ﬁ Sensors

Article

Exploring Tactile Temporal Features for Object Pose Estimation
during Robotic Manipulation

Viral Rasik Galaiya 2(, Mohammed Asfour 2, Thiago Eustaquio Alves de Oliveira
and Vinicius Prado da Fonseca

check for
updates

Citation: Galaiya, V.R.; Asfour, M.;
Alves de Oliveira, T.E,; Jiang, X.;
Prado da Fonseca, V. Exploring
Tactile Temporal Features for Object
Pose Estimation during Robotic
Manipulation. Sensors 2023, 23, 4535.
https:/ /doi.org/10.3390/523094535

Academic Editor: Aiguo Song

Received: 22 March 2023
Revised: 28 April 2023
Accepted: 4 May 2023
Published: 6 May 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

30, Xianta Jiang 2

1,%

Robotics and Al Lab, Department of Computer Science, Memorial University of Newfoundland and Labrador,
St. John’s, NL A1C 557, Canada

Ubiquitous Computing and Machine Learning Lab, Department of Computer Science, Memorial University
of Newfoundland and Labrador, St. John’s, NL A1C 557, Canada

Haptics and Robots Research Group, Department of Computer Science, Lakehead University,

Thunder Bay, ON P7B 5E1, Canada

*  Correspondence: vpradodafons@mun.ca

Abstract: Dexterous robotic manipulation tasks depend on estimating the state of in-hand objects,
particularly their orientation. Although cameras have been traditionally used to estimate the object’s
pose, tactile sensors have recently been studied due to their robustness against occlusions. This
paper explores tactile data’s temporal information for estimating the orientation of grasped objects.
The data from a compliant tactile sensor were collected using different time-window sample sizes
and evaluated using neural networks with long short-term memory (LSTM) layers. Our results
suggest that using a window of sensor readings improved angle estimation compared to previous
works. The best window size of 40 samples achieved an average of 0.0375 for the mean absolute error
(MAE) in radians, 0.0030 for the mean squared error (MSE), 0.9074 for the coefficient of determination
(R2), and 0.9094 for the explained variance score (EXP), with no enhancement for larger window
sizes. This work illustrates the benefits of temporal information for pose estimation and analyzes
the performance behavior with varying window sizes, which can be a basis for future robotic tactile
research. Moreover, it can complement underactuated designs and visual pose estimation methods.
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1. Introduction

Many areas of human activity, such as mass-production factories, low-invasive surg-
eries, and prostheses, have adopted robotic manipulation systems. Robotic manipulation
is exceptionally reliable when the system has complete information regarding the envi-
ronment. These systems usually must follow a set of trajectories, interact with objects of
known features, and perform repetitive tasks with minimal environmental adaptation,
which limits the use of manipulation systems to performing activities in unstructured set-
tings. Recent advancements in data-driven methods, innovative gripper design, and sensor
implementation have reduced the limitations of robotic manipulators in such environ-
ments. Nevertheless, there are hurdles to the applications of robotic arms in unstructured
environments or dexterous tasks such as the complex manipulation of daily objects [1].

One main challenge is estimating the object’s orientation during the aftergrasp phase.
The object’s orientation can change from an initial visual estimation due to calculation
errors, external forces, finger occlusion, and clutter. After a successful grasp, one approach
is to use tactile sensors to extract object information, improving the object’s pose estimation.

Robotic hands have immense flexibility despite their use in specific domains, such
as prostheses, with limitations regarding the human hand’s size, weight, and shape. By
sacrificing the initial stability and uncertainty in the grasp pose estimation, an underactu-
ated approach substantially reduces the planning time and gripper design complexity [2].
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However, it is fundamental for robotic arms to estimate the handled object’s pose so that
they operate optimally in object manipulation applications. For instance, the grasp used by
a gripper of a robotic arm or a prosthesis to hold a mug might change if its handle is at a
different angle.

Object orientation estimation depends on several aspects, such as the gripper’s con-
figuration, the sensors used, and how the data are analyzed. Different sensors are used
in robotic manipulation to categorize the properties of an object, such as its orientation.
Pregrasp poses are commonly obtained using computer vision [3]. However, visual data
alone can be insulfficient as the gripper approaches the object and the range of occlusion
increases. This limitation is particularly pronounced when the camera’s location is fixed
or under unpredictable circumstances, i.e., in unstructured environments. For instance,
using a top-view camera to estimate the object pose is not feasible for an arm prosthesis,
whereas prosthesis-mounted cameras are susceptible to occlusion. Moreover, once the
gripper grasps the object, it will cover at least part of it, making it difficult to estimate
its orientation. Furthermore, merely using vision cannot reduce the forces and related
environmental stimuli, leading to potential errors in the estimation of the orientation due
to a miscalculated geometry, friction, forces, camera occlusion, and clutter [1,4].

Due to the limitations of visual methods, several applications use tactile sensing [5-10]
while grasping the object, providing more relevant information that is not interrupted [11].
Tactile sensing has shown promise in specific use cases, such as in minimally invasive
surgery [12] or cable manipulation [13], and is also being shown to be a good supplement to
control system optimization [14,15]. Sensors such as pressure sensors [10], force sensors [16],
and inertial sensors [17] are gradually becoming more prevalent for object pose estimation
and object recognition. In addition, tactile sensors provide aftergrasp contact information
about the object that can be used for control [13] or in-hand manipulation. Nevertheless,
there have also been developments of vision-based tactile sensors ranging from using
internal reflection [18,19] to observing the deformation of the surface [20].

Tactile sensing can be a vital link for overcoming computer vision limitations and
can result in a better performance of robotic manipulation. Previous works used machine
learning models and visual frames of reference to train models that learned the aftergrasp
object angle, which was later used to estimate the object’s pose [21]. However, previously
seen data can affect the current estimation of the object’s state. Thus, estimating the current
object pose can be improved by considering temporal data, such as in sliding-window
sampling. For this reason, in the present work, we study the effect of temporal data based
on sliding-window sampling to train a deep learning model for object angle estimation.

2. Literature Review

Orientation estimation has been a part of pose estimation in robotics research for a long
time. Recent studies have made leaps regarding orientation estimation with sufficiently low
error due to advancements in sensor technology, most importantly tactile sensors [22,23].

For instance, Ji et al. [24] proposed a novel model-based scheme using a visual-tactile
sensor (VTS) [25]. In their study, the sensor compromised a deformable layer that interacted
with objects with a depth camera behind the said layer to generate a depth map of the
deformation caused by the object. They reported orientation errors for three objects of under
3°. However, detecting their objects’ rotations could have been visually easier compared to
more uniform smooth shapes such as cylinders or ellipsoids.

Additionally, Suresh et al. [26] formulated the tactile sensing problem as a simulta-
neous localization and mapping (SLAM) problem, in which the robot end effector made
multiple contacts with the object to determine its pose. They reported a rotational root-
mean-square error (RMSE) of 0.09 radians. However, their method assumed the initial pose
and scale of the object roughly and it neglected factors outside the controlled setup that
might change the object’s orientation.

Other studies utilized information about the robot arm alongside tactile data to esti-
mate the orientation of objects. Alvarez et al. [27] used the kinematic information and a
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particle filter for the pose estimation via tactile contact points, force measurements, and the
angle information of the gripper’s joints. Their algorithm initiated a pose estimation using
visual data, which was refined by a particle filter based on the optical data. After exper-
iments with three objects of different sizes, they reported an error of 0.812° in their best
experiment, which rose to 3.508° in their worst case. Results aside, the method required a
known kinematic model of the robotic arm and a top-view camera for inference, which is
infeasible in some applications, such as daily activities using prostheses.

To relax the requirement of a detailed kinematic model, recent research has explored
underactuated grippers while relying on machine learning methods to build a model of the
object pose. For instance, Azulay et al. [28] conducted a wide-scope study to investigate
objects” pose estimation and control them with underactuated grippers. They incorporated
haptic sensors, joint angles, actuator torques, and a glance at the pose at the start of the
gripper’s movement. Using the robotic arm’s kinematic model, they concluded that some
combinations of the tested features were better suited for object manipulation than others.
They reported a root-mean-square error (RMSE) of 3.0 & 0.6° for the orientation using a
neural network with LSTM layers, their best model. Using multiple features alongside the
kinematic model can require a more significant computational ability than processors on
end devices alone, such as prostheses, during daily activities.

However, investigating orientation estimation in itself outside practical uses can limit
the reported results in some situations. For instance, robotic grippers that handle objects
can occlude the object partially or fully, affecting visual-based approaches. Furthermore,
objects can rotate during handling due to many factors, such as slipping or external forces,
thus requiring methods to estimate the objects’ orientation during the grasp phase.

High-density tactile sensors, akin to the human hand, are another direction that can
provide much information. Funaabashi et al. [29] used graph convolution neural networks
(GCNs) to extract geodesic features from three-axis tactile sensors across 16 degrees of
freedom of a robotic hand providing 1168 measurements at 100 Hz. They used eight
objects with two different hardness, slipperiness, and heaviness factors. They compared
various GCN configurations and a multilayer perceptron, and the GCN model with the
most convolution layers was the best performer. The limitation of this method was due to
the need for a large number of computational resources and sensors, and the ambiguity
of intermediate states, although accounting for different properties, such as hardness and
slipperiness, improved the possibilities of generalization.

To develop a solution that required minimal finger path planning, a relaxed kinematic
model requirement, and a less-needed processing of images, Da Fonseca et al. [21] devel-
oped an underactuated gripper with four compliant sensing modules on flexible fingers,
and investigated the collected sensor data while grasping objects of three distinct sizes.
The experiments included a top-view camera to obtain a visual frame of reference for the
ground-truth orientation. The method used the tactile sensors’ information to represent
the object angle, whereas the ground-truth angle was obtained from the camera frame.
Finally, the authors compared five regression models trained using tactile data to estimate
the object’s angle. The best models reported by the authors were the ridge regression
model and linear regression, obtaining a 1.82° average mean square error. The authors
used random data sampling for model training in the paper and left possible relationships
among the time-series samples as a future research point. Still, given that the tasks were
dynamic, they expected that the near samples in the time-series sensor data would be
correlated with the angle.

Some studies also investigated the fusion of tactile and visual data for orientation
estimation during object handling.

Alvarez et al. [30] proposed a fusion method of the visual data and tactile data to
estimate the object’s pose during grasp. A camera tracked the object during grasp, whereas
a particle filter was utilized with the tactile data to reduce the uncertainty of the object’s
pose. They reported that their method obtained an orientation error varying from 1° to
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9.65°. Their method yielded a high variance of the estimation error, in addition to requiring
a 3D model of the handled object for the method to be used.

Dikhale et al. [31] proposed the sensor fusion of visual and tactile data as well. Their
method used neural networks to process the tactile and visual data separately before fusing
them to give a final prediction of the object’s pose. They reported an angular error as
small as 3°; however, it reached a high of 24°, showing a high variance in the estimation
depending on the object.

From the previous studies, we find that different factors affect the orientation esti-
mation performance and eligibility. For instance, computationally demanding methods,
such as the ones relying on inverse kinematics or particle filters, are inappropriate for small
devices, such as prostheses limited to an onboard processor, whereas relying on visual
data, solely or with sensor fusion, is prone to occlusion during the grasp phase as top-view
cameras are not feasible in many applications. Hence, a model must only estimate the
object’s angle using tactile data during grasp, without kinematics, to reduce computation
while providing an acceptable angle error.

In this paper, we evaluate the use of sliding-window sampled tactile data to estimate
the yaw angle under the stable grasp of an object while relaxing the kinematic model
requirement by using an underactuated gripper and a compliant bioinspired sensing
module that includes magnetic, angular rate, gravity, and pressure sensing components. We
analyze the temporal nature of tactile signals by using a neural network that contains long
short-term memory (LSTM) layers to estimate the orientation with the highest precision for
objects. The models trained in the present work were based on Da Fonseca et al. [21], taking
in a window of readings from the sensors mounted on the gripper and then outputting
the estimated object’s orientation at the end of this sampling window. As the paper’s
main topic is the in-hand orientation estimation, our method uses only the initial grasp
orientation as a reference and does not require information from the gripper joints, its
kinematics model, a multitude of sensors, or during-grasp visual data.

Our method can be utilized in a multitude of applications from everyday use to factory
settings due to its dependency on only a small number of tactile sensors without the need
for additional types of sensors. Furthermore, our method does not need computationally
capable machines as it utilizes only a neural network that can run on a computational device
as small as a flash drive, such as Google Coral, due to advancements in computational
technology. In addition, the proposed method’s performance is not prone to uniform shapes
whose orientation change is hard to determine visually, such as rotating cylinders.

3. Materials and Methods

Here, we describe the data collection and preprocessing methods used for the sliding-
window sampling tactile data, the models trained for the experiments, and how we orga-
nized the sampling strategy for pose estimation.

3.1. Data Collection

We used tactile data collected in a previous study [21] from an underactuated gripper
with two independently controlled fingers during object-grasping tasks to evaluate the
sliding-window sampling strategy for pose estimation.

In the gripper developed by Prado da Fonseca et al. [21], each phalanx has a fixed
tactile sensor developed by Alves de Oliveira et al. [17], as shown in Figure 1.

Each sensor provides deep pressure information from a barometer in addition to
angular velocity, linear acceleration, and magnetic field in all three axes using the nine-
degree-of-freedom magnetic, angular rate, and gravity (MARG) system. The barometer,
as shown in Figure 2, is encased in a polyurethane structure close to the base, and the
MARG sensor is placed closer to the point of contact so it can detect microvibrations.
The fabrication structure of the sensor enables the pressure to be transferred from the
contact point to the barometer effectively. The compliant sensor structure allows the contact
displacement to be measured by the inertial unit while the deep pressure sensor measures
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the contact forces. The data are collected using an onboard microcontroller interfacing via
I2C with a computer running the Robot Operating System (ROS) framework [32].

Gripper
Palm

Flexible
Joints

Tactile Proximal
Sensor Phalange

Distal
Phalange

Figure 1. The underactuated gripper [21] diagram with two fingers, each with two phalanges and
their respective sensors.

MARG

IBarometer

Figure 2. The sensor with its base attached to the manipulator and close to where the barometer is,
and its surface over the MARG sensor is in contact with the object.

Prado da Fonseca et al. [21] used the allocentric reference frame from the camera
pointed down to calculate the object’s angle. The top-view angle of the object was extracted
using two colored markers attached to it to identify key points using the OpenCV library
as shown in Figure 3.

Figure 3. The object’s two markers to obtain the ground-truth angle using computer vision [21].
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The angle between the two markers line and the fixed camera frame horizontally
in the clockwise direction was established to be the object’s angle, and the object was
considered at 90° on the x-axis. These points were later compared to a fixed frame of
reference at the camera’s center to determine the object position change relative to the
specified frame of the gripper. The stable grasp was obtained using a dual fuzzy controller
that obtained microvibrations and pressure feedback from the tactile sensor [33]. This
procedure was performed with three cylindrical objects with 57 mm, 65 mm, and 80 mm
diameters. The objects were rotated manually in the CW and CCW directions, simulating
external forces causing the object to change its orientation during grasp. Although this
motion was at a low speed, the human element of this motion provided inconsistent
forces, which the model was able to take into account to provide an accurate prediction.
Such movements also simulated the act of parasitic motions, which are undesired motion
components leading to a lower manipulation accuracy/quality [34], despite being in a
stable grasp. Moreover, the three different objects were used to determine the ability of
the model to generalize among similar objects. The ground truth angle after rotation was
obtained relative to the form of reference from the top-view camera as seen in Figure 3.

3.2. Data Characteristics

The preprocessing methods used in this work depended highly on the time-series
details of the data available from Prado da Fonseca et al. [21]. For instance, the number
of instances in each window sample could be affected by the different frequencies of each
sensor. Table 1 shows the average sampling frequency of each sensor, where the slowest
sensor is the camera, ranging from 9 to 29.95 Hz. The fastest sensor is the MARG sensor,
ranging from 911.33 to 973.50 Hz.

Table 1. The average frequency of the data obtained from its respective sensors.

Camera Pressure MARG Sensor

29.95 Hz 402.19 Hz 973.50 Hz

As mentioned in Section 3.1, the data collection consisted of a CW and CCW rotation
procedure performed by an external operator on three cylindrical objects with 57 mm,
65 mm, and 80 mm diameters. The dataset for each object contained sensor readings from
5 different operations of external rotation. Figure 4 shows the disturbances of rotation on
the pressure, linear acceleration, angular velocity, and magnetic field for one sensor in
relation to the angle during external rotations.

Acceleration

| A —— X axis sensor 0
we A L .
“ e ™ e T— y axis sensor 0

. —— zaxis sensor 0 |

S N [
g 0

Angular Velocity

0 —— X axis sensor 0
g 0.0 W%WW y axis sensor 0

—— Zz axis sensor 0 _|

Magnetic Field

| —— X axis sensor 0

« 05
S o0 A ' y axis sensor 0
-0.5 L - —— z axis sensor 0 |
= Pressure
3
o
g 200
8 1001
< T T T : T T T T
Object Angle
~ 1007 W
75 A
15 20 25 30 35 40 45 50

Time (seconds)
Figure 4. The angle of rotation, the corresponding pressure, and one of the four MARG outputs in
one of the trial data collection trials.
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The data characteristics described here are sufficient for our investigation. Further
details about the data collection protocol and attributes can be found in the original data
collection study [21].

3.3. Preprocessing

The listener ROS node collected data at different time instances since the camera,
MARG sensor, and pressure communicated asynchronously. Therefore, the signals
needed to be aligned for our strategy of window sampling. First, we scaled the data
to utilize deep learning methods. Subsequently, to add LSTM layers, we had to recon-
cile the sampling frequency differences for the various sensors by synchronizing and
downsampling their data. Since the lowest frequency was the camera frames, their
timestamps acted as a reference for our procedure of sensor alignment presented in
Figure 5. Afterward, we reshaped the data to incorporate the previous states for each
instance of the ground truth angle.

1. Selecting the closest sensor readings to the angle
reading (from camera frame) within a window of +3ms

y
mosUNTTRERE TR LMD RAT TN rInTn a

Closest IMUS Readin

@ BarometersIIIIIIIIIJIJIIIII!AIIIIIIIIIIIIIIIIII

46:16.293747453 46:16.347153213 46:16.401562116
Time expressed in timestamps (mm:ss.ssssss)

Camera(Angle) Tr T’Tﬁ‘\osest BAROS Readin

|
2. Allocating sensors readings to the corresponding camera frame
(from closest reading back to the previous frame closest reading)

¥
wus{IITITH T IIIIIIIIIIIIII[I_I_Ill_l_lll,IQ_ll_l.lll_lIIIIIIIIIIIIIIIIIII LTI O
® garometersy | [ [ | | 11 LI ELLI LA LTI ETEETTI
Sensors readings
Camera(Angle) ;sg.ziz:zsgcsf‘f;m“x:{
46:16.293747453 46:16.347153213 46:16.401562116
Time expressed in timestamps (mMm:ss.ssssss)
3. Matching every barometelrs' reading with closest IMUs'
reading and removing the rest to match sensors frequency
L4
must | LT EE TP et el
i
€ warometerst | | [ [ [ [L T LLLL LTI R Erer el
Sensors readings .
Camera(Angle) ;ﬁ;:zizz“m";:zﬁsa:gﬂ
46:16.293747453 46:16.347153213 46:16.401562116

Time expressed in timestamps (mMm:ss.ssssss)

Figure 5. The procedure used for sensors alignment. (a) For every angle determined by the camera,
the closest corresponding pressure and MARG values were selected. (b) Sensor values were grouped
with the corresponding camera frame. (c) MARG values were downsampled to match the frequency
of the pressure sensor.

Figure 5a shows that the obtained pressure and MARG signals were within three
milliseconds from the angle from the camera frame, on average. Figure 5b shows the
MARG and pressure values collected between two camera frames to correspond to a single
frame. Finally, since the pressure was sampled at a lower frequency than the MARG sensor,
Figure 5c shows the MARG sensor reading closest to the corresponding pressure reading
was kept, and the remaining samples in between the selected ones were discarded. The
whole process is summarized in the Algorithm 1.
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Algorithm 1 Preprocessing and experimentation pseudocode

: for each barometer reading do:
keep closest MARG reading

1
2
3: Discard the rest of the MARG reading

4: for For each angle value do:

5. take sensor readings of corresponding timestamp
6 take (WindowSize — 1) previous sensor readings
7
8

: Separate training and test data
: Normalize training and test sensor values using the mean and standard deviation from
training data
9: Train model using training data
10: Obtain performance results using test data

In this approach, small window sizes would only utilize signals corresponding to the
selected camera frames. In contrast, overlapping with signals corresponding to previous
frames was used to obtain more data for large window sizes.

After alignment, the final dataset contained five runs for each of the three object sizes.
Each run consisted of 900 camera frames, which had an average of 8 corresponding samples
from the sensors per frame. We used the data for all object sizes to ensure the dataset
size was sufficient for model training. Since all the sensors had different magnitudes and
distributions, all the data apart from the object angle were scaled. Finally, we standardized
the rest of the dataset. We use the following equation to normalize each sensor’s data.

N _ X0 — 0
o0

M

where N (‘i) is the standardized signals of the ith sensor. X (i) are the raw signals of the ith
sensor, 11(?) is the mean signal value of the ith sensor, and ¢(?) is the signal’s standard deviation.

3.4. The Angle Estimation Model

Since tactile sensing measurements from objects under grasp manipulation are continu-
ous and sequential, we used time-series-based neural networks, specifically long short-term
memory (LSTM)-based networks, to analyze the window sampling.

3.4.1. Model Architecture

Using a small baseline model initially, we arrived at the final model after adding
layers that provided the best marginal improvement in performance for its size without
overfitting, as increasing the model’s size overfitted the training data.

Figure 6 shows the final model architecture we established consisting of two LSTM
layers with normalization layers with 512 units and 256 units, respectively, and three dense
fully connected layers with 128, 64, and 32 neurons, respectively. All of the experiments
were conducted on Compute Canada, an advanced research computing platform, using
the Python programming language and Tensorflow [35] library to preprocess the data and
train the model.

We used the mean absolute error (MAE) between the angle’s estimated and actual
values as the training loss function. Moreover, we chose MAE as it diminishes in value
much slower than a mean square error (MSE) as the model’s estimation gets closer to the
actual angle and has a value of less than one.

3.4.2. Hyperparameters and Window Size Optimization

Various experiments were performed to provide an understanding of the data and
identify the effects of hyperparameters and the performance corresponding to their varia-
tions. In particular, we manipulated batch sizes and windows and explored regularization
methods. We explored the trade-off between window size and performance based on
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the best results to find the best gain in accuracy for a small model size. This trade-off is
fundamental in mobile robotics, with less memory and computational time leeway. We
performed a grid search to determine the hyperparameters over the number of epochs,
learning rate, and batch size. We chose the best configuration of hyperparameters to con-
duct the study and investigate the window sampling technique. We used a cross-validation
with four folds, with six iterations for the model per fold, to ensure the consistency of the
model’s performance and report any variance in the metrics scores. Table 2 shows the
neural network hyperparameters.

Predicted Object Angle =————————————1 Unit

32 Units

Fully Connected Layers 64 Units

128 Units

256 Units + Layer
Normalization

LSTM
Layers

512 Units + Layer
Normalization

A Single Data Input
(Sensor Readings x Window)

ﬂ‘;‘ |
WY
i
(§ & Feeding i
& § Data to
ap Model
%
#

Window/Timesteps Window/Timesteps

Figure 6. The model architecture and the feed-forward of a single input sample through the model.
The architecture consists of 2 LSTM layers with normalization layers with 512 Units and 256 units,
respectively, and 3 fully connected layers with 128, 64, and 32 neurons.

Table 2. The hyperparameters’ values of the neural network.

Hyperparameter Value
Learning rate 0.00025
Batch size 128
Epochs 400
K-folds 4
Iterations 6

4. Results

Here, we present the results of our experiment to estimate in-hand objects’ orienta-
tion using a sliding-window sampling strategy and evaluate it with LSTM models. The
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evaluation metrics used were the mean squared error (MSE), mean absolute error (MAE),
coefficient of determination (R?), and explained variance score (EXP).

4.1. Model Training

Figure 7 depicts the training and validation losses during the training phase while
highlighting the average epoch of the lowest validation error averaged over the folds and
model iterations.
= Training Loss = Validation Loss
Window = 5 Window = 10 Window = 15 Window = 20 Window = 25 Window = 30
« 0.25
£ o2 el || () || fEmn || (e | | (Emeee— | | ——{Eamn—
% 0.15 l
2
2 01
E 0.05 A t v — " W 4
g 0.0 — —— N— N
1 80 160 240 320 400 1 80 160 240 320 400 1 80 160 240 320 400 1 80 160 240 320 400 1 80 160 240 320 400 1 80 160 240 320 400
Training Epochs Training Epochs Training Epochs Training Epochs Training Epochs Training Epochs
Window = 35 Window = 40 Window = 45 Window = 50 Window = 55 Window = 60

025
O B e Y | 7 | O s | 70 8 | O e | - 70
% 0.15
8
2 0.1
c y v ul v I 4 s A
5 0.05 = " -
$ & N

0.0

1 80 160 240 320 400
Training Epochs

1 80 160 240 320 400
Training Epochs

1 80 160 240 320 400
Training Epochs

1 80 160 240 320 400
Training Epochs

1 80 160 240 320 400
Training Epochs

1 80 160 240 320 400
Training Epochs

Figure 7. Average training and validation losses and their standard variation for the different window
sizes, highlighting the average epoch of the lowest validation error.

We prevented overfitting by training the models for 400 epochs and selecting the
model weights at the epoch of the lowest validation loss.

4.2. Window Size

The primary factor of temporal data explored by this paper was the window size.
Figure 8 shows that a window size of 40 achieved the lowest error. It revealed a perfor-
mance improvement as the window size expanded; however, the improvement magnitude
decreased asymptotically.

The above result indicated that a window of 40 samples effectively captured the
necessary amount of tactile information for estimating the object’s orientation, regardless
of the metric used. Larger window sizes, beyond 40 samples, did not result in any further
improvement in model performance. This finding is further supported by Table 3.

0.05 0.006
0.045 0.005
w 0.04 I %0.004
= 0.035 = 0.004 71
0.03 0.003 | 1 I I
0.025 0.002
5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60
Window Size Window Size
(@) (b)
1.0
0.95
o 0.9
0.85
0.8
0.75
5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60
Window Size Window Size
(c) (d)

Figure 8. The performance results from varying the window size. (a) Mean Absolute Error (MAE).
(b) Mean Squared Error (MSE). (c) Coefficient of determination (R% Score). (d) Explained Vari-
ance (EXP).
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Table 3. The detailed results of the inspected window size range using MAE and MSE errors in

radians, R? score, and EXP.

Window MAE MSE R? EXP
5 0.0422 + 0.0046 0.0042 =+ 0.0012 0.8710 + 0.0404 0.8732 + 0.0408
10 0.0408 + 0.0040 0.0038 + 0.0009 0.8823 + 0.0292 0.8840 + 0.0297
15 0.0412 + 0.0046 0.0041 + 0.0012 0.8754 + 0.0374 0.8785 + 0.0370
20 0.0392 + 0.0036 0.0036 + 0.0016 0.8873 + 0.0492 0.8894 + 0.0493
25 0.0394 + 0.0040 0.0034 = 0.0007 0.8956 + 0.0237 0.8975 + 0.0246
30 0.0388 + 0.0037 0.0033 + 0.0009 0.8981 + 0.0287 0.8997 + 0.0289
35 0.0392 + 0.0044 0.0033 + 0.0006 0.8981 + 0.0193 0.9005 + 0.0188
40 0.0375 + 0.0028 0.0030 + 0.0004 0.9074 + 0.0153 0.9094 + 0.0148
45 0.0389 + 0.0038 0.0032 + 0.0005 0.9013 =+ 0.0190 0.9038 + 0.0185
50 0.0380 + 0.0036 0.0031 + 0.0005 0.9053 + 0.0192 0.9069 + 0.0188
55 0.0385 + 0.0037 0.0031 + 0.0005 0.9048 + 0.0153 0.9073 + 0.0149
60 0.0383 + 0.0034 0.0031 + 0.0006 0.9037 + 0.0208 0.9060 + 0.0207

The model achieved the best MAE of 0.0375 radians with a window of 40 and
an average error of 0.0408 with a window size as small as 10 samples. The model
also obtained high R? and EXP scores of 0.9074 and 0.9094, respectively, for the best
window size.

We used one of the iterations of the best model to illustrate its angle prediction
compared to the ground truth in Figure 9. The figure also shows a window of 40 sam-
ples of sensors’ readings that correspond to a single angle prediction, test point no. 900.

4.3. Comparing this Temporal Deep Learning Method to Ridge Regression

Nevertheless, we trained linear and ridge regression models with the same data
protocol we applied for the neural networks for comparison. Notably, these two
classifiers presented the best results in an approach that did not use the time-series
relation in the date [21], in which the models were trained per object size and not using
all the sizes at once. Although we cannot conclude the advantage of temporal data
from the MAE and MSE values due to different normalization and scaling procedures’
ranges, the R? and EXP scores highlighted that point in the previous study [21]. The
results of these two models are reported in Table 4 using our preprocessing procedure
for comparison.
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Figure 9. A comparison of the predicted and ground-truth angle for one of the iterations of the model
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with the best window size of 40 samples. A 40-sample window corresponding to the prediction of
the angle for sample 900 is highlighted.
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Table 4. The results of standard regression models using MAE and MSE errors in radians, R? score,
and EXP.

Model MAE MSE R? EXP
Ridge regressor 0.0677 0.0088 0.6875 0.7033
Linear regressor 0.0678 0.0089 0.6862 0.7021

5. Discussion

This study aimed to determine if pose estimations related to the time-series tactile data
captured by the sliding-window sampling strategy adopted. We analyzed the performance
of using a neural network with LSTM layers in estimating the angle of the handled object by
a tactile-sensing robotic hand, considering different sliding-window sizes of input samples.
The deep learning model was compared to standard regression models to showcase the
improvement due to their temporal tactile data incorporation.

We presented a data processing procedure to align the collected data from multiple
asynchronous sensors and approximate their readings’ timestamps to yield multisensor
temporal data in Figure 5. The data were then used to train and evaluate a deep learning
model, whose architecture we optimized, as shown in Figure 6, and whose optimal training
hyperparameters were found using a grid search.

By testing a range of window sizes between 5 and 60 to investigate the degree of
impact of the temporal relation between tactile data, we demonstrated the importance
of such relations between sensor readings for estimating the angle of an object under
grasp. We found that incorporating a small window size of five inputs gave an acceptable
performance of 0.0422 radians, equivalent to 2.417 degrees, and scores above 0.87 for both
the R? and EXP metrics. Compared to the standard classifiers tested in this study, we
found that the smallest window could improve the R?> and EXP scores by about 26% and
24%, respectively, and could give a reduction of 0.0256 and 0.0047 for the MAE and MSE,
respectively. Thus, it showed that the temporal relationships of the sensor readings could
improve the estimation of the objects” angle, as evident in Tables 3 and 4.

Furthermore, these results gradually improved by integrating more sensor information
from larger window sizes of up to 40 samples per window, after which the performance
saturated. Including more past readings beyond 40 samples did not add valuable informa-
tion to the instantaneous angle value prediction as seen in Figure 8. This result showed
that despite the importance of temporal relationships in tactile data for estimating the
object’s angle during manipulation, these relationships diminished asymptotically after
a threshold.

For the best window size of 40 samples, we found that it achieved an acceptable error
for many applications with an average of 0.0375 for the MAE in radians, and it could explain
most of the variance in the distribution, shown in the 0.9074 R? score and 0.9094 EXP score.
This performance is sufficient in multiple applications without a camera reference during
the grasp phase, thus supporting the use of temporal tactile data for orientation estimation
of in-hand objects in unstructured environments.

Notably, the model could achieve such results after training on data from objects
with differing sizes, thus incorporating more variation in the data, making the temporal
relation harder to capture, therefore improving on our previous results [21], where only a
per object angle estimation was performed. Additionally, using different object sizes also
generalized the model performance. This generalization also extended to being applied in
an underactuated system which experienced larger effects of parasitic motions (compared
to fully actuated systems). However, this was a limited application that did not account for
the other dimensions, and, as a result, future work can include all other axes, provide a
complete object pose description, and improve the robustness. In addition, we could not
directly compare the metrics because of different normalization methods, as they used a
normalized degree unit, whereas we used radians.
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Future research can use our results as a reference and investigate a tactile dataset
with objects of different shapes as well as remaining degrees of freedom to determine
the complete change in the object’s pose, not only its yaw orientation. Moreover, feature
engineering can be an additional step alongside the temporal tactile data to enhance the
model further. Future studies can benefit from the proposed alignment of asynchronous
sensors that we illustrated in Figure 5.

Finally, collecting a dataset of both arm-mounted and gripper-mounted tactile data for
object orientation estimation can further illustrate the benefits of temporal tactile sensing
compared to other techniques.

6. Conclusions

This paper illustrated the importance of temporal tactile data in estimating the
orientation of in-hand objects by proposing a model architecture with LSTM layers that
used signals from tactile sensors on the fingers. We evaluated these experiments’ perfor-
mance using the MAE, MSE, R2, and EXP metrics. The results showed that including
temporal data benefited the orientation estimation of the objects up to an asymptotic
threshold, as investigating a range of window sizes concluded that the smallest window
studied boosted the performers compared to standard regression models, such as linear
and ridge regression. The best window size in the investigated range was 40 input
samples, which could predict the object angle with an average MAE of 0.0375 radians.
Our model also had an R? value of 0.9074 and an EXP value of 0.9074, respectively.
By comparison, the ridge regressor yielded an average MAE of 0.0677 radians, an R?
score of 0.6875, and an EXP value of 0.7033. Therefore, the relationship between the
tactile signals and the object’s angle was better explained with time-series models that
utilized the temporal relationships of the sensors’ readings. These results highlight the
benefits of using previous state information, particularly because manipulation tends
to be sequential. At the same time, it presents a simple architecture that uses less pro-
cessing and computational power compared to setups with high-density tactile sensors.
Moreover, our tactile data model can work with objects such as symmetric cylinders
that may look fixed from the visual sensors” perspective. Finally, it also presents the
viability of pose estimation without needing 3D models. Our proposed model can be
included in future research investigating the pose estimation problem using tactile data
and the importance of their temporal relations with different modes of pose change.
Future studies can also benefit from our proposed preprocessing procedure to match the
timestamps of readings obtained from asynchronous sensors.
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