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Abstract: This paper introduces a deep learning approach to photorealistic universal style transfer
that extends the PhotoNet network architecture by adding extra feature-aggregation modules. Given
a pair of images representing the content and the reference of style, we augment the state-of-the-art
solution mentioned above with deeper aggregation, to better fuse content and style information
across the decoding layers. As opposed to the more flexible implementation of PhotoNet (i.e.,
PhotoNAS), which targets the minimization of inference time, our method aims to achieve better
image reconstruction and a more pleasant stylization. We propose several deep layer aggregation
architectures to be used as wrappers over PhotoNet, to enhance the stylization and quality of the
output image.

Keywords: deep learning; photorealistic; style transfer; deep layer aggregation

1. Introduction
1.1. Style Transfer—An Overview

Among a wide range of rendering techniques, style transfer occupies its place through
artistic and photorealistic stylization. Style transfer refers to a computer vision technique
that generates an output image based on two input images (reference and style images). In
this process, the content of the former is transferred to the output image using the style of
the latter.

Two of the most common subfields of style transfer are artistic style transfer and
photorealistic stylization [1]. Artistic style transfer offers a limited range of transfer results.
It produces painterly images by being able to transfer color and patterns, introducing
visible distortions when applying it to real-world images containing complex scenes [1].
On the other hand, photorealistic stylization can be seen as an extension of artistic style
transfer, being able to transfer the style on a much finer level. Ideally, a photorealistic
algorithm is meant to output the content image as it was captured in the same scene as the
style image. Examples of both artistic and photorealistic transfer techniques are presented
in Figures 1 and 2. As the title suggests, this paper focuses on photorealistic style transfer
techniques.

Style transfer has many applications in the arts and entertainment industries, being
able to produce good aesthetic and artistic results [2]. We find it worth mentioning two of
the applications that have a lot of potential:

• Photo editing and art: neural style transfer is already used in photo editing software
for generating license-free artwork, art designing, fashion designing, etc. [2].

• Virtual reality: neural style transfer can generate virtual reality scenes and environ-
ments of great visual impact, much faster than conventional methods.
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Figure 1. Example of artistic style transfer [3]. (a) content; (b) style; (c) result. 

   
(a) (b) (c) 

Figure 2. Example of photorealistic style transfer. (a) Content; (b) style; (c) result. 

1.2. Neural Style Transfer (NST) 
Given two images—content, and reference of style—neural style transfer (NST) aims 

to translate the former into the texture domain of the latter. To accomplish this, two main 
rendering steps must be performed: 
• Texture synthesis: extracts the main characteristics from the input images. 
• Image reconstruction: expands the synthesized content in the desired style, preserv-

ing high-level features. 
From a network architecture point of view, this is accomplished using hybrids of au-

toencoder networks. An autoencoder is a neural network that is trained to attempt to copy 
its input to its output [4]: the encoder compresses the image into a “code”, a short repre-
sentation of relevant features, whereas the decoder expands the “code” back into an image 
with similar size as the input image. 

The neural style transfer is achieved by combining the encoder trained on the input 
image and the decoder trained on the style, so that the compressed input image is ex-
panded in the style learned by the decoder (Figure 3). 

 
Figure 3. Neural style transfer architecture overview. 

1.2.1. Encoder 
An encoder is a feed-forward neural network used to transform its input into a com-

pressed, latent representation, using convolutional and MaxPool layers. The output of an 
encoder, typically called code or bottleneck, is passed as input to the decoder in an auto-
encoder architecture. 

Figure 1. Example of artistic style transfer [3]. (a) content; (b) style; (c) result.
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Figure 2. Example of photorealistic style transfer. (a) Content; (b) style; (c) result.

1.2. Neural Style Transfer (NST)

Given two images—content, and reference of style—neural style transfer (NST) aims
to translate the former into the texture domain of the latter. To accomplish this, two main
rendering steps must be performed:

• Texture synthesis: extracts the main characteristics from the input images.
• Image reconstruction: expands the synthesized content in the desired style, preserving

high-level features.

From a network architecture point of view, this is accomplished using hybrids of
autoencoder networks. An autoencoder is a neural network that is trained to attempt to
copy its input to its output [4]: the encoder compresses the image into a “code”, a short
representation of relevant features, whereas the decoder expands the “code” back into an
image with similar size as the input image.

The neural style transfer is achieved by combining the encoder trained on the input
image and the decoder trained on the style, so that the compressed input image is expanded
in the style learned by the decoder (Figure 3).
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1.2.1. Encoder

An encoder is a feed-forward neural network used to transform its input into a
compressed, latent representation, using convolutional and MaxPool layers. The output
of an encoder, typically called code or bottleneck, is passed as input to the decoder in an
autoencoder architecture.
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J. An et al. use in [5] the pre-trained VGG-19 (Visual Geometry Group 19 Layer CNN)
network as an encoder, which is a 19 layer-deep convolutional network defined by K.
Simonyan and A. Zisserman in [6].

1.2.2. Decoder

The decoder part plays the role of generating the final stylized image. The decoder is
responsible for reconstructing the image from the encoded representation generated by the
encoder, while also incorporating the style information from the style image.

It typically consists of a series of up-sampling layers that increase the spatial resolution
of the encoded feature maps, followed by a series of convolutional layers that learn to
generate the final image. These convolutional layers are usually similar to those used in
the encoder, but with the filter sizes and number of channels reversed.

To incorporate the style information, the decoder is often augmented with additional
layers that are designed to match the statistics of the style image.

Our work explores different types of deep layer aggregation techniques presented by
F. Yu et al. in [7] to augment the decoder to achieve visually pleasing and semantically
meaningful images.

1.3. Skip Connections and Deep Layer Aggregation

Skip connections are aggregation techniques used in deep neural network algorithms
to improve model convergence. As the name suggests, skipping a layer in the neural
network means feeding the output of one layer as the input to the next layers (instead
of only to the next one) [8]. From a complexity perspective, we categorize these aggre-
gation techniques as shallow skip connections (addition, concatenation) and deep layer
aggregation (DLA).

F. Yu et al. investigate in [7] diverse ways to aggregate layers and extend shallow
skip connections of previous approaches. Their experiments have shown that using deep
layer aggregation achieves better performance with fewer parameters on special-purpose
networks.

Our work aims to use these techniques presented by F. Yu et al. in [7], expanding the
solution proposed by An et al. in [5], for better image reconstruction and more pleasant
stylization in neural style transfer.

1.4. Motivation for Using Deep Layer Aggregation Architectures

Current style transfer methods are prone to overfitting since the decoder is trained to
reconstruct the style image, which can lead to extracting spatial correlations in the style
image instead of only colors and color patterns. The spatial correlations should only come
from the input image. Deep layer aggregation architectures are known to reduce overfitting
and might obtain better results in photorealistic style-transfer; therefore, we tested multiple
aggregation techniques.

2. Materials and Methods
2.1. Deep Layer Aggregation Decoders
2.1.1. Architectural Design

Each proposed aggregation strategy uses the pre-trained VGG-19 for the image clas-
sification network as the encoder and features a structurally asymmetric decoder, unlike
PhotoNet, which maintains the symmetry between these two main components. Depend-
ing on the architecture’s type, deep feature aggregation is applied along the decoder to
merge (concatenate) and fuse (reduce by convolutional pyramids) multi-level features in a
different manner. As in [1], we used normalized skip connections at each level to directly
pass extracted feature characteristics from the encoder to the corresponding decoder layer,
improving the stylized image quality. Transfer modules were placed at every instance
normalized skip link (INSL) stage and fuse node to enhance stylization. Each new strategy
represents an end-to-end photorealistic universal style transfer solution for the given styles;



Sensors 2023, 23, 4528 4 of 12

hence, as in the case of [1], there was no need for pre- or post-processing operations. Fur-
thermore, our implementation offers support for training decoders associated with new
styles. Paper [7] depicts the generic photorealistic aggregation architectures shown below,
in Figure 4.
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For each architecture, the fuse pyramid modules reduce the number of feature maps
to the lowest value of the concatenation. Two exceptions to this rule are the bottleneck
and output pyramid modules, which reduce the number of feature maps to 3 and 512, re-
spectively. We performed up-sampling on smaller-scale feature maps before concatenation.
Depending on the model used to perform style transfer, the number of pyramid modules
and the values for the up-sampling factor vary accordingly.

The iterative deep aggregation (IDA) decoder progressively aggregates and deepens
the representation in the image reconstruction stage of the network. Aggregation begins
at the smallest scale (right after the bottleneck feature aggregation module) and then
iteratively merges larger scales throughout the decoder. The semantic refinement of the
shallow features increases with the number of aggregation nodes. Figure 5b shows the
structure of IDA.

The tree-structured aggregation (TSA) decoder aggregates hierarchically through a
tree structure of blocks to better span the feature hierarchy of the network across various
depths.

The reentrant aggregation (RA) decoder is a refinement of TSA that deepens aggrega-
tion by routing intermediate aggregations back into the network and improves efficiency
by merging successive aggregations at the same depth.
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Figure 5. Specific implementations of photorealistic aggregation architectures, based on the generic
ones: (a) uses deep feature aggregation and multi-stage stylization on the decoder and adds skip
links to increase the image quality. (b) progressively merges larger features on the decoder to increase
the semantic richness and resolution refinement. (c) better spans the features across different depths
of the network using a tree-structured block. (d,e) enhance (c) by merging intermediate aggregations
back into the network chain to improve image reconstruction and texture synthesis.

The hierarchical deep aggregation (HDA) decoder is a much deeper, generalized
feature aggregation architecture that also includes IDA, which focuses on fusing resolution
and scales, whereas HDA focuses on preserving and merging features from all modules
and channels [9]. We can say that HDA combines shallower and deeper layers to better
learn the spatial characteristics of the features.

To keep the inference time of our network close to PhotoNet [1], we adapted these
architectural designs described in [7] to fit a light universal style transfer architecture.
Figure 5c–e shows the structure of the previously mentioned HDA strategies.

2.1.2. Training

All aggregation decoders were trained in the same manner as PhotoNet, using the MS
COCO 2014 dataset. The objective was to invert deep features received from the extraction
encoder back to high-quality images. The reconstruction loss is defined as the Frobenius
norm between the input and inverted output images:

Lreconstruction =
∣∣∣∣Iorig − Irecon

∣∣∣∣
F
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where Iorig represents the original image and Irecon represents the image reconstructed by
the decoder. In addition, a perceptual loss term is introduced to enhance the reconstruction
stage of the decoder,

Lperceptual =
5

∑
i=1
||φi(Iorig)−φi(Irecon)||

F

where Φi represents the output of the ith stage of the pre-trained VGG-19 (ReLU1_1, ReLU2_1,
ReLU3_1, ReLU4_1, ReLU5_1). This function measures high-level semantic differences be-
tween features across the network. Thus, the overall loss function,

Ltotal = αLreconstruction + (1− α)Lperceptual

balances reconstruction and semantic richness through α. Training was performed re-
moving all the transform modules from the architectural designs. During training, we set
α = 0.5 to equally consider per-pixel loss and perceptual differences between input and
output images.

2.1.3. Expectations

By using different aggregations, it might be possible to achieve a better aesthetic effect.
A better result would be comprised of improvements in one or several aspects (as detailed
in Table 1):

• Improved generalization: some aggregations might be better adapted to some styles,
and this would be best captured by the metric of FID score.

• Better output quality: some aggregations might be better suited to capture different
aspects of the style, and this would be best captured by the metric of reconstruction
error (lower value means that output image is closer to input image)

• More flexibility: some aggregations might be better suited to capturing color and
spatial patterns, and this would be best captured by the metric of total variation; since
the spatial coherence should come only from the input image, and the color from the
style image, a very low value of total variation is a sign of content loss when doing
transfer on complex images such as the ones in our dataset.

Table 1. Expected results when using IDA/TSA/RA/HDA aggregation techniques along with the
metric that should measure properly the expected results.

Architecture Short Description of
Architecture Expected Improved Aspect Metric for

Improved Aspect

IDA

Iteratively refines the output image by adding details at
multiple scales. Should gradually improve image quality by

adding fine details and texture. Decreased generalization
might happen due to overfitting.

Improved
quality

Increased
flexibility
Decreased

generalization

Reconstruction Error

Total Variation

FID score

TSA
Organizing aggregations in a tree structure, each node

capturing a different aspect of the style.
Decreased generalization might happen due to overfitting.

(Potentially) improved
quality

Decreased
generalization

Reconstruction Error

FID score

RA

Reentrant aggregation involves a recursive process of
combining multiple layers of feature maps from different
layers of the convolutional neural network, allowing for a

more detailed and fine-grained control over the style transfer
process (by having a spatial memory).

(Potentially) improved
quality

Increased flexibility

Reconstruction Error

Total Variation
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Table 1. Cont.

Architecture Short Description of
Architecture Expected Improved Aspect Metric for

Improved Aspect

HDA
Multiple layers are combined hierarchically to produce

output image: should be able to capture both local and global
features of the style and content.

Improved quality
Improved

generalization

Reconstruction error
FID score

3. Results
3.1. Objective (Quantitative) Comparison

To demonstrate the image quality and pleasant photorealistic stylization of our pro-
posed methods, we conducted a similar empirical study as in [1]. We used 40 content
images (of which 38 are different), each associated with a particular style image. We used
WCT (whitening & coloring transform) [10] as a transform operation across decoders as
shown in Figure 5.

A Fréchet inception distance (FID) [11] was used to outline the similarity in style
between the content dataset and the resulting stylized dataset, respectively. A lower FID
score denotes higher similarity and therefore better stylization. The FID is experimentally
proven in [10] to assure a consistency between disturbance level and human judgment in
various situations (gaussian noise, gaussian blur, black rectangles, swirl, salt and pepper
noise, ImageNet contamination).

The discrete total variation (TV) [12] was computed to show the level of detail from
the transferred image. A very small value of TV represents a serious drawback: distortion
and noise are not penalized as intuitively as they should be.

We also measured the feature inversion capabilities of each decoder by calculating
the reconstruction error between the reconstructed image and the corresponding original
image as follows,

εreconstruction =
N

∑
i=1

∣∣∣∣Iorig − Irecon
∣∣∣∣

F/N

where N represents the number of images from our content dataset.
The FID and TV were computed on 768 × 512 transferred images, while the recon-

struction error was calculated using pairs of 512 × 512 images.
However, by analyzing the way in which our strategies transfer texture from the style

reference to the content input using Figure 6 in correlation with Table 2, we can state that
a higher TV score does not necessarily suggest a better quality or detail richness, but can
denote poor semantic consistency in the output image by means of scattered stylization.
In this respect, if we visually compare Figure 6b with Figure 6f, which have a TV score of
6957.632 and 4891.987, respectively, it is quite clear that the latter exhibits a more compact
and semantically accurate stylization, even though its TV score is lower. In addition,
Table 2 shows that RA achieves the lowest reconstruction error, while IA thrives in terms
of stylization by obtaining the lowest FID score. We trained the decoders for 5 epochs
and discovered that depending on the aggregation strategy, the best results for each were
obtained earlier or later in the training process. For example, IA, TSA, and HDA required
more epochs to achieve better image reconstruction and lower FID, while PhotoNet and
RA minimized the reconstruction error and FID score earlier.
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Figure 6. Aesthetic comparison of photorealistic style transfer. (a) is the content image; the reference
of style is shown in the bottom-right corner of (a). (c) removes stylization artifacts from (b) and better
preserves the image semantics. (d) combines texture from different layers and focuses mainly on
style synthesis. (e,f) use (d) as a backbone and provide more localized stylization by feeding fuse
pyramid modules back into the main decoder.

Table 2. Objective (quantitative) results. RA achieved the lowest image reconstruction error, while
PhotoNet and IDA obtained the highest TV and lowest FID, respectively. We trained our decoders
for multiple epochs to show that no exact correlation can be established between these three metrics
of interest. Each architecture can be considered a specialized style transfer method, depending on its
main capability (e.g., better semantic richness, higher image quality, etc.).

Architecture Epoch
Reconstruction

Error
(Lower Is Better)

Total Variation
Score (TV)

(Very Low Is Bad)

Fréchet Inception
Distance Score (FID)

(Lower Is Better)

PhotoNet

1
2
3
4
5

102,211.791
98,190.635
94,087.596
108,593.92
102,166.251

8189.258
8325.533
7271.771
7393.16
6957.632

163.79
160.23
160.28
161.92
163.71

IDA

1
2
3
4
5

115,927.932
93,623.708

105,055.555
92,252.028
89,256.107

4205.513
4375.632
4618.789
4340.921
4291.648

161.45
159.38
160.53
158.28
160.04

TSA

1
2
3
4
5

101,494.835
112,259.242
107,383.347
91,525.225

117,641.887

5037.395
4896.852
5072.647
5243.896
5089.479

162.96
160.98
161.65
160.3

160.32

RA

1
2
3
4
5

73,907.531
131,479.38
113,357.705
106,816.984

90,576.84

7244.274
8140.81

7048.334
7184.867
7026.428

164.87
163.04
160.78
160.99
160.85
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Table 2. Cont.

Architecture Epoch
Reconstruction

Error
(Lower Is Better)

Total Variation
Score (TV)

(Very Low Is Bad)

Fréchet Inception
Distance Score (FID)

(Lower Is Better)

HDA

1
2
3
4
5

124,712.988
108,710.381
113,971.76
97,956.429
99,175.09

4810.022
4815.858
4791.003
5077.516
4891.987

162.31
161.48
160.49
163.18
161.03

3.2. Subjective Comparison

Out of a total of 170 votes performed on five different samples, RA was the most
preferred photorealistic style transfer approach according to Table 3. Figure 7 below, shows
the five different samples (vertically stacked).

Table 3. Subjective results. A total of 34 people were asked to choose their preferred photorealistic
version resulting from the combination of several content and style images. Out of a total of 170 votes
performed on 5 different samples, RA is the most preferred photorealistic style transfer approach,
adopting an equilibrium between image reconstruction and stylization.

Architecture PhotoNet IDA TSA RA HDA

Preference 22.35% 7% 12.95% 41.8% 15.9%Sensors 2023, 23, x FOR PEER REVIEW 10 of 13 
 

 

 

 

 

 

 

Figure 7. Subjective comparison samples (downsized to fit the page width of this paper). The 34 human subjects had to choose the best style transfer for each of 
the five different experiments. From left to right for each experiment, we have: the content image, the style image, and then, the style transfer results: PhotoNet, 
IDA, TSA, RA, HDA. 

 

Figure 7. Subjective comparison samples (downsized to fit the page width of this paper). The 34
human subjects had to choose the best style transfer for each of the five different experiments. From
left to right for each experiment, we have: the content image, the style image, and then, the style
transfer results: PhotoNet, IDA, TSA, RA, HDA.

3.3. Comparison between Expected Results and Measured Results

We compared the expected results with the measured results (see Table 4), and we
found that the aggregation technique of IDA was the most unpleasing version for the
subjective results, while simultaneously having a low score for the TV metric, which hinted
at a loss of detail.
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Table 4. Comparison between expected result and measured result of IDA/TSA/RA/HDA aggrega-
tion techniques.

Architecture Expected Impact Metric for
Improved Aspect Result Matches the Expected Result?

IDA
Improved quality

Increased flexibility
Decreased generalization

Reconstruction Error
Total Variation

FID score

Yes, but marginally better than PhotoNet
Low value, could be bad: check subjective results

No, but marginally better than PhotoNet

TSA (Potential) improved quality
Decreased generalization

Reconstruction Error
FID score

Yes, but marginally better than PhotoNet
No, but similar to PhotoNet

RA (Potential) improved quality
Increased flexibility

Reconstruction Error
Total Variation

Yes, improved
Similar to PhotoNet

HDA (Potential) improved quality
Improved generalization

Reconstruction error
FID score

No, but marginally worse than PhotoNet
No, but similar to PhotoNet

Regarding the TSA and HDA, the results were similar to PhotoNet (marginal improve-
ments or setbacks).

The RA aggregation technique showed improved (low) reconstruction error and was
the most pleasing version in the subjective evaluation, when compared to PhotoNet or all
other aggregation techniques.

3.4. Computational Time Comparison

We computed both the inference and training time for each architecture and show the
results in Table 5. The evaluation was executed on the same platform in all cases, which
has as the main training hardware device an NVIDIA Titan RTX TU102 GPU with 24 GB of
RAM. Training was performed using resized 512 × 512 images from the MS COCO 2014
dataset, while inference processes resized 768 × 512 images from our content and style
dataset, respectively. The differences in both time metrics being in favor of PhotoNet are
acceptable, given the extra aggregation layers used in our proposed decoders.

Table 5. Computational evaluation. Both inference and training time are higher than PhotoNet’s
for our strategies on behalf of the extra layers added. The time is calculated as the average time to
transfer a style from the style dataset to the content dataset.

Architecture PhotoNet IDA TSA RA HDA

Inference (s) 1.02 1.34 1.65 1.45 1.45
Training (min) 128 135 142 135 136

4. Conclusions

Aggregation is an important aspect, not only for classification or high-resolution
network architectures, but also for photorealistic style transfer purposes. By addressing
deep aggregation in the context of photorealistic style transfer, we demonstrated that
different aggregation approaches led to different stylization capabilities.

Compared to plain PhotoNet, our experiments with extra aggregation techniques
led to longer training and inference times (as expected, because we added extra layers,
which have more weights to train and infer) and for RA (reentrant aggregation decoder), it
led to better subjective results, proving, thus, to be a more pleasing stylization result for
humans. This result was also indicated by the reconstruction error, which was lower than
when using the PhotoNet alone. We checked results of total variation (TV) and the Fréchet
inception (FI) scores and they were similar to PhotoNet scores.

As future work, we would like to repeat the experiment on grayscale/infrared-
spectrum images, and on higher-definition images when an NVIDIA GPU such as the RTX
H100 with 80 GB of RAM memory becomes available.

Other areas where these NST decoders might be tested are data augmentation of
medical data (see [13,14]) and material translation [15]; basically, any domain where we can
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objectively measure the impact of various decoder architectures, is a candidate for using
the work and results of this paper.
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