The Otsu method was used, which allows
automatic determination of the binarization threshold. A fixed binarization threshold for
the problem being solved would not work correctly because it depends on the network
architecture used (some of them return stronger activation of neurones) and also on the
input image (a brain tumour is sometimes more visible). The binarized saliency maps were
compared using the IoU metric, and then the average coverage for all test images was
also calculated.

CoM is another statistical method for comparing the performance of saliency maps.
For this purpose, the geometric CoM was determined for each saliency map using the
following formula: Xcm =

∑W
i=1 ∑H

j=1 xij ·pij
W·H

Ycm =
∑W

i=1 ∑H
j=1 yij ·pij

W·H

(7)

where Xcm and Ycm are coordinates x and y of the mass centre, x and y are coordinates of
pixels, H is the image height and W is the image width, and pij indicates the value of the
pixels at position i, j.
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Moreover, for the performance analysis of selected networks, several performance
indicators, i.e., accuracy, precision, and recall, have been calculated based on the confusion
matrix. Accuracy refers to the ratio of all correctly classified instances to the overall input
instances. The recall measure (also called sensitivity) informs about the proportion of actual
positives that have been correctly classified. Another metric is precision, which is the ratio
of true positives to all instances classified as positives (true or false).

3.2. Comparison of Convolutional Networks

We developed many experiments to compare the performance of the trained networks.
Confusion matrices in the context of the best results obtained for these networks are shown
in Figure 4. As shown in the confusion matrix, in most cases from the testing set, VGG16
performs very well. In the case of faulty operation of the VGG16 network, a situation in
which the model considers a healthy person to be sick more often than not recognising a
brain tumour, so the sensitivity of the model is higher than the specificity. In the case of the
ResNet50 model, sensitivity is at a lower level than specificity. This is a less desirable result
because sensitivity is very important in diseases. For EfficientNetB7, the best specificity
and sensitivity were obtained; for the test images this network made only 12 misdiagnoses.
Our simple convolutional network makes significantly more errors compared to previous
models (78 in total for the testing set), and the number of errors in the case of sick people is
more than two times lower.

Figure 4. Confusion matrices for considered networks.

Therefore, we have a summary describing the most important features of each net-
work in Table 1. Moreover, Figure 5 visualises the training accuracy and testing accuracy
for the considered models within 40 epochs. For three models based on backbone net-
works, the selected number of epochs was sufficient, because the value of model precision
stopped increasing.
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Table 1. Comparison of trained convolutional network architectures.

Architecture Layers
Number

Total
Parameters

Trainable
Parameters

Train
Accuracy

Test
Accuracy Recall Precision

VGG16 16 + 3 14,978,370 263,682 98.42% 97.88% 98.55% 97.71%
ResNet50 50 + 3 25,947,394 2,359,682 98.99% 97.66% 95.65% 98.17%
EfficientNet 813 + 3 67,047,193 2,949,506 98.37% 98.88% 98.96% 98.40%

CNN 10 97,458 97,458 90.92% 91.96% 95.45% 87.41%

Figure 5. Training and validation accuracy of the proposed models.

As you can see, the number of layers varies greatly between architectures, from
10 layers for a simple CNN network to 813 layers for a network based on the EfficientNetB7
model. It is worth noting that although the network based on EfficientNetB7 has more than
15 times more layers than the network based on ResNet50, thanks to the scaling applied in
the first of the considered architectures, it has only about 2.5 times more parameters. Taking
into account the number of parameters that change during training, it can be seen that
EfficientNetB7 has most of them (2,949,506), and CNN has the least (97,458). The simplest
network (CNN) has the worst efficiency, which is visible in the sensitivity and specificity
values, which indicate the percentage of sick and healthy people correctly diagnosed.
Among the trained models, there are those that have greater specificity, but also those that
have better sensitivity. Generally, for medical applications and screening, a model that is
more sensitive would obviously be a better choice because it is better to label a healthy
person as sick than to downplay someone’s illness.
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3.3. Results Obtained by the CAM and Grad-CAM Methods

In the case of the CAM and Grad-CAM methods, the resolution of the obtained saliency
map depends on the size of the filters in the layer for which it is determined. Thus, if we
compute significance maps for the topmost layers, the more convolutions and pooling
operations that are performed, the lower the resolution of the resulting map.

The first method we decided to thoroughly test was CAM. Images showing brain
tumours were taken for the study. In this case, the network should focus on it when
making decisions, which should increase the consistency of features that affect the decisions
made by the network. The conducted research confirms this and shows that the average
IoU value for the CAM method for images containing a brain tumour is approximately
61.75%, and for all images this value is approximately 61.19%. In addition, in the case of
images with a brain tumour, coverage for the best-performing networks, ResNet50 and
EfficientNetB7, increases.

Figure 6 shows the results obtained. Each graph in this figure shows a comparison
(using IoU) of the results for two different network architectures. The red horizontal line
represents the average value of the IoU parameter for all analysed images. The most
overlapping sets occur for the ResNet50 and EfficientNetB7 networks (the IoU parameter is
set to 85.4%). The lowest coverage (with an average of 44.7%) is for the pair of the simple
CNN and VGG16 networks.

Figure 6. Binary comparison of IoU for all combinations of trained networks for the CAM method.

The second parameter used to evaluate the results of the CAM method for different
architectures, which was based on the geometric centre of mass, also indicated the smallest
difference between the centres of mass for the ResNet50 and EfficientNetB7 networks
(see Figure 7). On average, it is about 8.7% of the diagonal length of an image when we
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analyse all images and 9.2% of the diagonal when we consider only images containing
the brain tumour. Thus, the saliency areas for these two architectures are the most similar.
When comparing the CoM method of the VGG16 network with the CoM of the ResNet50
and EfficientNetB7 networks, very small differences can be obtained. This may lead to
the conclusion that the VGG16 network indicates a similar saliency area but consists of
fewer pixels.

(a) (b)
Figure 7. Matrix showing the average difference of Cartesian distance for four neural network
architectures (the CAM method); (a) case: all test images, (b) case: all test images containing the
brain tumour.

To verify the quality of the Grad-CAM method, we decided to conduct similar ex-
periments. For this purpose, Figure 8 shows the results obtained for IoU. The highest
coverage value, measured by the IoU parameter, was obtained for the combination of
ResNet50 and EfficientNetB7, and it was 85.1%. For the combination of CNN and VGG16
networks, the coverage was 56.2% (note that for the CAM method it was lower). In the case
of these networks, we observe very large fluctuations in the value of the IoU parameter,
which may indicate the lack of stability of the saliency areas. For the CNN-ResNet50
and CNN-EfficientNetB7 pairs, the IoU factor was 60.2% and 62.7%, respectively. For the
VGG16-ResNet50 and VGG16-EfficientNetB7 pairs, this parameter was equal to 69.9% and
71.1%, respectively.

Figure 9 shows a comparison of the average Cartesian distance for the centres of mass
of the significancy maps using the Grad-CAM method. The smallest mean difference in
CoM occurs for the pair of the EfficientNetB7 and VGG16 networks, as well as Efficient-
NetB7 and ResNet50. The largest value was obtained for the VGG16 and CNN networks.
It should be noted that for pre-trained models, images with brain tumours have average
CoM distances between 10.7% and 14%.

Furthermore, Figure 10 shows a comparison of the results of the CAM and Grad-CAM
methods, using the average Cartesian distances between the centres of mass, as well as
the IoU parameter. In the case of ResNet50 and EfficientNetB7 networks, the coverage
measured by the IoU parameter is the highest (approx. 94.5%), and the average Cartesian
distance of CoM is approximately 1.5% and 1%, respectively. In the case of the own simple
CNN network, the IoU parameters are quite high (over 81.9%), but the difference in CoM is
about 4.1%. The VGG16 network looks the worst, the IoU factor is very low (about 42.8%)
and the difference in CoM is greater than 16.6%. The results obtained by the Grad-CAM
method, especially for the VGG16 network, have a much smaller area (small coverage),
and their centres of mass are slightly shifted.
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Figure 8. Binary comparison of IoU for all combinations of trained networks for the Grad-
CAM method.

(a) (b)
Figure 9. Matrix showing the average difference of Cartesian distance for four neural network
architectures (Grad-CAM method); (a) case: all test images, regardless of whether they contain brain
tumour (b) case: only test images that contain brain tumour.
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Figure 10. Comparison of CAM and Grad-CAM methods.

In some cases, incorrect operation of the Grad-CAM method has also been observed.
If the image of the skull was taken from the back or side and includes more fragments
than just the brain, the Grad-CAM method very often does not return the correct result.
However, in cases where Grad-CAM works correctly, it almost always returns a smaller,
more specific saliency area than the CAM method (see Figure 11).

Figure 11. Examples of saliency maps obtained by CAM and Grad-CAM.

To facilitate analysis of the CAM and Grad-CAM methods, the results of all the tests
are summarised (case: only test images containing brain tumour) in Table 2, where:

- ECaD = CaDCAM−CaDGradCAM
CaDCAM

· 100% denotes the percentage average value of the differ-
ence between the average Cartesian distance of CoM for the CAM and Grad-CAM
methods,

- EIoU = IoUCAM−IoUGradCAM
IoUCAM

· 100% denotes the percentage average value of the differ-
ence between the average IoU value for the CAM and Grad-CAM methods.

In the case of the pair ResNet50 + EfficientNetB7, both methods achieve identical
outcomes. However, an interesting finding is that the Cartesian distance (CaD) between the
centres of gravity was one of the highest. This suggests that the CAM method outperforms
the Grad-CAM method, as evidenced by the significantly smaller Cartesian distance in the
former, resulting in more stable areas. In summary, the CAM method produced superior
results to the Grad-CAM method.

When comparing CNN and VGG16 networks, it is noteworthy that the difference
between the IoU is substantial, reaching up to 25%. Additionally, the Cartesian distance is
also significant. Moreover, the difference in the CaD parameter value for both methods is
marginal, indicating that both networks exhibit a wide spread of areas, thereby rendering
the resulting areas unstable. Consequently, it can be inferred that both networks may base
their decisions on incorrect assumptions.
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Table 2. Comparison of results for the CAM and Grad-CAM methods.

Intersection over Union (IoU) Cartesian Distance (CaD) of CoM

CAM Grad-CAM EIoU (%) CAM Grad-CAM ECaD(%)

CNN + EfficientNet 0.635 0.627 1.26 0.2121 0.2496 −17.72
CNN + VGG 0.447 0.562 −25.73 0.2893 0.2913 −0.69
CNN + ResNet 0.618 0.602 2.59 0.2229 0.2626 −17.78
ResNet + EfficientNet 0.854 0.851 0.35 0.0916 0.1208 −31.92
ResNet + VGG 0.572 0.699 −22.20 0.2396 0.1398 41.65
VGG + EfficientNet 0.579 0.711 −22.80 0.2156 0.1067 50.50

Avr 0.618 0.675 0.2118 0.1951

When analysing the results obtained for VGG16+EfficientNetB7, the Grad-CAM
method obtains better results for the IoU parameter and is more stable, contrary to the
CAM method. It can be suspected that both networks make different decisions on different
assumptions, but the Grad-CAM methods does it better. Note that for CNN + Efficient-
NetB7 and CNN + ResNet50, the results obtained by both methods are similar and not
good. Hence, it is difficult to choose the best one.

In the case of ResNet50 + VGG16, the results obtained by both methods are different,
and the Grad-CAM method is better and more stable in selected areas, because it achieves
IoU better by 22% and CaD is smaller by 41%.

Based on the results obtained with the use of the Grad-CAM and CAM methods,
in general, both methods achieve similar results and indicate similar saliency areas, but the
Grad-CAM method on average is slightly better (IoU = 0.6753 and CaD = 0.1951). As a
final remark, it is worth mentioning that there are some architectures for which some differ-
ences can be observed. It should be noted that the coverage measured between different
methods to determine the saliency areas of the same network architectures is higher than
when comparing the results of a given method for different network architectures.

4. Conclusions

In this paper we presented the use of deep neural models and methods determining
the saliency areas for solving the binary classification problem to determine whether a
patient had a brain tumour or not. Of course, the opacity of deep neural networks raises
many questions of explainability, which these networks use to make decisions. Saliency
maps can identify parts of an image that best represent the decision making of convolutional
neural networks. Based on transfer learning, three pre-trained network models were used
and tested on the set of brain tumour images from the Kaggle platform. To indicate the
desirability of using these models, the results of our simple convolutional neural network
implemented without transfer learning were presented. This intended aim was enacted
by learning from the beginning. Experiments were carried out to compare the currently
available methods of creating the saliency maps in order to check how they solve the
problem of interpretability of deep neural network results in the case of medical image
analysis. On the basis of the tests, we can conclude that the results obtained using the CoM
parameter are consistent with the results obtained using the IoU metric. More complex
convolutional neural networks focus on more abstract features, hence the saliency areas
are similar.

Future research will be devoted to the performance of other deep networks with
the CAM and Grad-CAM methods, solving the problem of multi-class classification of
images, with various tumours of the brain. Looking at the results obtained, it is tempting
to implement other post hoc explainable AI methods to determine the saliency maps,
for example Grad-CAM++ [26], Eigen-CAM [27]. In the study of various brain tumours, AI
algorithms that utilize radiomic properties of medical images will be used. In such cases,
the importance of each feature in the model’s decision-making process will be evaluated.
Furthermore, we would like to use more datasets to make these networks more robust.
In addition, to obtain reliable results, medical images used to learn networks should be
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annotated by utilising the bounding box defined by radiology specialists. However, truly
qualitative the extent of this problem remains a challenge because tumours can perfectly
disguise themselves.
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