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Abstract: The predictive maintenance of electrical machines is a critical issue for companies, as it can
greatly reduce maintenance costs, increase efficiency, and minimize downtime. In this paper, the issue
of predicting electrical machine failures by predicting possible anomalies in the data is addressed
through time series analysis. The time series data are from a sensor attached to an electrical machine
(motor) measuring vibration variations in three axes: X (axial), Y (radial), and Z (radial X). The dataset
is used to train a hybrid convolutional neural network with long short-term memory (CNN-LSTM)
architecture. By employing quantile regression at the network output, the proposed approach aims
to manage the uncertainties present in the data. The application of the hybrid CNN-LSTM attention-
based model, combined with the use of quantile regression to capture uncertainties, yielded superior
results compared to traditional reference models. These results can benefit companies by optimizing
their maintenance schedules and improving the overall performance of their electric machines.

Keywords: electrical machines; empirical wavelet transform; fault detection; Savitzky–Golay filter;
temporal fusion transformer

1. Introduction

Given the potential for significant reductions in maintenance costs, increased produc-
tivity, and reduced downtime, predictive maintenance of electrical machinery has become
a top priority for companies [1]. Over the last few years, there has been much attention
to applying predictive maintenance methods to predict electrical machine breakdowns
by locating anomalies [2]. Identifying anomalous behavior in equipment is increasingly
recognized as a crucial factor in anticipating maintenance actions [3] and achieving gains
by avoiding unplanned downtime [4].

This paper thoroughly examines this critical topic by focusing on predicting electrical
machine failures by examining time series data collected from sensors attached to the
electrical machines. Optimizing maintenance schedules, increasing equipment lifespan,
and enhancing the overall performance of electrical machines are some of the objectives of
this study. Maintenance optimization is increasingly being explored using deep learning
models [5–8], which is the focus of the method presented in this paper.

A major component of predictive maintenance is anomaly detection, which enables
businesses to spot possible breakdowns quickly [9]. Time series data, such as the data
gathered for this study, is particularly well suited for this kind of analysis since it enables
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us to look at how a given statistic changes over time [10]. Quantile regression, a statistical
technique, was used to handle uncertainties in the time series data [11].

Real-world time series data generally exhibit non-linearities [12], making it challenging
to apply conventional prediction techniques [13]. Therefore, advanced techniques were
employed to address this issue, including convolutional neural network (CNN) [14], long
short-term memory (LSTM) attention [15], and quantile regression [11], to accurately predict
machine failures and manage uncertainties present in the data.

In this paper, we propose a novel approach to predicting electrical machine failures by
forecasting possible anomalies in the data. Specifically, we utilize time series data from a
vibration sensor attached to a real electrical machine, measuring variations in three axes
(axial, radial, and radial X). By extracting features from the data using a CNN to predict
time series data using a hybrid model based on LSTM with an attention mechanism, this
paper presents a solution that can be applied to time series anomaly prediction that can be
extended to other engineering fields.

Based on a hybrid CNN-LSTM attention model, an anomaly detection algorithm called
empirical-cumulative-distribution-based outlier detection (ECOD) is applied to leverage
the predictions in the 10% and 90% quantiles, providing the machine operator with the
probability levels of faults. The resulting neural-based predictive maintenance tool can
help companies make informed decisions about their maintenance processes.

This paper has the following contributions to improving fault detection based on
time-based analyses:

• The hybrid LSTM-CNN architecture with attention and gated residual networks (GRN)
enhances the accuracy of the predictions.

• The quantile regression at the network output helps to manage uncertainties present
in the data.

• The use of empirical wavelet transform and the Savitzky–Golay filter assist in reducing
noise in the signal and extracting relevant features for the analysis.

The remainder of this paper is organized as follows: Section 2 presents a review of the
related work in predictive maintenance for electrical machines. Section 3 overviews the
proposed methodology, including data collection and pre-processing, the custom hybrid
CNN-LSTM attention model, quantile regression, and the ECOD anomaly detection algo-
rithm. Section 4 presents the experimental results and analysis of the proposed approach,
and Section 5 concludes the paper and discusses future research directions.

2. Related Works

There is a growing effort to improve ways of diagnosing electrical machines [16]; in
this context, several approaches have been used to predict engine failures based on time
series data. One is to use vibration analysis techniques to detect changes in the vibration
signature of an engine [17], which can indicate misalignment, excessive wear, or other
mechanical problems. Machine learning algorithms [18], such as decision trees [19], can be
used to identify patterns in sensor readings and make predictions based on this information,
while deep learning techniques have been widely used [20].

Time series spectrum analysis can be used to identify changes in the machine’s elec-
trical signals, which may indicate failures in internal components such as bearings or
windings [21]. Signal processing algorithms, such as the Fourier transform, can extract
relevant information from these electrical signals and predict potential failures [22]. Further-
more, using time series forecasting, the increase in the number of failures can be monitored
to assess the condition of the system being monitored [23].

State-of-the-art techniques have been applied to improve the prediction capability,
such as the attention mechanism combined with AdaBoost proposed by Long et al. [24]
for machine fault diagnosis. Yang et al. [25] proposed an ensemble empirical mode de-
composition (EEMD) for the fault diagnosis of asynchronous machines, showing that their
approach had a recognition rate of 99%, considering broken rotor bars, air gap eccentricity,
and normal state.
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A wide range of models have been successfully applied in time series forecasting.
However, choosing the appropriate model is a challenging task [26], considering that the
characteristics of the data influence model performance and since some methods have
specific properties that can be helpful for non-linear forecasting. For improved signal
analysis with non-linearity, techniques such as seasonality decomposition [27], wavelet
transform [28], and empirical wavelet transform [29] show promise for denoising.

Hybrid models which combine noise suppression methods such as seasonal decompo-
sition or wavelet transforms with forecasting models have been increasingly employed [30].
The advantage of using these approaches is that high-frequency variations are disregarded.
The model has more effective results because it focuses on the variation trend and not on
the signal noise [31]. An important observation to consider is that the filters cannot be
too coarse to reduce all the variation in the signal, so a proper case evaluation must be
performed [32].

Regarding noise reduction, Faysal et al. [33] proposed a noise-eliminated ensemble
empirical mode decomposition (NEEEMD) method for fault diagnosis in rotating machin-
ery. They proved that the NEEEMD could be more generalized and robust for the problem.
In addition, using an ensemble-based method with wavelet packet transform (WPT), Chui
et al. [34] showed that the signal-to-noise ratio could be improved using an optimized
ensemble empirical model combined with WPT.

A technique that has been highlighted for noise reduction in time series forecasting
is the empirical wavelet transform (EWT) [35]. Zhao et al. [36] and Xu et al. [37] applied
the EWT considering an adaptive spectrum segmentation for the improvement in signal
processing and fault diagnosis. Fault detection using EWT has proven to be promising, as
presented by Xin et al. [38] for rotating machinery and by Xu et al. [39] for rolling bearings.
Deng et al. [40], and Huang et al. [41] applied the EWT for machine bearing fault detection.
The application of EWT for failure diagnosis extends to other types of machines, such as
wind turbines [42], and other forecasting applications [43].

Among the time series forecasting models, there are several approaches such as neuro-
fuzzy systems [44], autoregressive integrated moving average (ARIMA) [45], LSTM [46],
ensemble learning methods [47], and TFT [48]. According to Li et al. [49], the TFT can
improve the reliability and compactness of the forecasting and can even be applied to
medium-term hourly time series data.

The wavelet neuro-fuzzy method was used by Stefenon et al. [50], who focused on
time series forecasting to propose a model and assess solar prediction capability. Wavelets
were incorporated into the model for feature extraction, where they analyzed whether it is
possible to anticipate the production of electrical power with a hybrid model while taking
solar trackers into account with a sufficient degree of precision. A forecast can be made
and it can be decided whether using solar tracking is worthwhile by assuming a hybrid
computational model.

A novel hybrid model that considers the benefits of linearity and non-linearity, as well
as the effect of manual operations, was proposed by Fan et al. [51], combining the LSTM
and ARIMA models. The LSTM model clearly outperforms the ARIMA model regarding
fluctuating non-linear data. Results from coupling models outperform separate ones, with
the ARIMA-LSTM model performing even better when production is adversely affected by
frequent manual procedures.

Feng et al. [52] used an enhanced TFT prediction model to supply air temperatures in
high-speed train carriages. The model effectively outperformed seven prominent methods
in time series computing tasks, as shown by empirical simulations using a dataset compris-
ing high-speed rail air-conditioning operations at a specific site in China. The focus of the
prediction problem in the time dimension was also examined.

By combining machine learning classifiers with the feature extraction method wavelet
scattering transform (WST), Toma et al. [53] proposed a system for classifying bearing faults.
The experimental results showed that WST might improve bearing fault classification
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accuracy when compared to EWT, information fusion, and wavelet packet decomposition,
achieving good classification accuracy for the fault diagnosis of rotating machinery.

To diagnose bearing faults, Van et al. [54] proposed the particle swarm optimization
least-squares wavelet support vector machine classifier. One essential part of a spinning
machine is the bearing; hence, it is crucial to maintain the bearing’s health. A thorough
comparison of the suggested approach with existing approaches was conducted using a
benchmark-bearing dataset.

To reduce noise in both the frequency and time domains, Tian et al. [55] introduced
the wavelet-SANet anti-noise, a wavelet-based self-attention network for machinery mal-
function diagnostics. This approach combines frequency-oriented fusion modules and
transformer modules. The experimental findings on two open-bearing datasets show good
performance for identifying machine faults.

Wang et al. [56] used the dual-tree complex WPT with the sub-band averaging kur-
togram to diagnose problems with spinning machinery. Their approach divides a signal
into sub-signals using a sliding window, then the sub-band kurtosis is computed. The
efficacy and advancements of the suggested method were validated by a simulation case
and two applications for fault diagnosis of a planetary gearbox and a rolling bearing.

The normal multi-component signal produced by machinery vibration frequently
has various interference components that obscure defective features. Zhang et al. [57]
presented a weak feature augmentation method based on EWT and improved adaptive
bistable stochastic resonance (IABSR) to extract faulty features in precision machinery. The
approach achieved fault feature improvement in the low-frequency band of the harmonic
spectrum by fully utilizing the signal decomposition capability of EWT and the signal
enhancement of IABSR. These two case studies on the identification of machinery faults
illustrated the usefulness and superiority of the suggested method.

Machine faults can be accurately diagnosed by using vibration signal properties such
as instantaneous frequency, instantaneous amplitude, or spectral kurtosis. Shi et al. [58]
developed a wavelet-based technique, dubbed wavelet-based synchro extracting transform
(WSET), and applied it to fault diagnosis. Two rotor and rolling bearing benchmarks were
used to test the efficacy of WSET in identifying failure features for malfunction identification.

An important subsystem of a high-speed train is the wheelset bearing system, and its
service safety significantly depends on identifying and treating any compound problems in
this system. In this sense, Ding [59] proposed a double impulsiveness measurement indices
bilaterally driven EWT method to detect and diagnose defects. Additional demodulation
was performed on the signals found in the sideband lower–upper boundary pairs of the
EWT to find compound faults in the wheelset bearing system. Simulation, bench, and
running tests validated the proposed method.

By analyzing the inter-harmonic content of the current signal, Gadanayak and Mallick [60]
established a method for arcing high-impedance fault (HIF) identification in distribution feed-
ers. The newly created unique knot-based empirical mode decomposition and maximum
overlap discrete WPT was employed to separate the inter-harmonic components. The findings
showed that the suggested method can detect HIFs quickly while achieving good security
against failure.

Liu et al. [61] developed an approach to enhance EWT to address the spectrum
segmentation flaw and improve the method’s capacity to extract bearing fault data. The
maximum envelope-fitting method highlighted each mode and reduced the number of
point extremes that were not useful. Reducing the number of filters suppresses noise
interference on the modal. Data on gearbox bearing faults in wind turbines and locomotive
bearings confirmed the method’s efficacy.

To fuse three-channel vibration signals for the weak failure detection of hydraulic
pumps, Yu et al. [62] presented a novel vibration signal fusion approach combining the
improved EWT and the variance contribution rate. Simulation and experiment analyses
showed that the fusion method effectively detects weak faults in hydraulic pumps. From
the literature, EWT has advanced the field of machine fault diagnostics.
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While the above-mentioned related works employ various techniques to predict
machine failures, our work differs by combining the strengths of both CNNs and LSTMs
in a hybrid model. Using LSTM allows us to model patterns of the time series data. At
the same time, CNN extracts important features such as trend changes and other patterns
commonly observed in time series data, which are often variable.

The CNN-LSTM hybrid model has been successfully applied in many domains, includ-
ing natural language processing and computer vision. Still, its application in time series
forecasting, particularly in the context of predictive maintenance, has not been extensively
explored. Our approach leverages these two architectures to identify potential anomalies.
Additionally, we employ quantile regression to manage uncertainties present in the data.
The approach enables us to make better predictions and identify potential anomalies, which
may be challenging with traditional methods.

3. Dataset

The dataset is in time series format, collected from a sensor attached to the machine’s
structure for use in this research. The machine consists of a three-phase, synchronous,
alternating-current motor installed in an industrial plant with a vibration sensor attached
to its casing. The motor is used in an exhaust fan located near a furnace with two poles and
is powered by a frequency inverter that controls its speed. The findings can be evaluated
for other types of equipment, such as hydraulic pumps, if vibration analysis is of interest.

The sensor is attached to the machine housing and can be either glued or bolted,
ensuring proper contact to avoid noise in the data. The sensor measures the temperature on
the surface of the housing and in the environment, rotation speed, frequency, vibrations, etc.
For this research, only the vibrations in three axes, namely X, Y, and Z, are used as the input
for the model, as they are relevant to detecting anomalies in the equipment, particularly in
monitoring vibrations and imbalances.

After filtering and removing null values, the dataset comprised 7675 records between
August 2021 and August 2022 (one year). It is worth noting that even though the data
period is relatively long and vibration data is reported hourly, there are some periods
within this interval where no data was collected for various reasons. Therefore, data
pre-processing is necessary to generate more robust and reliable results.

Figure 1 shows the raw vibration signals collected from three different axes: X
(Figure 1a), Y (Figure 1b), and Z (Figure 1c). These signals display varying levels of
amplitude and frequency, indicating different types of vibration patterns.
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Figure 1. Raw vibration signals collected from three different axes: X (a), Y (b), and Z (c).

Moreover, abnormal vibration records can lead to important conclusions about operat-
ing load, useful life, imbalance, and others. We present the dataset characteristics in Table 1
to further analyze the signals, and additional statistical characteristics of the considered
dataset are presented in Figures 2 and 3.

Table 1. Dataset characteristics.

Vib. Axis X Vib. Axis Y Vib. Axis Z

Mean 4.5519 6.3701 7.9366
Median 2.0588 5.4902 8.0980
Mode 1.3725 0.0000 0.1373
Range 35.0000 35.0000 35.0000

Variance 29.8170 20.0177 46.2006
Std. Dev. 5.4605 4.4741 6.7971
25th %ile 1.2353 4.1176 3.2941
50th %ile 2.0588 5.4902 8.0980
75th %ile 5.2157 7.8235 9.8824

IQR 3.9804 3.7059 6.5882
Skewness 1.7963 2.3620 1.4814
Kurtosis 2.4265 8.7628 3.0811

Vib. axis X Vib. axis Y Vib. axis Z

Vi
b.

 a
xi

s X
Vi

b.
 a

xi
s Y

Vi
b.

 a
xi

s Z

1.0 0.4 0.8

0.4 1.0 0.8

0.8 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

Figure 2. PhiK correlation matrix for the analyzed signals. The matrix shows the pair-wise correlations
between signals, with warmer colors indicating stronger positive correlations and cooler colors
indicating stronger negative correlations.
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Figure 3. Boxplot for the analyzed signals. The plot displays the distribution of signal values, with
each box representing the interquartile range (IQR) and the median line. The whiskers extend to the
minimum and maximum values within 1.5 times the IQR, and any outliers beyond this range are
shown as individual points.

4. Methodology

This section will present the proposed method, along with a summary of the employed
techniques: empirical wavelet transform, anomaly detection, and quantile regression will
be explained in detail.

4.1. Empirical Wavelet Transform

The EWT is a signal processing technique that decomposes a signal into oscillatory
modes with different scales and frequencies [63]. Given an input signal x(t) and a mother
wavelet ψ(t), the EWT first generates a set of n non-linear and non-stationary functions
called intrinsic mode functions (IMFs) using Algorithm 1 [64,65].

Algorithm 1: Empirical wavelet transform
Result: IMFs IMF1(t), IMF2(t), . . . , IMFn(t) and residual signal Rn(t)
Set x1(t) = x(t);
while x1(t) is not an IMF do

Calculate the local mean m(t) of x1(t) using a moving average filter with a
predefined window size w, where m(t) = 1

w ∑w−1
i=0 x1(t− i);

Calculate the local amplitude a(t) of x1(t) by subtracting the local mean from
x1(t);

Find the zero-crossings of a(t) to determine the local extrema of x1(t);
Interpolate between the local extrema using a suitable interpolation technique
(e.g., cubic spline, polynomial interpolation) to obtain an envelope e(t) of x1(t);
Calculate the IMF1(t) by subtracting the envelope from the signal:
IMF1(t) = x1(t)− e(t);

Set x1(t) = IMF1(t);
end
for i = 2 to n do

Set xi(t) = IMFi−1(t);
Repeat steps 2–6 for xi(t) to obtain IMFi(t);

end
Calculate the residual signal Rn(t) = xn(t)−∑n

i=1 IMFi(t);
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After obtaining the set of IMFs, the EWT applies a Fourier transform to each IMF to
obtain a set of n spectrograms, which are used to visualize the time–frequency content of
the signal. The EWT can be expressed mathematically as follows:

x(t) =
n

∑
i=1

IMFi(t) + Rn(t)

IMFi(t) =
∫

x(τ)hi(τ − t)dτ

where hi(τ) is the ith filter defined as the convolution of the scaling function ϕ(t) and the
mother wavelet ψ(t) scaled by a factor of 2i:

hi(τ) = 2i ϕ(2iτ)ψ(2iτ) (1)

A major advantage of EWT is its ability to adaptively decompose a signal into a set of
components, each representing a distinct frequency band. This adaptability allows EWT
to accurately capture a signal’s local and global characteristics, making it well-suited to
analyze complex and irregular data patterns. EWT enables the extraction of information
from signals with low signal-to-noise ratios [66].

The ability of EWT to handle non-stationary signals makes it a promising choice for
analyzing time-varying data, such as those typically encountered in predictive maintenance
tasks. Another benefit of EWT is its computational efficiency, important when working
with large datasets or when real-time processing is required. Its flexibility in selecting
wavelet functions allows for the optimal representation of the signal under analysis, further
increasing its effectiveness in a wide range of applications [67].

Savitzky–Golay Filter

The Savitzky–Golay filter is a polynomial smoothing filter often used to remove noise
from time series data while preserving the underlying trends in the data [68]. The filter
works by fitting a polynomial of a specified order to a local window of the data and using
this polynomial to estimate the smoothed values at each point in the time series [69].

Given a time series y(t) with N data points, the Savitzky–Golay filter estimates the
smoothed value ŷ(t) at each point using a polynomial of order p and a local window of
size 2m + 1:

ŷ(t) =
m

∑
k=−m

cky(t + k) for m ≤ t ≤ N −m− 1 (2)

where the coefficients ck are obtained by solving a least-squares problem that minimizes
the sum of the squared errors between the polynomial fit and the original data:

min
ck

m

∑
k=−m

(
y(t + k)−

m

∑
j=−m

cjy(t + j)

)2

(3)

The solution to this least-squares problem can be written in terms of a set of pre-
computed coefficients that only depend on the order of the polynomial p and the size of
the local window 2m + 1. These coefficients can be pre-computed and stored in a matrix M
for efficient computation of the smoothed values:

ŷ = My (4)

where ŷ is a vector of length N containing the estimated smoothed values and y is a vector
of length N containing the original data. The coefficients in the matrix M can be obtained
as follows:

M = (XTX)−1XT (5)
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where X is a matrix with dimensions (2m + 1)× (p + 1) containing the powers of the time
variable t for the local window of size 2m + 1 and the polynomial order p. Specifically,
Xij = tj

i for −m ≤ i ≤ m and 0 ≤ j ≤ p.

4.2. Anomaly Detection

The ensemble of complementary outlier detection algorithms detects outliers in a
dataset based on rare events in low-density regions of the probability distribution. The
algorithm uses an ensemble of complementary detectors, each capturing a different aspect
of outlier behavior. Formally, let X1, X2, . . . , Xn be a set of n d-dimensional observations,
where each observation Xi = (Xi1, Xi2, . . . , Xid) ∈ Rd is a vector of d real-valued variables.
The ECOD algorithm proceeds as follows:

For each variable j = 1, 2, . . . , d, the left and right tails of the empirical cumulative
distribution functions (ECDFs) are estimated. Next, the ECOD computes the sample
skewness coefficient for the jth feature distribution, used to determine whether to use the
left- or right-tail probability in computing the outlier score.

An assessment of the observation is attained by computing three values: the O-left
score, the O-right score, and the O-auto score. The O-left score constitutes an assessment of
the outliers located in the lower tail of the distribution for each variable; the O-right score
quantifies outliers situated in the upper tail of the distribution for each variable; and the O-auto
score implements an adaptive adjustment of the tail probabilities based on the distribution’s
skewness. The procedure is summarized in Algorithm 2.

Algorithm 2: ECOD outlier detection algorithm

Input: Training dataset X ∈ Rn×d, where n is the number of observations and d is
the number of variables

Output: Outlier scores for each observation in X
foreach variable j ∈ 1, . . . , d do

Estimate left-tail univariate ECDF for variable j;
Estimate right-tail univariate ECDF for variable j;
Compute sample skewness coefficient for variable j’s distribution;

foreach observation i ∈ 1, . . . , n do
Oleft,i ← 0;
Oright,i ← 0;
Oauto,i ← 0;
foreach variable j ∈ 1, . . . , d do

Compute left-tail probability pleft,j for Xi,j using the left-tail univariate
ECDF for variable j;

Compute right-tail probability pright,j for Xi,j using the right-tail univariate
ECDF for variable j;

if sample skewness coefficient for variable j is negative then
Oauto,i ← Oauto,i + ln(pleft,j);
Oleft,i ← Oleft,i + ln(pleft,j);

else if sample skewness coefficient for variable j is positive then
Oauto,i ← Oauto,i + ln(pright,j);
Oright,i ← Oright,i + ln(pright,j);

else
Oauto,i ← Oauto,i + ln(max(pleft,j, pright,j));
Oleft,i ← Oleft,i + ln(pleft,j);
Oright,i ← Oright,i + ln(pright,j);

foreach observation i ∈ 1, . . . , n do
Compute outlier score Oi = min(Oleft,i, Oright,i, Oauto,i);

return Outlier scores O1, . . . , On;
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4.3. Quantile Regression

Quantile regression is an extension of the linear regression model that estimates the
conditional quantiles of the response variable. It estimates the values of the response
variable at various quantiles of the response’s conditional distribution given the predictor
variables. The method is beneficial when the mean regression function does not represent
the relationship between the response and predictor variables and when the response
distribution is asymmetric or has heavy tails.

Let Y be the response variable and let X = (X1, . . . , Xp) represent a vector of p
predictor variables. The quantile regression model can be formulated as follows:

qτ(Y|X) = XT β(τ) + ετ , (6)

where qτ(Y|X) is the conditional τ-quantile of Y given X, τ is the quantile level (with
0 < τ < 1), β(τ) is the vector representing the τ-quantile intercept and slope parameters,
respectively, and ετ is the error term that follows a τ-dependent distribution with zero
mean and finite variance. The regression coefficients quantify the impact of the predictor
variable on the τ-quantile of the response variable.

To estimate the quantile regression coefficients, one typically minimizes the following
objective function:

arg min
β

n

∑
i=1

ρτ(yi − xT
i β), (7)

where yi is the observed response for the ith observation, xi is the vector of predictor
variables for the ith observation, β is the vector of quantile regression coefficients, and
ρτ(u) = u(τ − 1u < 0) is the check function. Here, 1u < 0 is an indicator function that
equals 1 when u < 0 and 0 otherwise.

4.4. Limitations

A limitation in applying the proposed method is that the anomaly conditions can
be related to high frequencies, and the use of filters can hide these patterns; therefore,
an analysis of the relationship between identifying what is noise and what is a failure
characteristic should be conducted.

5. Proposed Architecture

The proposed architecture for time series forecasting is a hybrid neural network that
combines the strengths of LSTM and CNN. The network is designed to capture complex
temporal dependencies in time series data by leveraging the complementary strengths of
LSTM and CNN, while using attention mechanisms and gated residual units to improve
the accuracy and stability of the predictions. Table 2 summarizes the main parameters and
variables employed in this section.

First, the LSTM encoder processes the input sequence (given by the time series of inter-
est) X = (x1, x2, . . ., xT) to produce a sequence of hidden states h = (h1, h2, . . ., hT), which
summarize the temporal information of the input. The LSTM equations for computing the
hidden states are:

it = σ(Wxixt + Whiht−1 + bi) (8)

ft = σ(Wx f xt + Wh f ht−1 + b f ) (9)

ot = σ(Wxoxt + Whoht−1 + bo) (10)

gt = tanh(Wxgxt + Whght−1 + bg) (11)

ct = ft � ct−1 + it � gt (12)

ht = ot � tanh(ct) (13)

in which σ is the sigmoid function, � is element-wise multiplication, and W and b are
weight matrices and bias vectors, respectively. The input xt and hidden state ht−1 are
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concatenated and multiplied by different weight matrices Wxi, Whi, Wx f , Wh f , Wxo, Who,
Wxg, and Whg, as well as bias vectors bi, b f , bo, and bg, to produce input, forget, output,
and candidate gate vectors it, ft, ot, and gt. The output gate ot controls which part of the
candidate memory cell ct is passed through the hyperbolic tangent activation function to
produce the hidden state ht [70].

Table 2. Summary of parameters and variables in the proposed architecture.

Symbol Description

X Input sequence (time series of interest)
xt Input at time step t
h Sequence of hidden states from LSTM encoder
ht Hidden state at time step t
W Weight matrices
b Bias vectors
it Input gate vector at time step t
ft Forget gate vector at time step t
ot Output gate vector at time step t
gt Candidate gate vector at time step t
ct Candidate memory cell at time step t
c Feature map of the input sequence from CNN

αt,i Attention weights for encoder hidden state hi and CNN output ci
ut Context vector at time step t
Qt Query matrix at time step t
Kt Key matrix at time step t
Vt Value matrix at time step t
βt,i Multi-head attention weights for key-value pairs
vt Multi-head context vector at time step t
η1 Intermediate output of the GRN
η2 Intermediate output of the GRN
ŷt Quantile regression output at time step t

Next, an attention mechanism combines the encoder output h with the output of a
CNN, denoted as c, which is a feature map of the input sequence obtained by applying
convolutional filters to the time series. The attention mechanism computes a context vector
ut as a weighted sum of the encoder output h and the CNN output c, where the weights
are learned dynamically based on the final error through backpropagation. The attention
weights αt,i for each encoder hidden state hi and CNN output ci are computed as:

αt,i =
exp(s>t hi)

∑T
j=1 exp(s>t hj)

(14)

and the context vector ut is computed as follows:

ut =
T

∑
i=1

αt,ihi (15)

After the attention mechanism combines the encoder output h and the CNN output c
to produce the context vector ut, the multi-head attention mechanism is used to link the
decoder output yt to the hybridized LSTM output ut.

The query matrix Qt corresponds to the decoder output at time step t, and has dimen-
sions dq×m, where dq is the dimension of the query vector and m is the number of attention
heads. The key and value matrices Kt and Vt correspond to the hybridized encoder and
CNN output at time step t, respectively, and have dimensions dk × T and dv × T, where dk
and dv are the dimensions of the key and value vectors, respectively, and T is the length
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of the input time series. The multi-head attention weights βt,i for each key–value pair are
then computed as follows:

βt,i =
exp(Qh

t Kt,i)

∑T
j=1 exp(Qh

t Kt,j)
(16)

where Qh
t is the hth attention head of the query matrix Qt, and Kt,i is the ith column of the

key matrix Kt. The multi-head context vector vt is then computed as a weighted sum of the
value matrix Vt, using the attention weights βt,i:

vt =
T

∑
i=1

βt,iVt,i (17)

where Vt,i is the ith column of the value matrix Vt.
After the multi-head attention mechanism links the decoder output to the hybridized

encoder and the CNN output, the output is passed through gated residual networks (GRN)
to produce the final quantile regression outputs.

Specifically, the GRN takes the multi-head context vector vt as the input and first
applies two separate linear transformations, denoted as W1 and W2, to the input vector
vt. The resulting output is then passed through a Gaussian error linear unit (GELU)
activation function, followed by another linear transformation, denoted as W3, to produce
the intermediate output η2:

η1 = GELU(W1vt + W2ct + b1) (18)

η2 = W3η1 + b2 (19)

where b1 and b2 are bias terms; and the GELU activation function is given by:

GELU(x) = xΦ(x), (20)

where Φ(x) is the cumulative distribution function (CDF) of the standard normal distribu-
tion, i.e.,

Φ(x) =
1
2

(
1 + erf

(
x√
2

))
. (21)

The GELU function applies the identity function to positive inputs and smoothly maps
negative inputs to zero, using the CDF of the standard normal distribution to introduce
non-linearity. The resulting function is continuous and differentiable everywhere [71].

The intermediate output η2 is then passed through the gated linear unit (GLU) trans-
formation, allowing for the suppression of unnecessary parts of the GRN. The GLU trans-
formation is defined as follows:

GLU(η2) = σ(W4η2 + b4)� (W5η2 + b5) (22)

where σ is the sigmoid activation function, and W4, W5, b4, and b5 are learned parameters.
Finally, the output of the GLU transformation is added to the input vector vt and

passed through layer normalization to produce the final quantile regression output ŷt:

ŷt = LayerNorm(vt + GLU(η2)) (23)

where layer normalization helps to stabilize network training. The procedure is summa-
rized in Algorithm 3. The structure of the proposed method is shown in Figure 4.
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Algorithm 3: Hybrid LSTM-CNN with attention and GRN for time series forecasting
Input: Time series data X = (x1, x2, . . ., xT), number of quantiles Q
Output: Quantile regression output ŷt for each time step t
/* LSTM Encoder */
for t = 1 to T do

Compute input, forget, output, and candidate gate vectors it, ft, ot, gt using
LSTM Equations (8)–(13);

Compute hidden state ht using LSTM Equation (13);
end
Set encoder output h to the sequence of hidden states h = (h1, h2, . . ., hT);
/* CNN */
Compute feature map c of the input sequence X using convolutional filters;
/* Attention Mechanism */
for t = 1 to T do

Compute attention weights αt,i using encoder output h and CNN output c;
Compute context vector ut using attention weights αt,i and encoder output h;

end
/* Multi-head Attention Mechanism */
for t = 1 to T do

Compute multi-head attention weights βt,i using query matrix Qt, key matrix
Kt, and value matrix Vt;

Compute multi-head context vector vt using attention weights βt,i and value
matrix Vt;

end
/* Gated Residual Networks (GRN) */
for t = 1 to T do

Compute intermediate output η2 using GLU transformation and layer
normalization;

Compute quantile regression output ŷt using intermediate output η2 and input
vector vt;

end
return Quantile regression output ŷt for each time step t;

LSTM

Multi-head Attention

Hybridization (Softmax)

Input 

LSTM

GRN GRN

CNN

Encoder

LSTM LSTM

Decoder

Mixed Teacher
Forcing

Quantile
regression

...

... ...

Gate

Dense

GELU

Dense

Gated Residual Network (GRN)

Add & Norm

Dropout

Residual
Connection

GRN Input

Figure 4. Graphical representation of the hybrid LSTM-CNN with attention and GRN for time
series forecasting.
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6. Results

In this study, the time series signals were pre-processed using several techniques to
enhance the accuracy of the forecasting model. This step is considered crucial, since time se-
ries data may have characteristics that can affect forecasting models, such as noise, missing
values, and seasonality. Data pre-processing improves model accuracy and interpretability.

Data noise can arise from measurement errors, recording inconsistencies, or random
fluctuations. Smoothing techniques, such as moving averages or exponential smoothing,
can reduce the impact of noise and improve model pattern capture. Missing values in time
series data can lead to gaps in the input sequence, resulting in poor predictions.

Thus, we pre-processed the data to ensure the input sequences were clean and suitable
for our hybrid LSTM-CNN architecture. Concerning this, the signals were first normalized
using min–max normalization to ensure that all data points fell within the same range,
thereby preventing the influence of outliers on the model.

To capture the trend of the signals, we utilized the EWT (see Figure 5),to decompose
the signal into different frequency bands and capture any trends in the low-frequency
components. This allowed us to de-trend the signals and remove any long-term patterns or
irregularities that could affect the model’s accuracy.
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Figure 5. EWT decomposition of the signal captures any trends in the low-frequency components
and allows for the de-trending of the signals to remove long-term patterns or irregularities that could
affect the model’s accuracy. Resulting EWT decomposition for axes: X (a), Y (b), and Z (c).

Finally, we applied a Savitzky–Golay to filter the signals and remove any remaining
high-frequency noise or fluctuations. Figure 6 presents the impact of applying the Savitzky–
Golay filter to the time series data. The figure includes two plots: one displaying the
original, noisy signal and the other showing the filtered signal after applying the Savitzky–
Golay filter. The plots are designed to visually demonstrate the effectiveness of the filter in
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reducing high-frequency noise while preserving the overall shape and trend of the original
signal. By comparing the two plots, it becomes clear that the filtered signal is smoother and
less affected by noise, making it a more suitable input for the forecasting model.
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Figure 6. Application of a smoothing filter to improve signal quality. The Savitzky–Golay filter
removes high-frequency noise and fluctuations while preserving the signal’s shape and trend. This
results in a cleaner and more accurate signal that can be used as input for the forecasting model.
Original and filtered signals for axes: X (a), Y (b), and Z (c).

6.1. Time Series Forecasting

First, we compared the proposed model with traditional regression methods available
from most off-the-shelf forecasting libraries. We relied on the traditional MSE (mean
square error) metric, as shown in Table 3. The table shows that the proposed model
outperforms the analyzed regression methods. The following configuration was used: a
sequence of 50 input time steps to predict the next 5 time steps, resulting in a network
with 11,343,653 trainable parameters. A one-layer LSTM was used both in the encoder and
decoder, each with 64 hidden units; while the multi-head attention mechanism was set to
16 heads. For the CNN, a pre-trained ResNet18 was employed.

Then, Table 4 displays the performance of three different models regarding quantile
regression (QR) accuracy for the 10% and 90% percentiles. The first model listed is the
default Seq2Seq model, which serves as a baseline for comparison. The second model,
Seq2Seq + MHA, includes a multi-head attention mechanism to improve the accuracy of
the predictions. Finally, the third model is the proposed model, which utilizes the hybrid
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LSTM-CNN architecture with attention and gated residual networks (GRN) to enhance the
accuracy of the predictions.

Table 3. Comparison of the proposed model with the traditional benchmarks regarding the MSE.

Model MSE

ElasticNet Regression 0.0056
Decision Tree Regressor 0.0048
RandomForestRegressor 0.0023

K-Nearest Neighbours Regressor 0.0051
XGBoost 0.0013

Bagging Regressor 0.0025
Extra Trees Regressor 0.0020

MLP Regressor 0.0015
Gaussian Process Regressor 0.0350

Proposed Model 0.0006

Table 4. Comparison of the proposed model with the traditional benchmarks regarding the QR.

Model QR 10% QR 90%

Default Seq2Seq 0.0056 0.0068
Seq2Seq + MHA 0.0056 0.0064

Proposed Model w/ResNet18 0.0028 0.0030

The results show that both the Seq2Seq + MHA and proposed models outperform the
default Seq2Seq model for both quantiles, with the proposed model achieving the lowest QR
values of 0.0031 and 0.0030 for the 10% and 90% percentiles, respectively. This indicates that
the proposed model is more accurate in predicting extreme events in the time series data.

The findings of this study suggest that the hybrid LSTM-CNN architecture with
attention and GRN is an effective approach for time series forecasting, particularly when
predicting extreme events. The results also highlight the importance of utilizing attention
mechanisms and GRN to enhance the accuracy of the predictions. Figure 7 illustrates the
effectiveness of the hybrid LSTM-CNN architecture with attention and GRN for time series
forecasting. The figure displays the way in which the network combines the inputs from
the LSTM encoder and the CNN input to generate improved predictions, particularly for
extreme events.
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Figure 7. Illustration of how the network dynamically adjusts the weights of the LSTM encoder and
CNN input to improve the results.
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Figure 8 displays the results of three different predictions made by the forecasting
model. Each figure presents a plot displaying the actual values (shown as a dashed line)
along with the 10% and 90% quantile ranges (QR) illustrated as two separate lines. The
shaded area between the QR lines represents the range of values that contain 80% of the
predicted values. By visually analyzing the shaded area in relation to the actual values, we
can assess the model’s accuracy and its ability to capture the range of possible outcomes. A
narrow shaded area indicates that the model is more confident in its predictions, while a
wider shaded area signifies greater uncertainty.
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Figure 8. The figures show the predicted values for the 10% and 90% quantile ranges (QR) for the
X (a); Y (b); and Z (c) axes. The shaded area between the QRs represents the range of values that
contain 80% of the predicted values.

6.2. Anomaly Detection

Figure 9 demonstrates the application of the ECOD anomaly detection algorithm
in the context of the neural-based predictive maintenance tool for electrical machines.
The figure presents a plot that combines the 10% and 90% quantile predictions with the
anomaly detection results derived from the ECOD algorithm. The plot showcases how the
algorithm identifies potential faults within the given quantile range, allowing for a more
comprehensive assessment of the machine’s health. By combining the quantile predictions
with ECOD anomaly detection, machine operators can gain a deeper understanding of the
machine’s health and the probability of faults occurring. This information enables them
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to make more informed decisions regarding maintenance planning and take proactive
measures to address potential issues.
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Figure 9. ECOD algorithm leverages quantile predictions for probability-based maintenance planning.

7. Conclusions

In conclusion, this research addresses the critical issue of predictive maintenance for
electrical machines. This study provides a neural-based predictive maintenance tool by
developing a custom hybrid CNN-LSTM attention model utilizing quantile regression. This
tool can effectively predict electrical machine failures and manage uncertainties present in
the data.

Using vibration sensor data measured in three axes (axial, radial, and radial X) and
applying advanced neural network techniques provides an accurate and efficient predictive
maintenance tool that can greatly benefit companies. The developed tool allows companies
to optimize their maintenance schedules and improve the overall performance of their
electrical machines, ultimately reducing maintenance costs, increasing efficiency, and
minimizing unplanned downtime.

Once the proposed model is properly trained, it can be used with inference data to
define which equipment is most likely to fail concerning the machine’s vibration character-
istics. This analysis can be used in predictive maintenance, providing more information
about the machine’s health under evaluation.

While the data employed in this analysis is derived from a three-phase motor, the
model has the potential to be expanded to other equipment with similar operations. Future
work should be conducted applying the method in the field and determining its efficiency
in automatically identifying equipment that needs maintenance based on machine learning,
thus making the operators’ tasks easier.
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