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Abstract: Data poisoning attack is a well-known attack against machine learning models, where
malicious attackers contaminate the training data to manipulate critical models and predictive out-
comes by masquerading as terminal devices. As this type of attack can be fatal to the operation
of a smart grid, addressing data poisoning is of utmost importance. However, this attack requires
solving an expensive two-level optimization problem, which can be challenging to implement in
resource-constrained edge environments of the smart grid. To mitigate this issue, it is crucial to
enhance efficiency and reduce the costs of the attack. This paper proposes an online data poisoning
attack framework based on the online regression task model. The framework achieves the goal of
manipulating the model by polluting the sample data stream that arrives at the cache incrementally.
Furthermore, a point selection strategy based on sample loss is proposed in this framework. Com-
pared to the traditional random point selection strategy, this strategy makes the attack more targeted,
thereby enhancing the attack’s efficiency. Additionally, a batch-polluting strategy is proposed in this
paper, which synchronously updates the poisoning points based on the direction of gradient ascent.
This strategy reduces the number of iterations required for inner optimization and thus reduces
the time overhead. Finally, multiple experiments are conducted to compare the proposed method
with the baseline method, and the evaluation index of loss over time is proposed to demonstrate the
effectiveness of the method. The results show that the proposed method outperforms the existing
baseline method in both attack effectiveness and overhead.

Keywords: smart grid; edge computing; poisoning attack; regression task; online learning

1. Introduction

The construction of a power grid requires a large number of terminal devices, and
the popularity of these devices has made the amount of data on the grid exponentially
increase. However, with the increasing number of network structures and the growing
number of nodes, the security and real-time performance of the power grid have been
greatly challenged while promoting the smart grid [1]. When the network architecture
based on the cloud center is faced with a large number of node devices and continuous data,
the way of remote communication cannot meet the requirements of the speed bandwidth
of the grid. For some time-sensitive tasks of the smart grid, the cloud center can easily
reach the bottleneck of the processing capacity. To solve this problem, it is very effective to
introduce edge computing in the smart grid [2,3]. Edge computing has unique advantages
such as data localization and edge intelligence [4], which not only reduces the time cost
for data to reach the cloud, but also enables data processing directly through the edge,
thereby reducing communication and computing pressure in the cloud center [5]. However,
the advent of edge computing also presents some security challenges. Because of thew
less potent security protocols in the resource-constrained edge hardware [6], malicious
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attackers can invade edge nodes through these terminal devices. At the same time, due
to the recent trend of edge intelligence [7–9], more and more computing and storage
tasks are performed on edge nodes [10,11], so they are vulnerable to malicious network
attacks, such as masquerade and spoofing attacks [12,13], data and model poisoning, and
evasion attacks [6]. Data poisoning [14] is a typical attack against machine learning models.
Malicious attackers pollute training data to manipulate important models and predictive
results by disguising as terminal devices, which could be fatal to the operation of a smart
grid, causing issues such as large-scale power outages, power market price disruption, and
so on. Unfortunately, current research on the data security of the smart grid mainly focuses
on false data injection attacks (FDIA) [15–18] rather than poisoning attacks on machine
learning models in edge computing environments. However, compared to traditional FDIA
attacks, poisoning attacks are more covert and harmful to the smart grid.

Currently, data poisoning attack research primarily focuses on image processing or
classification scenarios, with limited attention being given to regression tasks. Furthermore,
the target model is typically trained in an offline environment instead of undergoing
online training. In the context of the smart grid, most machine learning tasks involve the
prediction of continuous power data through regression instead of classification, and many
machine learning algorithms are trained using an online learning process. As such, there
is a need for online training, where machine learning models are updated based on new
incoming data. However, the existing research on poisoning attacks is not suitable for the
edge computing environment of the smart grid. In addition, the computationally expensive
nature of poisoning attacks hinders their direct application in resource-constrained edge
computing environments in the smart grid. It is necessary to optimize the attack framework
and strategies to enhance efficiency and reduce computational overhead. Therefore, the
main contributions of this work are as follows:

• It proposes an online poisoning attack framework based on the online regression task
model and applies it to the edge computing environment of the smart grid for the
first time. In contrast to traditional offline attacks, the framework achieves the goal
of manipulating the model by incrementally polluting the sample data stream that
arrives at the appropriately sized cache to optimize the efficiency of the attack.

• It proposes a point selection strategy based on sample loss. Compared to the traditional
random point selection strategy, this strategy makes the attack more targeted, thereby
enhancing the attack’s efficiency.

• It proposes a batch-polluting strategy to update batch poisoning points based on
the direction of gradient ascent synchronously. This strategy reduces the number of
iterations required for inner optimization and thus reduces the time overhead.

• It implements online gray-box poisoning attack algorithms with the framework and
strategies mentioned above. It evaluates the effectiveness and overhead of the pro-
posed attack on edge devices of the smart grid using an online data stream simulated
with offline open-grid datasets.

The rest of this paper is organized as follows. Section 2 presents the related work
on data poisoning attack. Section 3 proposes an online incremental poisoning attack
framework for the online regression learning task in the edge computing environment
of the smart grid. Section 4 introduces online algorithms for gray-box poisoning attack.
Section 5 presents the experiment and result analysis. Finally, Section 6 concludes this
paper and provides the future research directions.

2. Related Works

The recent literature has demonstrated a significant decrease in the performance of
learning models when training data is poisoned [19–22]. Data poisoning enables attackers to
manipulate prediction models, thereby disrupting the automated decision-making process.
For instance, Vrablecova et al. propose a load forecasting model for the smart grid [23]. If
attackers manipulate the forecasting model to lower the forecasted demand for electricity
in a specific period, this can result in power outages due to a shortage of the electricity
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supply. Conversely, if the forecasted demand is higher than the actual demand, this can
lead to excess power, overloading the power distribution system. Therefore, compared
to traditional FDIA attacks, data poisoning attacks are more insidious and pose a greater
threat to smart grid.

Data poisoning attacks can be classified into three categories based on the adversary’s
knowledge of the target prediction model: white-box, black-box, and gray-box attacks. In
a white-box attack scenario, attackers have complete knowledge of five factors: feature
space, learning type (e.g., DNN or SVM), learning algorithm, learning hyperparameters,
and training datasets [24]. A black-box attack scenario is opposite to a white-box one,
assuming that attackers have no knowledge of all of the five factors already described
previously. In the real world, absolute black-box and white-box attacks usually do not exist.
The reasonable assumption is that attackers can know at least part of the training data or
surrogate model [25] (also called the substitute model [26]) by model stealing, which is
a kind of gray-box attack [24,25,27]. In addition, attackers can only gain partial access to
the segments of the sample stream in the scenario of online attacks, which falls within the
realm of gray-box attacks.

Based on the poisoning area of training samples, existing data poisoning attacks can
be categorized into three types: label poisoning, feature poisoning, and sample poisoning.
In label poisoning, the label vector y of a training sample is corrupted. In feature poisoning,
the feature matrix X of a training sample is corrupted. In sample poisoning, both X and y of
a training sample are corrupted. The implementation of label poisoning is simpler than that
of feature poisoning. Biggio et al. [28] assume that attackers can control some training data,
and aim to disturb the support vector machines (SVMs)’ learning process. It introduces
label noise to training points for impacting the discriminative model learned from the
training data deleteriously, which indicates that this attack does have an attack effect on the
machine learning model. Xiao et al. [29] evaluate the security of SVMs against well-crafted
adversarial label noise attacks, which aim to maximize the classification error of a SVM
by flipping multiple labels in the training data. In order to analyze the effectiveness of
the considered attacks, they carry out a large number of experiments on both linear and
nonlinear SVM models. Paudice et al. [30] develop the heuristic to craft efficient label
flipping attacks, of which experiments show the effectiveness at mitigating the effect of
label flipping attacks on a linear classifier. Ample evidence suggests that poisoning the
feature matrix X is still the most effective approach, compared to modifying the label y
alone in label flip attacks. Therefore, we are more concerned with contamination of the
feature matrix X.

In terms of feature poisoning, Biggio et al. [31] propose a poisoning attack to tamper
with the features of some samples using a gradient ascent strategy in which the gradient is
computed based on the model parameters of the support vector machine, the selected loss
function and the characteristics of input samples. Experiments show that the gradient ascent
procedure has a very significant impact on the classification accuracy of a SVM. Burkard
and Lagesse [32] propose poisoning attacks on a SVM that is learning from data stream. In
addition to the SVM model, researchers have proposed many attack methods against other
machine learning models. Mei et al. [33] present that optimal training set attack can be
formulated as a bi-level optimization problem, which can be solved using gradient methods
with certain Karush–Kuhn–Tucker conditions, and demonstrate the effectiveness of the
method in support vector machines with extensive experiments. In 2016, Zhu et al. [34]
constructed poisoning attack methods for the class of linear autoregressive models. In 2017,
KOH and Liang [35] developed a form of efficient attack that only requires oracle access
to gradients and Hessian-vector products, which is useful for multiple purposes in linear
models and convolutional neural networks. In the same year, Battista Biggio et al. [36]
proposed a novel poisoning attack based on the idea of back-gradient optimization, which
constructs poisoning samples against the regression model. Cisse et al. [37] proposed a
poisoning attack named Houdini on the image classification network, which was proven to
be effective for cheating the speech recognition model. In 2019, Chen and Zhu [38] presented
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the optimal attack using the linear quadratic regulator (LQR) for linear models, and model
predictive control (MPC) for nonlinear models, which are effective in the black-box setting.
Li et al. [39] introduced a data poisoning attack on collaborative filtering systems, showing
that attackers with full knowledge of the target model can build malicious data to maximize
the attack target, and imitate normal user behavior to avoid being detected.

According to the different poisoning strategies, there are three categories: label flipping
poisoning attack, gradient-ascent poisoning attack and statistically based poisoning attack.
The first method constructs a poisoned sample by flipping the target value of X or y to
the other side of the feasibility domain [40]. The second method uses gradient ascent
to iteratively update training points and stop at the convergence, where they obtain a
poisoned sample [26]. The third method generates a poisoned sample from a multivariate
normal distribution with the mean and covariance estimated from the training data [19]. In
general, although label flipping and statistical-based methods are relatively low-cost, these
two methods create poisoning samples that are easily detected and discarded by human
examiners or automated detectors. The gradient ascent method is the most computationally
expensive method, but it is the most effective and confidential.

Table 1 summarizes the various poisoning attack methodologies outlined above. Most
of the research mentioned above is focused on image processing or classification scenarios,
but little of it is focused on regression tasks. Although Jagielski and Biggio et al. [19,33,36]
have proposed possible attack methods against the regression model, the training and poi-
soning of the methods occur in an offline environment instead of online. Zhang et al. [41]
provided the latest research on online learning attacks. Their study provides an opti-
mization control method for poisoning attacks on nonlinear classification models in the
black-box mode. Wang et al. [42] presented heuristic attacks against the binary classification
with an online gradient descent learner, which is more like the clairvoyant online attacks
(with full knowledge of future samples) mentioned in that study. Inspired by these two
papers, we apply online poisoning to optimize attacks on regression models.

Table 1. A summary of the major poisoning attack methodology.

Poisoning Strategy Method Already
Proposed Poisoning Area Adversary’s

Knowledge Online/Offline Classification/Regression

Label flipping InvFlip [19], ALFA [29],
LFA [30], and BFlip [19] y Black-box Offline Classification

Gradient ascent

[31,33–35,38]
(X,y),X Black-box and

White-box
Offline

Classification

OptP [19] and BGD
[19,43] Regression

[42] X White-box Online Classification

Statistical-based StatP [19] (X,y) Black-box Offline Regression

General optimal control [41] X Black-box Online Classification

The core issue of data poisoning attack is the expensive bi-level optimization prob-
lem, which has a time complexity of O(iter_num ∗ n ∗ k3) in the offline mode. Here, n is
the total number of samples, k is the dimension of features, and iter_num refers to the
rounds of updating poisoned sample features according to the gradient ascent’s direction.
Therefore, existing research mainly focuses on exploration based on the above factors.
Koh et al. [43–45] attempted to find the sample set with the largest impact on the model
and applied it to attacks. Their method is based on a binary classification model, and their
conclusion is that the sample points with the greatest impact on binary classification models
can be reduced to two non-repetitive samples. However, these two sample points are not
unique, so the sample size is not essentially reduced. Inspired by this study, this paper
focuses on the influence of sample selection on attack efficiency and applies it to regression
models. Memon et al. [46] studied the impact of the minimum number of samples on
model training, and affirmed Green’s sample size principle (Green (1991) [47] recommends
N ≥ 50 + 8 m, where N and m are the minimum number of samples and the number of
parameters in the model, respectively), but did not provide a definitive conclusion. There
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are also other heuristic methods that bypass the bi-level optimization problem, such as
the statistically based methods and label flipping-based methods mentioned above. While
more straightforward heuristic attacks [48–50] have shown promising results in terms
of attack effectiveness and cost optimization, their applicability and robustness are still
too limited in the presence of suitable defense mechanisms. Other promising research
approaches include building upon the foundations of other research areas, such as meta-
learning and hyperparameter optimization, which continuously develop more effective
techniques to solve the double-layered problem involving learning algorithms. However,
there has been little substantive progress in this area so far.

In summary, this paper focuses on the gray-box attack model against the online
regression model using a gradient ascent-based poisoning strategy in the edge environment.
We have re-examined the traditional attack model and proposed a novel framework for
online attacks that is designed to better suit the resource-constrained environment of the
smart grid. Our approach focuses on optimizing selection points and polluting strategies
to achieve a more efficient and cost-effective poisoning of sample features.

3. Attack Model

The objective function of a machine learning model is a necessary condition for data
poisoning attacks. We design the poisoning attack algorithm based on the objective function
to construct poisoned samples that can have the greatest impact on the model’s performance.
The definitions of the symbols used in this section are shown in Table 2. We assume that
the objective function being attacked of the linear regression model is (1)

y = h(X) = θ1x1 + θ2x2 + · · ·+ θkxk = θTX,θ = [θ1, θ2, · · · , θk]
T ,

X =

x11 · · · xn1
...

. . .
...

x1k · · · xnk


k×n

, y = [y1, y2, · · · , yn]
(1)

Table 2. Notation description.

Symbol Description

y The label vector of the sample

X The feature matrix of the sample, where k represents the feature dimension and n represents the total
number of samples

θ The parameter vector of the regression model
h(X) The objective function of the learning algorithm

J (Ds , θ)(abbreviated as J ) The loss function of the mean square error

Ds = {(xi , yi)}n
i=1

The dataset containing n samples, where each sample consists of a feature vector, xi , and a
corresponding label, yi

argminJ (Ds , θ) Using Ds to train the model to minimize the loss function
θ∗ The global optimal parameter vector

∇θiJ (Ds , θi) The gradient of loss function with respect to the parameter
α The learning rate in the gradient algorithm
β The number of samples being covered
L The capacity size of the cache
t The time t

D(t)
s The partial training samples of time t

n(i)
p The poisoned sample number of time t
γ The poisoning rate
L The learning algorithm

θ(t) The parameter of time t
ε The termination condition epsilon (default = 0.001)
Π The projection operator

∇
x(t)c
J (D(t)

s , θ(t)) The gradient of the loss function with respect to xc at time t,

∇
x(t)1:q
J (D(t)

s , θ(t))
The gradient of the loss function with respect to the batch points x1 to xq at time t, where q represents

the number of poisoning sample points.

m Width of slide window during batch point selection
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Let θ denote parameter vector, y is label vector. X denotes feature matrix of the
model, of which subscript k and n represent the feature dimension and number of samples,
respectively. Loss function is denoted by Mean Square Error (MSE):

J (Ds, θ) =
1
n

n

∑
i=1

(h(xi)− yi)
2 (2)

As in (2), assume the original input samples is Ds = {(xi, yi)}n
i=1, in which xi denotes

the feature vector and yi denotes the response label variable of xi. The normal training
goal is to calculate the optimal parameter, θ∗, for the minimum loss function shown in
(3). In the edge computing environment, Ds represents samples cached in smart-grid
edge devices, and n represents the capacity of the cache to store samples. The process of
calculating parameter θ∗ is usually iterative, such as the gradient descent method given
in is (4). According to the iteration frequency, it can be divided into three methods: SGD
(stochastic gradient descent), MBGD (mini-batch gradient descent) and BGD (batch gradient
descent). For the BGD method, the parameters of θi are iterated only once through all
samples. For the SGD method, parameters are iterated once for each sample, while for the
MBGD method, parameters are iterated once for each batch size sample. SGD can quickly
converge under the condition of less computing resources, which is more suitable for a
resource-constrained environment in edge computing.

θ∗ = argminJ (Ds, θ) (3)

θi+1 = θi − α∇θiJ (Ds, θi) (4)

In order to alleviate the catastrophic forgetting problem [51] in incremental learning,
we define a cache strategy similar to that of the sliding window. Figure 1 illustrates the
strategy of storing the online training sample stream arriving at the edge node at time
t and time t + 1. In Figure 1, the solid and dashed boxes represent the samples cached
at time t and time t + 1, respectively. L denotes the capacity of the cache. β denotes the
number of samples being covered (forgotten). According to this strategy, at time t, the
sample D(t)

s = {(xi, yi)}t+L
i=t . The parameter β is used to control the degree of forgetting for

the training data on the edge node. The new samples completely overwrite the historical
samples from the previous time step when β = L, while β = 0 means that the new samples
do not overwrite any historical samples from the previous time step.
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Building upon the above strategy, this paper assumes that attackers can manipulate the
Ds and inject malicious data to poison the learning process, or use attack points to subvert
the online learning process, when the training data is received sequentially. This section
will propose a gray poisoning attack model for the regression task of online learning.

We define our adversary model following the framework proposed in [29], which
involves identifying the adversary’s goals and describing their knowledge and capabilities.
This information is then utilized to define an optimal attack strategy.

3.1. Adversary’s Goal

The objective of attacks can be defined as three types of integrity, availability, or privacy
violation [21], of which specificity can be targeted or indiscriminate [52,53]. The integrity
attack aims to selectively poison specific samples to cause particular mis-predictions, while
the availability attack aims to indiscriminately corrupt learning models by poisoning
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training samples. The goal of our paper falls into the first type, which is to compromise the
integrity of the model by changing its parameters to the greatest extent possible, without
being detected by the target model. In the case of online learning, the attack objective is to
inject malicious data into the training stream to maximize the loss function value of the
model at the end of training.

3.2. Adversary’s Knowledge

In this paper, we consider a gray-box attack method for poisoning, where the attacker
is assumed to have knowledge of the learning-type (regression) learning algorithm, L, and
partial training samples, D(t)

s , but does not know the trained parameters. In an online
learning environment at the edge, training samples arrive at the edge’s cache one after
another, making it impossible for the attacker to know the entire training sample set. The
attacker can only access the samples, D(t)

s , in the cache. In the extreme case, the attacker
does not even know anything about the training samples, but fortunately can construct
substitute datasets [21,36], from which trained parameters can be estimated by optimizing
the learning algorithm.

3.3. Adversary’s Capability

The attacker’s capability is limited to crafting the training sample data; i.e., altering
the training process is not allowed. We also assume that the attacker has full control of
the training data steam including feature or label values at a certain time point. However,
there is a maximum limit to the number of np samples in the data stream that can only be
changed, under which condition the target model incrementally trains the modified data
stream of polluted samples not caught by the anomaly defense mechanism. We define the
poisoning rate, γ, as the actual fraction of the training stream controlled by the attacker. Let
us assume that n(i)

p samples are poisoned at time i, and that the total number of poisoning

samples np =
t

∑
i=1

n(i)
p at the end of time t. The poisoning rate γ = (

t
∑

i=1
n(i)

p )/tL at time t.

This paper assumes that the same number of sample points are poisoned at each time, so it
is easy to prove that γ = n(i)

p /L.

3.4. Adversary’s Strategy

In the case of online learning, the strategy of attack is to maximize the prediction error
by the training sample stream at the time t instead of offline datasets. Therefore, the bi-level
optimization problem [19,33,36,40] for the offline condition is no longer applicable online.
The attacker’s strategy is formulated as an online incremental bi-level optimization strategy,
which can be written as (5) and (6):

argmaxDt
s
J (D(t)

s (orD′(t)s ), θ∗p), (5)

s.t.θ∗p ∈ argminθt−1
L(D(t−1)

s (orD′(t−1)
s ) ∪ D(t−1)

p , θt−1) (6)

Equation (6) is called inner optimization, corresponding to retraining the regression
algorithm, L, on both the clean training samples, D(t−1)

s , and the poisoned samples, D(t−1)
p ,

at time t − 1, which generates the optimal parameter θ∗p. Equation (5) is called outer

optimization, which amounts to selecting the poisoned points, D(t−1)
p , to maximize the

loss function, J , on the untainted data set, D(t)
s (which does not contain any poisoning

points), at time t. D(t−1)
s and D(t)

s denote training samples stored in the cache at the adjacent
time. θ∗p can also be estimated using the substitute training data stream’s D′s instead of Ds.
The above online attack strategy is not one of one-off poisoning, but continues to poison
samples reaching the cache as time progresses. It is also possible to set the frequency of
poisoning, such as to poisoning at random or in regular intervals.
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Figure 2 illustrates the principle of online poisoning attacks, which consists of four
stages: samples monitoring, attack point selection, data polluting, and steam poisoning.
Each stage is separated by a dashed line, as shown in the rectangular box. During the
monitoring stage, a segment of the length, L, is read from the original sample data stream
and stored in the cache. Two strategies are employed in the selection and polluting stages:
one is to select and pollute one point at a time until obtaining a poison sample, Dp, of size
np, and the other is to select and pollute points in batches until obtaining a poison sample,
Dp. The light-colored vertical bars in the selecting stage represent the selected clean sample
points, and the dark-colored vertical bars in the polluting stage represent the contaminated
sample points. The selection and polluting stages are iteratively executed, as indicated
by the long dashed line with arrows. The poisoned stream with dark striped arrows in
the poisoning stage represents the Dp inserted into the original data stream, which is then
sent to the target model, indicating the completion of the entire poisoning attack. Figure 3
provides an overall view of the attack process, where the dark striped rectangular bar
represents the poisoned stream mixed into the normal data stream and the horizontal axis
represents the temporal relationship of the stream. The poisoning attack can be executed
repeatedly or separately in intervals.
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4. Attack Algorithm

Figure 4 presents the flowchart of the online poisoning attack. In step S1, a certain
number of online training samples are obtained during the monitoring of the original
stream. After the initialization of step S2, step S3 selects sample data points with a certain
poisoning rate from the stream based on the strategy of maximum loss and pollutes these
points using the gradient ascent strategy. There are two strategies to select data points
from to pollute: single-point selection and batch-point selection from a sliding window,
which determine whether or not to pollute a sample point or a batch of sample points,
respectively. The polluting operation will update the selected sample points to new values
according to the gradient ascent strategy and learning step size. Based on the arithmetic
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used in the poisoning attack, the selecting and polluting operations will take a certain
amount of time, during which the original sample data stream is continuously input into
the target model. Once the selecting and poisoning operations are completed, the poisoned
data stream is injected into the original training stream being sent to the target model. This
section describes the online poisoning attack algorithm step by step. The definitions of the
symbols used in this section are shown in Table 2.
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Step S1 obtains a certain number of online training samples, Ds, during the monitoring
of the original training data stream. Samples Dt

s and Dt+1
s from the adjacent time are saved

in the cache as inputs in the attack algorithm. From time zero, training samples arrive one
after another, and the model is trained iteratively. When the model reaches a convergence
state at time t, the trained parameter θ(t) is obtained as the initial parameter of the attack
method (cf. line 1 to 4 in Algorithms 1 and 2).

Step S2. Initialize the maximum poisoning sample number, q = γ ∗ L, the cache size,
L, of the data stream, Ds (L is greater than q), the width of the slide window, m (according
to the cache size, L, in the Ds and the number of poisoned samples, q, m < q) (cf. line 5 in
Algorithms 1 and 2).

Step S3. Select and pollute points from the Ds to generate poisoned samples, Dp, with
two strategies: single-point (S3.1) and batch-point (S3.2).

Step S3.1. Pollute points based on single-point selection, and the specific implementa-
tion process is shown in Algorithm 1:
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Algorithm 1 Online poisoning attack based on single-point strategy (abbreviated as ODPA-SP)

Input: training data stream, Ds , L,J , positive constant, ε (or D′ s for the black-box mode), poisoning rate, γ, and cache size,
L
1: t← 0(Initialization of time t)
2: repeat
3: t← t + 1
4: until (θ(t) ← argminθL(D(t)

s , θ)) (initialization of model)
5: q← γ ∗ L (initialization of poisoned point number)

6: indices← sort({J (D(i)
s , θ(t))}

t+L−1

i=t )[: q]
7: D(t)

p ← (x[indices], y[indices])
8: repeat
9: J (t) ← J (D(t+1)

s , θ(t))
10: for c = 1, · · · , q do
11: x(t+1)

c ← Π(x(t)
c + α∇

x(t)c
J (D(t)

s , θ(t)))

12: θ(t+1) ← argmin
θ(t)
L(D(t)

s ∪ {(x(t+1)
c , yc)}, θ(t))

13: J (t+1) ← J (D(t+1)
s , θ(t+1))

14: end for
15: send the poisoned samples, D(t)

p , to the target model

16: indices← sort({J (D(i)
s , θ(t+1))}

t+L
i=t+1)[: q]

17: D(t+1)
p ← (x[indices], y[indices])

18: t← t + 1
19: until

∣∣∣J (t) −J (t−1)
∣∣∣ < ε

Step S3.1.1. Traverse samples of D(t)
s , calculate the loss function value according

to Formula (7) and sort the loss from large to small, selecting the first q sample points
as the initial poisoning sample points (Algorithm 1, line 6 to 7). This selection strategy
is established based on the following observation: sample points with a larger loss in
the current model have a greater influence on the model, which is grounded on the fact
that points with higher loss are typically situated on the decision boundary. Formula (7)
provides the method for computing the loss for each point, where θ(t) represents the initial
model parameters trained using the fragments of the sample stream stored in the cache.

J (D(i)
s , θ(t)) =

1
2
(h(xi)− yi)

2 (7)

Step S3.1.2. For each point in D(t)
p , xc is updated (according to Formula (8)) through

the ascent direction of the gradient ∇xcJ (D(t+1)
s , θ(t+1)) to the outer optimization (eval-

uated by Formula (5)). Note that xc should be enforced to lie within the feasible domain
(e.g., xc ∈ [0, 1]d), which can be typically achieved through simple projection operator
Π [21,31,36] (Algorithm 1, line 11). Then, add the poisoned samples {(x(t+1)

c , yc)} to D(t)
s ,

retraining the model to update the parameter of the inner optimization (evaluated by
Formula (6)) (Algorithm 1, line 12).

xc = xc + α∇xcJ (D(t+1)
s , θ(t+1)) (8)

The algorithm ODPA-SP in this section does not change the complexity of the tradi-
tional offline bi-level optimization algorithm but rather converts it into an online version,
while also optimizing the selection strategy and poisoning strategy of the adversarial sam-
ple points. The operations used to train the model with the samples in lines 4 to 12 of the
algorithm have a computational complexity of O(k3), where k is the feature dimension. The
loops in lines 8 to 19 implement the iterative steps for updating the poison samples using
the gradient ascent method. The loops in lines 10 to 14 update each poison sample point
iteratively. Therefore, the computational complexity of the ODPA-SP algorithm remains as
O(iter_num ∗ n ∗ k3).

Step S3.2. is to pollute points based on the batch-point selection from the slide window
m, and the specific implementation process is shown in Algorithm 2.
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Algorithm 2 Online poisoning attack based on batch-points (abbreviated as ODPA-BP)

Input: training data stream, Ds , L,J , positive constant ε (or D′ s for the black-box mode), poisoning rate, γ, cache size, L,
and size of the sliding window, m
1: t← 0 (initialization of time t).
2: repeat
3: t← t + 1
4: until (θ(t) ← argminθL(D(t)

s , θ)) (Initialization of model)
5: q← γ ∗ L (initialization of poison point number)
6: for i ∈ range(t, t + L− 1− q, m) do
7: indices← getmax(J (D(i:i+q−1)

s , θ(t)))
8: end for
9: D(t)

p ← {xi , yi}indices+q−1
i=indices

10: repeat
11: J (t) ← J (D(t+1)

s , θ(t))

12: x(t+1)
1:q ← Π(x(t)

1:q + α∇
x(t)1:q
J (D(t)

s , θ(t)))

13: θ(t+1) ← argmin
θ(t)
L(D(t)

s ∪ {(x(t+1)
i , yi)}

q

i=1, θ(t))

14: J (t+1) ← J (D(t+1)
s , θ(t+1))

15: send the poisoned samples D(t)
p to target model

16: for i ∈ range(t + 1, t + L− q, m)do
17: indices← getmax(J (D(i:i+q−1)

s , θ(t+1)))
18: end for
19: D(t)

p ← {xi , yi}indices+q−1
i=indices

20: t← t + 1
21: until

∣∣∣J (t) −J (t−1)
∣∣∣ < ε

Step S3.2.1. After model initialization, traverse samples of D(t)
s and calculate the

loss function value in the sliding window in accordance with Formula (9). Select batch
points with the largest loss as the initial poisoning sample points (Algorithm 2, line 6 to 9).
This step, instead of computing the loss for each sample point with respect to the initial
model, it computes the loss value for a batch of m sample points in the cache according to
Formula (8). It traverses the subsets of size m in the cache samples using a sliding window
and identify the subset with the maximum loss as the poison sample points.

J (D(i:i+q−1)
s , θ(t))=

1
q

t+q−1

∑
i=t

(h(xi)− yi)
2 (9)

Step S3.2.2. Update batch points [xt, xt+1, · · · , xt+q−1] in the ascent direction of the
gradient at once in accordance with Formula (9); meanwhile, map these points to lie within
the feasible domain through projection operator Π (Algorithm 2, line 12). Then, add these

samples {(x(t+1)
i , yi)}

q

i=1 to the D(t)
s , retraining model to update the parameter of the inner

optimization (evaluated by Formula (6)) (Algorithm 2, line 13). In this step, the algorithm
synchronously computes the gradient of the loss function with respect to the q poison
sample points according to Formula (10).

[xt, xt+1, · · · , xt+q−1] = [xt, xt+1, · · · , xt+q−1] + α∇xt:t+q−1J (D(t+1)
s , θ(t+1)) (10)

Step S3.3. Send the poisoned samples, D(t)
p , to the target model when the q sample

points have been poisoned, after which new q points are re-selected for the newly arrived
samples D(t+1)

p (Algorithm 1, line 15 to 18 and Algorithm 2, line 16 to 20).
Step S4. Repeat or intermittently implement S2 in S4. At the same time, the predicted

results of the model are validated, and when the results are biased, this demonstrates the
poisoning attack was successful. Repeat the steps above until there is no significant change
in the loss function value (Algorithm 1, line 19 and Algorithm 2, line 21).

From the description of algorithms above, it can be seen that compared to offline
methods, online methods of poisoning continuously train with new samples incrementally
instead of traversing the same offline samples iteratively. Compared to the offline algo-
rithms, the computational complexity of the online algorithm remains unchanged, but the
size of the sample for each calculation is reduced. The difference between the ODPA-BP
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and ODPA-SP algorithms lies in lines 12–13, which reduce the q computations in ODPA-SP
to q/m computations, thereby reducing the overall algorithmic overhead.

5. Experiments and Analysis

This section evaluates the effectiveness of the proposed online poisoning attack frame-
work, loss-based point selection strategy, and batch-point pollution strategy when applied
to edge devices. The specific evaluations for the following questions are conducted:

Question 1: Does the online poisoning attack method have less time overhead com-
pared to the offline method?

Question 2: Can the loss-based point selection strategy improve the effectiveness of
the poisoning attack effectively?

Question 3: Can the batch-point-selection poisoning strategy reduce the time overhead
effectively?

Question 4: What are the optimal strategies for online single-point poisoning and
online batch poisoning attacks under different conditions?

Question 5: What is the actual impact of poisoning attacks on power prediction?
Experimental setup. In order to simulate the edge computing environment of the smart

grid, the prediction algorithm was run in Linux OS in edge-embedded boards, which were
mainly configured with a main chip with a cortex-A7 core, 1.2 GHz, 256 MB RAM, and 512 MB
ROM. We developed experiments with python, and processed data with numpy, sklearn, math
and pandas libraries. Our code is available at https://github.com/yannickzhu/ODPA.git
(accessed on 2 May 2023). The target model used in this experiment is the stochastic gradient
descent (SGD) linear regression model, which simulates the process of an online updating
model in an edge intelligence environment. The evaluation metrics mainly include MSE loss,
the running time of attack, and the loss over time (LOT). The calculation method of MSE
loss is to use the poisoned model to predict the test set samples and calculate the MSE loss
between the predicted values and the ground truth. The running time of the attack records
the time interval from the start of the attack to the end of the attack. The calculation method
of LOT is to determine the ratio of the MSE loss to the running time of attack. Compared to
the MSE metric, LOT takes into account the factor of time overhead and can provide a more
comprehensive evaluation of the effectiveness of the attack. This article uses the OptP method
proposed in [19] as the baseline algorithm. The OptP algorithm is a classic offline poisoning
attack algorithm that has been widely used as a foundation for many research studies, making
it highly representative.

Data set. The dataset came from the combined cycle power plant dataset (the open
power dataset), which contains 9568 data samples collected over six years from 2006 to 2011.
The features include the average temperature of the environment per hour, the average
pressure of the environment per hour, the average relative humidity of the environment
per hour, the exhaust vacuum per hour, and the predicted label, which is the net energy
output per hour. To simulate online data streams, we input these samples in batches in
accordance with the strategy shown in Figure 1. We performed normalization on all sample
values, resulting in the feasible range of features and labels being [0, 1]. This normalization
process ensured consistency in the range of values for both features and labels.

Basic parameters settings. In the experiments, we poisoned stream Ds at 5%, 10%,
15% and 20% poisoning rates. In previous work, poisoning rates higher than 20% were only
rarely considered, as the attacker was typically assumed to be able to control only a small
fraction of the training data [19]. The termination condition, ε, for algorithm convergence
was set to 0.001. The decay parameter, α, for updating feature values of the poisoned
sample points in the direction of gradient ascent was set to 0.01. The above parameter
settings referred to those in [21].

The following chapters are organized according to those five questions above, with
each section corresponding to one question.

https://github.com/yannickzhu/ODPA.git
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5.1. Effectiveness Comparison of Online and Offline Poisoning Attacks

In this experiment, we divided 9568 sample points into 10 parts and sequentially
input them into the ODPA-SP algorithm to simulate a scenario in which points of the data
stream arrived at the cache one by one. Power data samples exhibited a stronger time
series relationship. Therefore, in this experiment, the order of samples was maintained and
the same order was used for each simulation training procedure. This approach ensured
that the temporal relationship between the power data samples was preserved during
the training process, which was critical for achieving accurate and reliable results. After
10 attacks, we recorded the time and loss of each attack, and calculated the average loss
and the total time of all executions. We also input all 9568 sample points into the ODPA-SP
algorithm at once to simulate the offline poisoning attack scenario, recording the attack
time and loss. As shown in Table 3, the total time of the ten attacks was 17.37 s, which is less
than half of the time of the offline attack, while the average loss caused by the ten attacks
was comparable to that of the offline attack. The results indicate that the online attack
method can significantly reduce time overhead while maintaining poisoning effectiveness.

Table 3. Comparison of online and offline poisoning attacks.

Cache Cache_1 Cache_2 Cache_3 Cache_4 Cache_5 Cache_6 Cache_7 Cache_8 Cache_9 Cache_10

MSE 0.04402040 0.04428521 0.04931959 0.03914929 0.04085501 0.04801267 0.04876293 0.04010114 0.04511061 0.04883171
Time 1.699955 1.642623 1.677615 1.869981 2.021997 1.68938 1.710946 1.692828 1.674517 1.692794

Average_Test_MSE (Online) 0.044844856
Total time of 10 caches (Online) 17.372636 s

MSE of 9568 (Offline) 0.04484707
Total time of 9568 (Offline) 34.713239 s

5.2. Performance of Point Selection Strategy

In this section, we selected 1125 sample points and tested the ODPA-SP, ODPA-BP
and OptP at different poisoning rates. The experimental results are shown in Table 4 and
Figure 5.

Table 4. MSE comparison of attack effect between loss-based point selection and random point
selection.

The Poisoning
Rate

MSE Sample Location

Unpoisoned_MSE OptP ODPA-BP ODPA-SP Single Batch

0.05 0.0035 0.016 0.007 0.018 83,49,30,2,51 41,42,43,44,45

0.1 0.0035 0.023 0.012 0.029 83,49,30,2,51,
43,27,91,25,85

41,42,43,44,45,
46,47,48,49,50

0.15 0.0035 0.032 0.016 0.037
83,49,30,2,51,
43,27,91,25,85,
73,11,79,93,31

6,7,8,9,10,
11,12,13,14,15,
16,17,18,19,20

0.2 0.0035 0.041 0.024 0.049

83,49,30,2,51,
43,27,91,25,85,
73,11,79,93,31,
5,63,55,39,59

6,7,8,9,10,
11,12,13,14,15,
16,17,18,19,20,
21,22,23,24,25,
26,27,28,29,30
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It is observed that all three attacks can mislead the predictive performance of linear
regression models, and the change in MSE is also linear and upward with the increase in
poisoning rates. The red line in Figure 5, representing the ODPA-SP algorithm, shows the
best performance with the highest loss, which demonstrates the effectiveness of the point
selection strategy. Specifically, the single-point poisoning strategy (ODPA-SP) outperforms
the batch-points strategy (ODPA-BP) in terms of model loss function values after attack.
This is because the former takes more time to select discontinuous data points one by one
for poisoning in exchange for better results, while the latter selects continuous sub-sequent
poisoning samples to optimize the objective function and reduce the computation time.
The next section of experiments further confirms the time difference between ODPA-SP
and ODPA-BP.

5.3. Performance of Batch-Poisoning Strategy

In this section, we conducted experiments on sample sets with 285, 1125, and 9568 data
points at four poisoning rates for each of the three algorithms, and record the execution time.
The results as Table 5 show that although the ODPA-BP algorithm does not cause a high
MSE, it significantly reduces the execution time compared to the other two algorithms. This
demonstrates the effectiveness of the batch-poisoning strategy in reducing time overhead
of attack.

Table 5. Time comparison of three attacks.

Sam_Num Pois_Rate
Time(s)

OptP ODPA-BP ODPA-SP

285

0.05 0.286477 0.056842 0.19136
0.1 0.41782 0.080812 0.284599
0.15 0.477785 0.102725 0.346848
0.2 0.59849 0.119408 0.388027

1125

0.05 0.798881 0.182836 0.779118
0.1 1.153583 0.276719 1.188495
0.15 1.513819 0.417298 1.542514
0.2 1.942288 0.606962 1.911988

9568

0.05 12.381818 4.346872 12.280106
0.1 19.376246 6.738431 18.720726
0.15 26.736512 9.535606 26.131643
0.2 34.670963 12.059491 34.033881
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5.4. Comparison between ODPA-SP and ODPA-BP

Regarding question 4, we conducted a detailed analysis of the MSE, time, and LOT of
the three algorithms, based on the experimental settings described in the previous section.
The results are presented in Table 6, and the comparative values of LOT are plotted in
Figure 6 (where the horizontal axis represents the total number of poisoned samples and
the vertical axis represents the LOT index). The analysis indicates that the selection of attack
algorithms should not be limited to the degree of improvement in MSE alone, but should
consider LOT comprehensively. Figure 6 clearly shows the performance comparison of the
three algorithms in the LOT index, with the peak value of the red line being significantly
higher than that of the other two lines. This indicates that although the ODPA-BP algorithm
performs only moderately effectively in the MSE index, its comprehensive efficiency is
optimal; in other words, it achieves the maximum MSE loss with the minimum time cost.
In addition, Figure 6 also shows the trend of the performance of the three algorithms as
the number of poisoned samples increased. All three algorithms achieved their maximum
performance when the number of poisoned samples was around 57 (out of a total of
285 samples with a poisoning rate of 0.2), providing important guidelines for setting the
optimal cache size. Table 7 shows the changes in average loss of the three algorithms with
respect to the number of catch samples when the poisoning rate was fixed at 0.2. We can
observe that when the number of samples was less than 285, the model did not reach
a stable state due to the insufficient number of samples, which is reflected in the large
fluctuations in the loss values of the model for the clean samples. At this time, the loss
values after the model was attacked were also unstable, and the attack had no practical
significance. However, when the number of samples exceeded 285, the model reached
a stable state, and the loss value of the model for the clean samples stabilized at around
0.0037. At this time, the loss value after the model was attacked stabilized at around 0.04,
indicating that when the cache sample size was set to around 285, the attack algorithm
reached the optimal state. This conclusion is consistent with the conclusions of Table 6 and
Figure 7.
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Table 6. Comparative study of three attacks.

Pois_Num
Time(s) MSE Loss_Over_Time

(LOT)

OptP ODPA-BP ODPA-SP OptP ODPA-BP ODPA-SP OptP ODPA-BP ODPA-SP

15 0.286477 0.056842 0.19136 0.016 0.006 0.016 0.055850906 0.105555751 0.08361204
29 0.41782 0.080812 0.284599 0.025 0.008 0.023 0.059834378 0.098995199 0.080815463
43 0.477785 0.102725 0.346848 0.031 0.012 0.028 0.06488274 0.116816744 0.080727004
57 0.59849 0.119408 0.388027 0.038 0.015 0.038 0.063493124 0.125619724 0.09793133
81 0.798881 0.182836 0.779118 0.016 0.007 0.018 0.020028014 0.038285677 0.023103047
113 1.153583 0.276719 1.188495 0.023 0.012 0.029 0.01993788 0.043365291 0.024400607
169 1.513819 0.417298 1.542514 0.032 0.016 0.037 0.021138591 0.038341904 0.023986816
225 1.942288 0.606962 1.911988 0.041 0.024 0.049 0.021109125 0.03954119 0.025627776
478 12.381818 4.346872 12.280106 0.017 0.009 0.019 0.001372981 0.002070454 0.001547218
957 19.376246 6.738431 18.720726 0.024 0.013 0.025 0.00123863 0.001929232 0.001335418

1435 26.736512 9.535606 26.131643 0.034 0.018 0.034 0.001271669 0.001887662 0.001301105
1914 34.670963 12.059491 34.033881 0.043 0.025 0.050 0.001240231 0.002073056 0.001469124

Table 7. Change in loss with sample at fixed poisoning rate.

Sam_Num Unpois_MSE Test_MSE

16 0.0176 0.554
76 0.0039 0.053

100 0.0046 0.045
189 0.0028 0.045
285 0.0035 0.039
376 0.0035 0.041

1125 0.0037 0.037
1876 0.0038 0.041
3750 0.0036 0.041
9568 0.0036 0.042
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5.5. Actual Impact of Poisoning Attacks on Power Prediction

The effectiveness of attacks introduced in the previous section is reflected only in
data indicators such as MSE, which does not directly show their true impact on the power
system. This section will directly present the relationship between the MSE index and the
predicted results of electric energy, as shown in Figure 7. The horizontal axis in Figure 7
represents the number of prediction samples, and the vertical axis represents the predicted
electric energy (the values shown are not the actual values of electric energy, but the
normalized results that can still reflect the real data status). The blue line represents the
ground truth of electric energy, while the other colored lines represent the predicted values
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under different MSE. The figure shows that a significant deviation occurs between the
predicted energy values generated by attacks and the ground truth. The red and blue solid
circles represent the maximum deviation of the predicted values, which becomes more
severe as the increase in the MSE. Typically, the deviation of electric energy prediction must
be controlled within 5% to ensure sufficient safety. However, the deviation shown in the
figure has already exceeded this threshold. If not intervened, it will lead to overestimation
or underestimation of the predicted electric energy, causing serious imbalance in the power
grid load. Therefore, the purpose of this experiment is to demonstrate the necessity of
defending against poisoning attacks.

5.6. Other Questions

In this paper, the setting of parameters such as the sliding window size, m, for batch-
points selection, and the number of samples being covered, β, are not extensively discussed.
We set m to the number of poisoned samples, considering the extreme case of overall
contamination of the poisoning points. This setting could reduce the number of iterations
and minimize the time cost. Secondly, for the setting of the forgetting parameter of β, we
set β = L, also considering the extreme case of complete forgetting. The experimental
results are still quite promising. This paper focuses on feasibility and effectiveness, and
optimal parameter settings will be completed in future research.

6. Conclusions

This paper addresses the problem of poisoning online regression in the edge comput-
ing environment of the smart grid for the first time. Specifically, we propose an online
poisoning attack framework that transforms the bi-level optimization problem from the
offline mode to the online mode. This is equivalent to converting a one-time processing
of a massive offline sample into multiple batch processing. By optimizing the sample size
processed in each batch, we could reduce the time overhead of each processing and achieve
the goal of reducing the overall time overhead. Then, this paper applies the loss-based
selection strategy and the batch-polluting strategy in poisoning attacks on regression mod-
els. Finally, we evaluate the proposed algorithms for the edge device with the data stream
being generated using a simulation based on offline open datasets of the smart grid. Our
experiments have shown that the proposed method can reduce time overhead by over 50%
while also improving average attack effectiveness by more than 1.23 times. The results
emphasize the importance of defending against poisoning attacks in the context of smart
grid security.

To ensure timeliness, we focused on common online prediction models that are suitable
for limited computing and resource-constrained environments in the edge intelligence
environment. In future work, we plan to investigate more complex online models of deep
learning and neural networks, which will enable us to explore poisoning attack and defense
strategies in greater depth.
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